文档库 最新最全的文档下载
当前位置:文档库 › 国内光纤光栅材料研究与应用概况(智能传输材料之三)

国内光纤光栅材料研究与应用概况(智能传输材料之三)

国内光纤光栅材料研究与应用概况(智能传输材料之三)
国内光纤光栅材料研究与应用概况(智能传输材料之三)

智能传输材料之三

国内光纤光栅材料研究与应用概况

一、光纤光栅简介

光纤智能材料与结构是采用光作为信号检测和传输媒介,具有抗干扰能力强、数字量检测、传输距离远以及组网容量大等独特的优点。光纤光栅就是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅。由于光纤光栅具有体积小、熔接损耗小、全兼容于光纤、能埋入智能材料等优点,并且其谐振波长对温度、应变、折射率、浓度等外界环境的变化比较敏感,因此在光纤通信和传感领域得到了广泛的应用。根据光纤光栅的周期大小,主要分为短周期光纤光栅和长周期光纤光栅两种。短周期光纤光栅也叫光纤布拉格光栅(fiber Bragg grating,简称FBG),其周期通常小于1μm,能实现反向模式间耦合的光纤光栅,属反射型光纤光栅;长周期光纤光栅(long‐period fiber grating,简称LPFG)的周期为几十到几百微米,属透射型光纤光栅。其最主要应用在传感领域。

二、光纤光栅传感器及其应用

自从1989年首次报道将光纤光栅用于传感领域以来,经过20多年的发展,光纤光栅在光纤传感领域的作用日益突出,各类传感器不断涌现。根据实际应用环境不同,光纤光栅传感器大致可分为温度传感器、应力传感器、弯曲传感器、压力传感器、扭曲传感器、生化传感器、光纤加速度计等。

光纤光栅传感器除了具有普通光纤传感器的许多优点外,还有一些明显优于光纤传感器的地方,其中最重要的就是它的传感信号为波长调制。这一传感机制的好处在于测量信号不受光源起伏、光纤弯曲损耗、连接损耗和探测器老化等因素的影响; 避免了一般干涉型传感器中相位测量的不清晰和对固有参考点的需要;能方便地使用波分复用技术在一根光纤中串接多个布拉格光栅(FBG)光栅进行分布式测量。另外,光纤光栅很容易埋入材料中对其内部的应变和温度进行高分辨率和大范围地测量,光纤光栅传感器被认为是实现光纤灵巧结构的理想器件。

1. 民用工程

民用工程中的结构监测是光纤光栅传感器应用最活跃的领域, 基础结构的状态, 力学参数的测量对于桥梁、大坝、隧道、高层建筑和运动场馆的维护是至关重要的, 通过测量建筑物的分布应变, 可以预知局部荷载的状态, 光纤光栅传感器既可以贴在现存结构的表面, 也可以在浇筑时埋入结构中对结构进行实时测量, 监视结构缺陷的形成和生长。另外, 多个光纤光栅传感器可以串接成一个网络对结构进行分布式检测, 传感信号可以传输很长距离送到中心监控室进行遥测, 因此在民用工程中, 光纤光栅传感器成为结构监测的最重要手段。例如:武汉天心洲公铁两用斜拉桥、海口世纪大桥、荆岳大桥等长期安全监测。

2. 航空航天工业

航空航天业使用传感器密集,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位臵等所需要使用的传感器超过100 个,因此传感器的尺寸和重量变得非常重要。光纤光栅传感器只有1 根光纤敏感元件(光栅)

制作在纤芯中,从尺寸小和重量轻的优点来讲几乎没有其他传感器可以与之相比。因此航空航天业对光纤光栅传感技术非常重视,仅波音公司就注册了好几个光纤光栅传感器的技术专利。现在,大量复合材料被用于替代传统金属材料用于航天飞行器中,而复合材料结构的制造过程中可以便捷埋入光纤光栅传感器,实现飞行器运行过程中机载传感系统的实时健康和性能监视,这可以减少飞行器重量、缩短检查时间、降低维护成本从而改善其性能。例如,美国X-33原型机。

3. 电力工业

电力工业中的设备大都处在强电磁场中, 一般电类传感器无法使用。很多情况下需要测量的地方处在高压中, 如高压开关的在线监测, 高压变压器绕组、发电机定子等地方的温度和位移等参数的实时测量, 这些地方的测量需要传感器具有很好的绝缘性能、体积要小、而且是无源器件, 光纤光栅传感器是进行这些测量的最佳选择。有一些电力设备经常位于难以到达的地方, 如荒山野岭、沙漠荒原中的传输电缆和中继变电站, 使用分布式光纤光栅传感系统的遥测能力可以极大地减少设备维护费用。因此光纤光栅传感器在电力工业中的应用前景很好。例如,“西电东送”工程中采用光纤光栅高压开关柜逐点监控系统对高压电缆的温度进行检测。

4. 石油化学工业

石化工业属于易燃易爆的领域,电类传感仪器用于诸如油气罐、油气井、油气管等地方的测量存在不安全的因素。光纤光栅传感器因其本质安全性非常适合在石油化工领域里应用。

5.其他

如船舶航运业应用中,能够为现代船舶的操作提供瞬时和丰富的传感信息,进而通过提供船舶操作人员所需要的早期危险报警和损伤评估来保证船舶的安全。医学应用中,光纤光栅传感器是现今能够做到最小的传感器,能够通过最小限度的侵害方式对人体组织功能进行内部测量,提供有关温度、压力和声波场的精确局部信息,光纤光栅传感器对人体组织的损害非常之小,足以避免对正常医疗过程的干扰。核工业应用中,核工业是个高辐射的地方,核泄漏对人类是一个极大的威胁,因此对于核电站的安全检测是非常重要的。由于核装臵受辐射影响会加速老化,会需要更多的维护和修理,会需要更多的传感器以便遥控设备,处理不确定情况。同时核废料的管理也变得越来越重要,需要有监测网络来监视核废料站的状况,对监视网络长期稳定的要求也是前所未有的。

三、光纤光栅材料国内现状

我国在70年代末就开始了光纤传感器的研究,目前武汉理工大学、中国计量学院、国家电网公司、浙江大学、清华大学等在光纤温度传感器、压力计、流量计、液位计、电流计等领域进行了大量的研究。特别是1997年国家计委批准在武汉理工大学建设了全国唯一的“光纤传感技术国家重点工业性试验基地”、2000年批准在武汉理工光科股份有限公司建设“光纤传感器国家高技术产业化示范工程”、2009年发改委批准在武汉理工大学成立“光纤传感技术国家工程实验室”,使得我国光纤光栅领域若干关键技术和产业化研发方面取得一系列重要突破,大大加速了这一高新技术的产业化进程。

以下从2015、2014、2013年在国内期刊发表文章及在国家知识产权局申请与授权专利两个方面具体分析光纤光栅材料领域各高校、科研院所与企业的研究与应用情况。

(一)国内期刊

从知网、维普、万方数据库搜索关键词(文章题目)含“光纤光栅”结果来看,研究较为热门,集中在工程应用领域,详见表1。

表1:

物理学185 336 370

土木工程50 49 60

电气工程29 43 50

建筑学26 23 31

矿业工程23 48 49

信息与通信工程20 45 61

仪器科学与技术17 48 72

机械工程13 35 59

控制科学与工程10 - -

航空宇航科学9 - -

石油与天然气- 28 39

电子科学与技术- 23 22

其他69 83 163

合计451 761 976

注:因2015年部分期刊还未刊登电子版,检索会不全面。

另外,可搜索出六本相关图书,分别为科学出版社《光纤光栅原理及应用》(饶云江、王义平著)、国防工业出版社《光纤光栅传感原理及应用》(吴朝霞、吴飞著)、国防工业出版社《光纤光栅及其传感技术》(赵勇著)、中国建筑工业出版社《结构健康监测光纤光栅传感技术》(李宏男、任亮著)、科学出版社《光纤光栅理论基础与传感技术》(张自嘉著)、科学出版社《光纤光栅传感应用问题解析》(孙丽著)。

(二)申请与授权专利

截止2016年2月12日,在国家知识产权局专利检索中,搜索发明专利名称含关键词“光纤光栅”,共检索出2724件专利,因涉及太多,表2列举出部分申请量较大的高校、科研院所和企业(人工检索统计,会有遗漏)。

表2:

发明人(申请人,包括联合申请人)数量

武汉理工大学197

中国计量学院189

国家电网公司114

浙江大学105

清华大学98

电子科技大学80 哈尔滨工业大学83 华中科技大学68 南京航空航天大学65 山东省科学院激光研究所53 武汉理工光科股份有限公司48 重庆大学40 国网电力科学研究院36 吉林大学34 西北工业大学31 中国电子科技集团公司第八研究所24 杭州欧忆光电科技有限公司19 中国科学院长春光学精密机械与物理研究所13 西安盛佳光电有限公司10 深圳大学9 无锡津天阳激光电子有限公司8 杭州聚华光电科技有限公司7 合计1331

四、相关高校、科研院所与企业概况及研究方向

1、武汉理工大学

该校光纤传感技术国家工程实验室重点是围绕大型桥梁与土木工程、电力工程和石化工业等国家重大建设项目对安全监测和信息采集的需求,开展光纤传感关键技术的研发,构建基于光纤传感的新一代安全监测技术体系,研究和制定光纤传感技术与产品标准。该实验室主要负责人是中国工程院院士姜德生。

目前,重点开展基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统、旋转轴系振动(位移)的光纤光栅测量技术与方法、基于光纤光栅传感的机床温度与切削力测量、基于光纤光栅传感的损伤识别研究、基于光纤传感技术的重大装备安全监测等,该校光纤传感技术已成功用于武汉天心洲公铁两用斜拉桥、公路隧道火灾安全监测、国家四大战略储备油库火灾报警、三峡工程重点文物保护工程结构安全监测等。

2、中国计量学院

中国计量学院是我国质量监督检验检疫行业唯一的一所本科院校,是一所计量标准质量检验检疫特色鲜明、多学科协调发展的普通高校。中国工程院院士庄松林教授任名誉校长,国家杰出青年基金获得者、浙江省特级专家林建忠教授任校长。

该校现有两个国家及部级科技平台,即计量测试技术与仪器教育部工程研究中心、国家磁性材料及其制品质量监督检验中心,及五个省级重点实验室和创新平台,在数字量检测(传感器应用研究)领域拥有明显优势。

3、国家电网公司

该公司世界企业500强位列第7位,是全球最大的公用事业企业。因涉及到电力输送,该公司及其下属各省电网公司、电力研究所针对光纤光栅传感器线路检测进行了大量的研究,从专利库中检索来看(若包括下属企业),相关专利也是最多。

4、浙江大学

浙江大学信息与电子工程学系光纤电子学实验室,通过和国外著名实验室的合作,在国内较早开展光纤传感器方面的研究,分别在分布式光纤传感器、航空用光纤传感器、光纤水声传感器和光纤传感网络等方面开展了国内领先的科研工作。是目前国内唯一能全系列提供分布式光纤传感技术(包括布里渊和拉曼分布式光纤传感器等)的研究单位。

因中国计量学院及浙大两所高校的影响,杭州市已成为我国光电技术转化应用较为集中的地区之一,如有杭州欧忆光电科技有限公司(专利19件)、聚光科技(杭州)股份有限公司(专利7件)、杭州布里特威光电技术有限公司(专利4件)等。

5、武汉理工光科股份有限公司

该公司是烽火科技集团〃武汉邮电科学研究院旗下专门从事光纤传感及智能化应用的高新技术企业。作为中国最早从事光纤传感技术的企业之一,理工光科为石油石化/公路隧道火灾监测、重要场所周界入侵防范、大型桥梁健康监测与综合管养、智能电网、重大装备状态监测与故障诊断等多种不同应用场景提供了一系列完整先进的综合解决方案,是中国最大的光纤传感安全监测设备提供商。

理工光科自成立以来,一直与武汉理工大学光纤传感技术研究开发中心开展密切的“产学研”合作,积极参与国家光纤

光栅传感行业标准化工作,为推动我国在光纤传感物联网技术方面的总体研究水平和自主创新能力,也为“武汉中国光谷”的光纤传感技术与产业处于国内的领先地位并在国际上产生重要影响做出了突出贡献。作为武汉〃中国光谷的核心企业之一,理工光科目前营销和服务网络遍及全国100多个地市,网点覆盖率在同行业中位居榜首,公司掌握光纤光栅传感系统的全部核心技术。

6、中国电子科技集团公司第八研究所

中国电子科技集团公司第八研究所(又名:安徽光纤光缆传输技术研究所)是从事光传输技术、光传感技术研究开发和应用的国家一级研究所。产品应用于雷达通信、预警探测、航空航天、水下通信、安防监控、通信设备等领域,应用区域遍布海、陆、空、天各个场合,为我国国防事业和国民经济信息化做出了重要贡献。现所区分别位于安徽省淮南市和合肥市。

7、电子科技大学

电子科技大学是教育部直属、国家“985工程”“211工程”重点建设大学,坐落于四川成都市。学校原名成都电讯工程学院。目前,该校完整覆盖整个电子类学科,以电子信息科学技术为核心,以工为主,理工渗透,理、工、管、文协调发展的多科性研究型大学。

该校通信与信息工程学院、光电学院、电子工程学院及通信抗干扰技术国家级重点实验室等院室,使得在光纤通信领域科研实力雄厚。

附件1:国内部分光纤传感器公司一览表

公司所在地企业名称

北京北京菲博泰光电科技有限公司

北京北京睿光通科技有限公司

北京北京基康科技有限公司

北京北京迪恩康硕科技发展有限公司

北京北京蔚蓝仕科技有限公司

北京北京品傲光电科技有限公司

北京北京托普光研科技发展有限公司

广州广州天赋人财光电科技有限公司

杭州杭州欧忆光电科技有限公司

杭州聚光科技(杭州)股份有限公司

杭州杭州布里特威光电技术有限公司

杭州杭州恒川科技有限公司

合肥合肥容知光纤传感技术有限公司

南京南京格能仪器科技有限公司

宁波宁波杉工结构监测与控制工程中心有限公宁波宁波振东光电有限公司

宁波宁波汉迪传感技术有限公司

上海上海华魏光纤传感技术有限公司

上海上海波汇通信科技有限公司

上海上海光栅信息技术有限公司

上海上海紫珊光电技术有限公司

上海上海森首光电科技有限公司

上海上海前所光电科技有限公司

上海上海八运水科技发展有限公司

上海上海仪表(集团)公司

上海上海汉昆光电科技有限公司

上海上海光维通信技术股份有限公司

深圳深圳市欧普申光电科技有限公司

深圳深圳市安捷工业光电有限公司

深圳深圳市迅捷光通科技有限公司

深圳深圳市科斯通科技有限公司

深圳深圳太辰光通信有限公司

苏州苏州市盛信光纤传感科技有限公司

苏州苏州光格设备有限公司

天津依诺维信科技(天津)有限公司

威海威海北洋集团

无锡无锡科晟光子科技有限公司

无锡无锡成电光纤传感科技有限公司

无锡无锡津天阳激光电子有限公司

武汉武汉理工光科股份有限公司

武汉武汉东隆科技有限公司

西安西安博康电子有限公司

西安西安固泰传感器有限公司

珠海珠海拓普智能电气股份有限公司

附件2:部分知名国外光纤光栅技术应用企业

公司所在地企业名称

美国Micron Optics International

美国Agilent Technologies (安捷伦)

日本日本光纳株式会社(Neubrex Co.,Ltd)

加拿大OZ光学有限公司

德国LIOS

光纤光栅温度传感器 报告

波长调制型光纤温度传感器《光纤传感测试技术》 课程作业报告 提交时间:2011年10月27 日

1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过外界参量对布拉格中心波长B λ的调制来获取传感信息,其数学表达式为: 2B eff n λ=Λ 式中:eff n 为纤芯的有效折射率;Λ是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。 (2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力 、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材

光纤光栅技术论文

光纤光栅及其技术在电力行业上的应用 摘要:分析光纤光栅解调的基本原理和常用解调方法的工作机理、性能和特点,从光纤传感 技术的优势出发,介绍了光纤光栅传感智能结构的优点,对波长解调方法如匹配解调法、可 调谐激光器法、干涉法、滤波法等做了详细的讨论,阐述了相应的系统设计方案,并对各 种方法的优、缺点进行了分析和讨论。提出光纤光栅传感器在实际应用中所面临的主要技术 难题,分析现有的解决方案,讨论光纤光栅传感器在进一步实用化中需要解决的难题及其未 来的发展趋势。 关键词:光纤光栅,传感解调,干涉,XPM

目录 第一章光纤光栅基本原理 1.1 前言 (1) 1.2 光纤光栅定义及分类 (1) 1.2.1光纤光栅的分类 (2) 1.3光纤光栅制作方法 (6) 1.3.1光敏光纤的制备 (6) 1.3.2成栅的紫外光源 (7) 1.3.3成栅方法 (7) 第二章光纤光栅技术应用 (10) 2.1 光纤光栅传感器的工作原理 (10) 2.1.1啁啾光纤光栅传感器的工作原理 (11) 2.1.2长周期光纤光栅(LPG)传感器的工作原理 (11) 2.2.4在电力工业中的应用 (12) 2.3 光纤光栅在光通信领域的应用 (12) 2.3.1.光纤光栅滤波器中的应用 (12) 2.3.2光纤光栅在光纤通信系统中的应用 (14) 第三章光纤光栅的应用前景 (20) 3.1 光栅技术及拉曼光纤放大器发展应用 (20) 3.2 波分复用/解复用器 (20) 3.3 光纤滤波器 (21) 第四章光纤光栅结论 (21) 致谢 (22) 参考文献 (23)

第一章光纤光栅基本原理 1.1 前言 1978年,加拿大通信研究中心的K.O.Hill及其合作者首次从光纤中观察到了光子诱导光栅。Hill的早期光纤是用488nm 可见光波长的氩离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来梅尔茨等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。1989年,第一支布拉格诺波长位于通信波段的光纤光栅研制成功。1993年hill等人提出了位相掩模技术,它主要是利用紫外光透过相位掩模板后的士1级衍射光形成的干涉光对光纤曝光,使纤芯折射率产生周期性变化写入光栅,此技术使光纤光栅的制作更加简单、灵活,便于批量生产。1993年Alkins等人采用了低温高压氢扩散工艺提高光纤的光敏特性。这一技术使大批量、高质量光纤光栅的制作成为现实。这种光纤增敏工艺打破了光纤光栅制作对光纤中锗含量的依赖,使得可选择的光纤种类扩展到了普通光纤,它还大大提高了光致折变量(由10-5最大提高到了10-2),这样可以在普通光纤上制作出高质量的光纤光栅。 1.2 光纤光栅定义及分类 光纤光栅是利用光纤材料的光敏性,在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成(利用空间相位光栅的布拉格散射的波长特性)一个窄带的(投射或反射)滤光器或反射镜。光纤光栅是利用光纤中的光敏性制成的。所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

光纤光栅制作与发展

光纤光栅的制作与发展 光纤材料的光敏性 光纤光栅的光敏性是指物质的物理或者化学性质在外部光的作用下发生暂时或永久性改变的材料属性。对光纤材料的光敏性而言,则是指折射率、吸收谱、内部应力、密度和非线性极化率等多方面的特性发生永久性改变。 石英材料的分子结构通常为四面体结构,每个硅原子通过形成共价键与四个氧原子相连。虽然Ge原子与Si原子同为四价元素,可以代替Si原子在石英玻璃四面体结构中的位置,但是 Ge的掺入仍将对石英玻璃的分子结构产生干扰并不可避免的形成缺陷中心。由于纯石英玻璃的吸收带位于160nm处,对波长在190nm以上一直到红外区的光具有大于90%的透过率。这些波长的光不会对石英材料的性质产生任何形式的影响,因此,光纤的光敏性与掺杂有关。 一般认为掺锗石英光纤材料的光敏现象源于缺陷中心。起初,曾认为光敏性仅能从掺锗光纤中出现,光栅不能从纯硅纤芯生长,OH基对光纤的光敏性不是必要的。但是后来实验表明,光敏性存在于众多种类的光纤。比如,基于硅基光纤的掺铕光纤,掺铈光纤,掺饵锗光纤,以及掺氟浩盐光纤的掺锶饵光纤等。 然而从实用的观点来看,最引人注意的光敏光纤就是广泛应用于通信产业和光传感领域的纤芯掺锗光纤。在光纤材料中掺锗以后将产生位于180nm,195nm,213nm,240nm,281nm,325nm,517nm等多个附加的吸收带,其中240nm 和195nm为强吸收带。240nm吸收带的宽度约为30nm,325nm吸收带的强度仅为240nm吸收带的1/1000。通常,对光纤材料光敏性研究主要集中在240nm 和193nm的紫外光波段上。

光纤材料的增敏技术 自光敏性的发现和第一次证实锗硅光纤中的光栅以来,增加光纤中的光敏性就成为了一个重要的考虑因素。标准单模通讯光纤中掺有3%的锗,典型的光致折射率变化为~3×10-5。由于光纤材料的光敏性与光纤的掺杂浓度基本上成正比关系,因此提高光纤材料感光性最直接的方法就是提高光纤芯区的锗掺杂浓度。一般地,增加掺锗浓度可导致~5×10-4的光致折射率变化。但是用这种方法提高光纤材料的光敏性有一个很大的不利因素,即增加光纤芯区含锗量将增大光纤芯区和包层折射率之差。为保证光纤只能进行单模传输,必须减少光纤的芯径。当芯区的锗含量很高时,光纤的芯径将要非常小,这将影响光敏光纤与普通单模光纤的匹配性能。 因此,寻求更为有效的光纤材料增敏方法具有非常重要的意义。提高光纤材料紫外感光特性的方法可以从以下几个方面考虑: (1)增加光纤材料中的缺陷浓度。 (2)在光纤材料中掺入具有较大紫外吸收系数的杂质。 (3)在光纤的芯区或包层中掺入适当杂质,尽可能增大二者之间的热特性失配度。 目前,已经有多种有效的光纤材料增敏方案在实验室应用。这些方案主要分为三种,即载氢技术、光纤还原法和多种掺杂。 载氢增敏技术 o C的氢气中,这种方法将氢气以分子形态扩散入光纤的芯区。载氢光纤在收到紫外光照射的时候或者加热时将引起氢气的与掺锗石英玻璃之间的化学反应,即H2分子在Si-O-Ge区发生变化,形成与折射率有关的Ge-OH,Si-OH,Ge-H,Si-H等化学键和缺氧锗缺陷中心,从而提高光纤材料的光致折射率变化,可

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅

“现代传感与检测技术”课程学习汇报 光纤光栅传感器及其在医学上的应用 学院:机电学院 专业:仪器科学与技术 教师:刘增华 学号: S201201134 姓名:王锦 2013年03月

目录 第一章光纤光栅简介 (3) 1.1 光纤的基本概念 (3) 1.2 光纤光栅器件的基本概念 (3) 1.3 光纤光栅的加工工艺 (4) 1.4 光纤光栅的类型 (5) 第二章光纤光栅传感器 (7) 2.1光纤光栅温度传感器 (7) 2.2 光纤光栅应变与位移传感器以及振动与加速度传感器 (8) 第三章光纤光栅传感器的应用 (10) 3.1 光纤光栅传感器在结构健康测试方面的应用 (10) 3.2光纤光栅传感器在医学中的应用 (10) 3.3 光纤光栅在其他领域的应用 (11) 第四章总结 (12) 参考文献 (12)

第一章光纤光栅简介 1.1 光纤的基本概念 光纤的结构十分简单。光纤的纤芯是有折射率比周围包层略高的光学材料制作而成的,折射率的差异引起全内反射,引导光线在纤芯内传播。 光纤纤芯和包层的尺寸根据不同的用途,有多中类型。如传输图像的光纤要尽可能地收集到起端面上的光,因此其包层相对于纤芯而言非常薄。长距离传输过程中,通信光纤的厚半层能避免光束泄露出纤芯。然而,短距离通信光纤的纤芯较大,能够尽可能地手机光,一般称为多模光纤,长距离通信光纤的纤芯直径 一边比较小,一般只能传输一个模式,因此成为单模光纤。 光纤具有机械特性和光学特性。在机械方面光纤坚硬而又灵活,机械强度大。光纤的光学特性取决于他们的结构与成分。一般轴对称的单模光纤可以同时传输两个线偏振正交模式或者两个圆偏振正交模式。这两个正交模式在光纤中将以相同的速度向前传播,因而在其传播过程中偏振态不会发生变化。 1.2 光纤光栅器件的基本概念 加拿大渥太华通信研究中心的K.O.Hill等人于1978年首次在掺锗石英光纤中发现光线的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅。光纤光栅是近几年发展最快夫人光纤无源器件之一,他的出现将可能在光纤技术以及众多相关领域中引起一场新的技术革命。由于它具有在管线通信、光纤传感、光计算和光信息处理等领域均具有广阔的应用前景。 光纤光栅是利用光线材料的光敏性(外界入射光子和纤芯锗离子相互作用in 器折射率永久性变化),在纤芯内形成空间相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或者反射)滤波或者反射镜。利用这一特性可构成许多性能独特的光纤无源器件,例如利用光纤光栅的窄带高反射特性构成光纤反馈腔,依靠掺铒光纤等为增益介质可制成光纤激光器;利用光纤光栅作为激光二极管的外腔反射器,可以构成课调谐激光二极管;利用光纤光栅课构成Michelson干涉仪型Mach-Zehnder干涉仪和Febry-Peort干涉仪型的光纤色散补偿器。利用闪耀光栅可以制成光纤平坦滤波器;利用非均匀光纤光栅还可以制成用于检测应力、应变、温度等诸多参量的光纤传感器和各种传感网。

光纤光栅制作方法

光纤光栅制作方法<2> 3)chirp光纤光栅的制作a)两次曝光法这种方法可采用较简单的制作均匀光纤光栅的曝光光路。第一次曝光在光纤上并不形成光栅,而是仅形成一个渐变的折射率梯度,第二次曝光过程则是在第一次曝光区域上继续写入周期均匀的光栅,两次效应迭加便构成了一个chirp光栅。这种方法的优点是利用了制作均匀光栅的曝光光路,使得制作方法大大简化。b)光纤弯曲法这是在均匀光栅中引人光纤的机械变形,形成chirp光栅的一种方法,由于光纤的弯曲角度渐变,造成光栅的周期渐变。这种方法引入的chirp量不能过大,否则栅齿倾斜,会引起导模耦合成包层模而造成附加损耗。c)锥形光纤法这是利用锥形光纤形成chirp光栅的一种方法。可以在锥形光纤两端施加应力发生形变,然后写人均匀周期的光栅,应力释放后,由于锥体各部分的伸长形变不同,造成光栅周期的轴向发生均匀变化,形成chirp光栅。也可以先在锥形光纤上写人均匀光栅,然后再施加应力,可以得到相同的效果。d)应力梯度法与锥形光纤法原理相同,只是光纤中应力大小是通过将光纤粘在底座上的胶含量来调节。它的优点是可以分别调节中心波长和光栅的带宽,这对于制作高性能的色散补偿器具有重要的意义。e)复合chirp光栅法将一列不同周期的均匀光栅顺序写在光纤上,它最大限度地应用了制作均匀光纤光栅的工艺简单性,具有很大的灵活性。f)chirp光栅的全总干涉法制作这种制作chirp光栅的基本原理是通过在双光束全息光路系统中加入往面镜,使两束光的干涉角度沿着光纤轴向发生连续变化,从而造成光纤的纤芯折射率发生周期性渐变,形成chirp光纤光栅。4)新的光纤光栅制作方法a)直接写入法直接写入法是指在制作光纤光栅时,无须剥去光纤的涂覆层而直接在纤芯上写人光纤光栅的方法。此法关键是采用对紫外光透明的材料作为光纤的涂覆层。目前报道的光纤涂覆层有采用丙烯酸酯或general electric rtv615硅胶,通过加大紫外光强度、减小涂覆层厚度以及对光纤氢载等方法可以有效提高光纤光栅的写入时间。这种方法解决了以往传统方法中必须采用课光纤的弊端,减少了对光纤光栅制作完后要立即进行涂覆的工艺复杂性,具有很好的应用前景。b)在线成栅法这是最新出现的一种成栅方法。南安普敦大学的ldong等人采用脉冲单点激射的方法,首次实现了光纤拉制过程中写人光纤光栅的实验。它是在光纤拉制过程中在探光纤上直接写入光栅。通过对干涉系统中两束干涉光夹角的调节,可在线自动写入反射波长不同的一系列光纤光栅。使用这种方法,制造工艺简单,能连续大批量地制造光纤光栅,提高了光栅性能的稳定性,它的技术关键是要对所使用的准分子激光光束截面进行改进才能满足实用化的要求。c)光纤刻槽拉伸法用精密切割机对光纤进行周期性机械刻槽,用氢气火焰对v型槽区域的光泽进行拉伸退火,熔融玻璃表面应力的影响,以及v型槽一边的光纤的纤芯不平衡等因素,纤芯产生周期性的畸变,导致纤芯折射率的周期性变化。利用此方法已经成功研制成的长周期光纤光栅,具有很好的宽阻带特性(30nm),可应用于宽阻带滤波器的波分复用系统。这种方法的缺点是机械加工的精度要求较高,目前很少被采用。d)微透镜阵列法这种写入长周期光纤光栅方法的关键技术是采用一种微透镜阵列,将一平行的宽柬难分子激光聚焦成平行等间距的光条纹,投影到单模光纤上,其中相邻微透镜之间无间隙,其中心间距决定了写人光栅的空间周期。这种方法写入一个长周期光纤光栅仅需10s,大大提高了写入效率。通过控制写入时间和写入光栅的总长度,可以用同一块微透镜模板写入不同波长、不同透射率的长周期光栅。这种方法的缺点是做透镜模板制作非常困难,使它的应用受到了限制。e)用聚焦二氧化碳激光器写入lpg 采用10.6μm自由空间二氧化碳激光器对光纤直接曝光,通过计算机控制平移台,实现光纤的准直和固定及曝光间距的控制,可以写入不同周期的长周期光栅。这种方法无须采用紫外光,对光纤可以不用载氢处理,这种方法具有很好的应用前景。f)移动平台法利用一个周期不变的相位掩膜,可以写入调瞅、波长任意的光纤bragg光栅,通过改变光束的聚焦,可以写入阶跃chirp光栅。实验结构的主体包括两个移动平台,相位掩膜与光纤固定在一起,可以移动。改变两个透镜之间的距离就可以改变写入光纤的布拉格波长,控制每个基本光栅的曝光时间可控制切趾光栅剖面,这对于抑制反射谱中旁瓣的影响具有重要的意义。g)用聚焦离子束写入光纤光栅利用聚焦离子束(focused ion beam:fib)可以写入任意的光纤光栅结构,fib既可以采用研磨方式,也可以采用沉积方式。光栅研磨出的槽离纤芯只有几μm,研磨15~20个槽即可获得高的反射率,槽数越多反射越大。研磨方法简单但实现不易,常用的方法是用氟化氢腐蚀掉部分包层后开始研磨,但光纤研磨下来的物质充电沉积在研磨区,将会降低研磨效率,并且由于材料的再沉积,糟的深宽比将被限制在一个较小的值。研磨时间取决于研磨材料和束电流。这种方法的关键是要解决工艺难度,才有可能获得广泛的应用。3结束语对光纤通信而

光纤光栅研究

布拉格光栅的研究 1 概述 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。 在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。 在光纤传感领域,光纤光栅也起到了及其重要的作用。光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。 由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。 2 应变检测原理 根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4] Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。由于课上已经讲过,故不多做赘述,只是简要的回顾一下。接下来主要讨论应变对光纤光栅作用的模

光纤光栅发展现状

光纤光栅的发展状况 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。 本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。 1、光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。 1.1 光源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究 摘要:以悬臂梁为基本构架,以FBG 为敏感元件,设计了一种新型的具 有温度自补偿特性的FBG 位移传感器方案。对悬臂梁进行分析,推导出位移 传感器的传递函数,然后对其定标并实际测量,得到了传感器线性度和灵敏度同悬臂梁长度以及光纤布拉格光栅的位置之间的关系,并从结果看出本传感器精度高,运行稳定,且有好的重复性,线性范围最大为16mm。关键词:光纤光栅;悬臂梁;位移传感器;传递函数;温度自补偿0 引言自从1978 年K.O.Hill 等人首次在锗硅光纤上用驻波持续曝光制作成第一个光纤布拉格光栅(FBG)以来,FBG 的应用研究引起了全世界学者的广泛关注。光纤光栅传感器的材料优势及传感优势使FBG 传感技术近年来引起人们极大的兴趣。在光 纤光栅传感方案中,温度补偿的准确性和可靠性对测量结果的准确性有非常大的影响,要做到合理准确又有效的温度补偿,只能通过单个传感器的温度自补偿来实现。本文在FBG 的传感机理上,依据悬臂粱结构提出一种位移传感器 方案,此方案结构简单、运行稳定,且能够实现温度补偿与减小外界干扰的作用,获得较高的灵敏度。1 原理基本结构原理为,图1 为矩形悬臂梁基本结构,粱长为L,梁轴线的曲率为p(η),梁的轴线称为挠度线,则曲线上任 一点η处在外力F 作用下的纵坐标f(η)即为该点的挠度,传振原理为,当自由端有静挠度y 时,距离固定端为的截面处的静挠度f(η):式中,εz 为轴向应变,Pe 为弹光系数,a∧为光纤的热膨胀系数,a0 表示热光系数,△T 温度的变化量。温度自补偿原理为,当采用双光栅差分式分布在梁上下表面时,两根光栅中心波长的变化方向是相反的。两根光栅封装方式完全一样,热膨胀系数与热光系数均相同,长度一致,且两者应变等幅反向,即有:故由两根光栅分别满足式(2),同时具有(3)(4)两式所示条件,可以

光纤光栅的理论基础研究

高等光学论文 光纤光栅的理论基础研究 光纤光栅的理论基础研究 光纤由于具有损耗低、带宽大、不受电磁干扰和对许多物理量具有敏感性等优点,已成为现代通信网络中的重要传输媒介和传感领域的重要器件。光纤传感以其灵敏度高、抗电磁干扰、耐腐蚀、可弯曲、体积小、可埋入工程材料及进行分布式测量等优点受到了广泛重视。 光纤光栅是近十多年来得到迅速发展的一种光纤器件,其应用是随着写入技术的不断改进而发展起来的。光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,

从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。 第一部分光纤光栅的简介 1 光纤光栅的发展 1978年,加拿大通信研究中心的Hill等发现纤芯掺锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅[1]。 1989年,美国东哈特福联合技术研究中心的Meltz等利用244nm的紫外光双光束全息曝光法成功地制成了光纤光栅[2],用两束相干光相遇时所产生的干涉条纹使光敏光纤曝光,形成折射率的周期性永久改变,从而制成光栅。这种光栅已达到实用阶段。但这种方法有其缺点:一是对光源的相干性要求较高;二是对系统的稳定性要求高。 1993年,贝尔实验室的Lemaire等用光纤载氢技术增强了光纤的光敏性[3],这种方法适用于任何掺锗的光纤。通过光纤的载氢能够将在不增加掺锗浓度的情况下,使光纤的光敏性大大提高。1993年,又提出了制作光纤Bragg光栅的相位掩模法[4,5],是到目前为止最为实用化的一种方法,仍被普遍采用,但这种方法的主要缺点是制作掩模版,一种掩模版只对应一种波段的光纤光栅。 1996年,出现了长周期光纤光栅[6~8],这种光栅的周期较长,可以在数十微米到几百微米之间。光纤Bragg光栅具有选择性反射作用,是将前向传输的纤芯模耦合到后向传输的纤芯模中去,而长周期光纤光栅则是将纤芯模耦合到包层模,而包层模在传播不远后会损耗掉,从而在透射光中形成损耗峰。 2 光纤光栅的类型 根据周期的长短,通常把周期小于1μm的光纤光栅称为短周期光纤光栅,又称为光纤Bragg光栅或反射光栅,Bragg光栅的特点是传输方向相反的纤芯模式之间发生耦合,属于反射型带通滤波器;而把周期为几十至几百μm的光纤光栅称为长周期光纤光栅,又称为透射光栅,长周期光纤光栅的特点是同向传输的纤芯基模和包层模之间的耦合,无后向反射,属于透射型带阻滤波。 光纤光栅按波导类型可分为均匀光栅和非均匀光栅。均匀光纤光栅的特点是光栅的周期和折射率调制的大小均为常数,这是最常见的一种光纤光栅,其反射谱具有对称的边模振荡,但是其边模振荡较大,在通信中容易引起码间串扰,而最典型的均匀光栅为均匀光纤Bragg光栅。而非均匀周期光纤光栅的特点是光栅的周期或

光纤温度传感器

光纤温度传感器的种类很多,除了以上所介绍的荧光和分布式光纤温度传感器外,还有光纤光栅温度传感器、干涉型光纤温度传感器以及基于弯曲损耗的光纤温度传感器等等,由于其种类很多,应用发展也很广泛,例如,应用于电力系统、建筑业、航空航天业以及海洋开发领域等等。 分布式光纤温度传感器在电力系统行业的发展 光纤温度传感器在电力系统的应用中得到发展,由于电力电缆温度、高压配电设备内部温度、发电厂环境的温度等,都需要使用光纤传感器进行测量,因此就促进了光纤传感器的不断完善和发展。尤其是分布式光纤温度传感器得到了改善,经过在电力系统行业的应用,从而使其接收信号和处理检测系统的能力都得到了提升。 光纤光栅温度传感器在建筑业的发展 光纤光栅温度传感器由于其较高的分辨率和测量范围广泛等优点,被广泛应用于建筑业温度测量工作中。西方很多发达国家都已普遍采用此系统,进行建筑物的温度、位移等安全指标的测试工作,例如,美国墨西哥使用光栅温度传感器,对高速公路上桥梁的温度进行检测。通过广泛使用,光栅温度传感器所存在的问题,如:交叉敏感的消除、光纤光栅的封装等都得到了解决,因而此系统得到了完善。 航空航天业中的应用发展 航空航天业使用传感器的频率较高,包括对飞行器的压力、温度、燃料等各方面的检测,都需要使用光纤温度传感器进行检测,并且所使用到的传感器数量多达百个,所以对传感器的大小和重量要求很严

格。因此,基于航空航天业对传感器的要求,光纤温度传感器的体积、重量规格方面都经过了调整。2222222分布式光纤温度传感器分布式光纤温度传感器,通常用在检测空间温度分布的系统,其原理最早于1981年提出,后随着科学家的实验研究,最终研制出了此项技术。这种传感器原理发展是基于三种传感器的研究,分别是瑞利散射、布里渊散射、喇曼散射。在瑞利散射(OTDR)和布里渊散射(OTDR)的研究已取得了很大的进展,因此未来的传感器研究热点,将放在对基于喇曼散射(OTDR)的新分布式光纤传感器的研究上。最近,土耳其Gunes Yilmaz开发出了一种分布式光纤温度传感器,此传感器的温度分辨率是1℃,空间分辨率是1.23m。在我国也有很多大学展开了对分布式光纤温度传感器的研究,例如,中国计量大学1997年发明出煤矿温度检测的传感器系统,其检测温度为-49℃~150℃,温度分辨率为0.1℃。 光纤荧光温度传感器 当前最热门的研究,就是针对光纤荧光温度传感器,其是利用荧光的材料会发光的特性,来检测发光区域的温度。这种荧光的材料通常在受到紫外线或红外线的刺激时,就会出现发光的情况,发射出的光参数和温度是有着必然联系的,因此可以通过检测荧光强度来测试温度。世界各国的高校都设计过此类传感器,例如,韩国汉城大学发现10cm的双掺杂光纤,在其915nm的地方所反射出的荧光强度所对应的温度指数是20℃~290℃;我国清华大学借用半导体GaAs原料来吸收光,进而以光随温度改变的原理,研发出了温度范围是0℃~

光纤光栅的制作与应用

目录 摘要 (1) 引言 (2) 1.光纤光栅制作方法 (2) 1.1光纤光栅的特点 (2) 1.2光纤光栅的分类 (4) 1.2.1按其空间周期和折射率系数分布特性 (4) 1.2.2根据光纤光栅的成栅机理 (5) 1.3光栅光纤的制备 (6) 1.4成栅的紫外光源 (7) 1.5成栅方法 (8) 1.5.1短周期光纤光栅的制作 (8) 1.5.2长周期光纤光栅的制作 (10) 2光纤光栅的应用 (11) 2.1光纤光栅在光纤通信系统中的应用 (13) 2.1.1有源器件 (13) 2.1.2无源器件 (13) 2.2可见光纤光栅的应用 (13) 2.2.1光源 (14)

2.2.2光纤放大器 (15) 2.2.3色散补偿器 (15) 2.2.4光分插复用器(OADM) (16) 2.2.5光终端复接器(OTM) (17) 2.2.6波长交换 (18) 3发展前景展望 (19) 参考文献 (21)

摘要:近年来,各种新的光纤光栅写入方法成出不穷,各种新型光纤光栅及其应用领域不断涌现,而且光纤光栅的制作技术与其应用领域有着密切的联系。本文主要综述了光纤光栅的制作技术及其一些特种光栅制作方法的最新进展。 为了介绍各种光光纤光栅制作方法的应用领域,本文首先介绍了光纤光栅的光学特性,光敏光纤的制备方法和所需光源等知识。对于光纤的制作技术,分别说明了短周期光纤光栅(FBG),长周期光纤光栅(LFPG)的各种写入方法,啁啾光纤光栅和切趾光纤光栅以其独到的优势而备受关注,因此,本文也对他们的特殊写入方法进行了阐述。并比较了各自的优缺点。 目前,光纤光栅具有附加损耗小、体积小、能与光纤很好地耦合、可与其他光纤器件融成一体等特性,是全光网中的关键技术器件。光纤光栅技术可以为全光通信系统中光源、光放大、色散补偿、光终端复接器(OTM)、光交叉连接(OXC)等关键部件提供解决方案。本文介绍了光纤光栅在全光网络中所发挥的作用,阐述了光纤光栅的特点,对光纤光栅进行了分类,着重分析了光纤光栅在光通信系统中的典型应用,并对其发展前景作出了展望。 关键词:光纤光栅成栅机理光纤无源器件全光通信

光纤光栅传感器及其在桥梁结构健康监测中的应用

光纤光栅传感器及其在桥梁结构健康监 测中的应用 姓名:朱少波 学号:U201115536 班级:电气中英1101班 2015年1月23日星期五

摘要:作为20世纪测试领域的重大发明,光纤光栅传感技术得到了快速发展,并已经成 为诸多领域的前沿研究与应用方向。本文主要介绍了相关产业化企业近年来基于光纤光栅感知元件发展起来的系列传感器、部品、重大土木工程结构健康监测的应用以及项目研究与产业化状况。主要包括:光纤光栅系列直接传感器、光纤光栅间接传感器、光纤光栅传感部品(结构)与结构健康监测的光纤光栅传感网络与集成系统及其在大型桥梁结构健康监测中的应用。最后,介绍了课题组与相关企业在该方向的项目研究、国际合作与产业化情况,并指出该方向的主要研究与应用方向。 关键词:光纤光栅传感器,桥梁结构,健康监测 1.引言 重大桥梁工程结构的使用期长达几十年、甚至上百年,环境侵蚀、材料老化和荷载的长期效应、疲劳效应与突变效应等灾害因素的耦合作用将不可避免地导致结构和系统的损伤积累和抗力衰减,从而抵抗自然灾害、甚至正常环境作用的能力下降,极端情况下引发灾难性的突发事故。因此,为了保障结构的安全性、完整性、适用性与耐久性,对重大桥梁工程结构增设长期的健康监测系统,以监测结构的服役安全状况,并为验证结构设计、施工控制以及研究结构服役期间的损伤演化规律提供有效的、直接的手段,并实时监测其服役期间的安全状况、避免重大事故的发生。结构健康监测已经成为世界范围内重大桥梁结构工程的前沿研究方向。 然而,重大桥梁工程结构和基础设施体积大、跨度长、分布面积大,使用期限长,传统的电学量传感设备组成的长期监测系统性能稳定性、耐久性和分布范围都不能很好地满足实际工程需要。随着智能感知材料的发展,高性能传感器及其测试技术为结构智能健康监测系统的研究与发展提供了崭新的途径,尤其是以光纤光栅为代表的光纤传感元件的出现与发展,更为这一热点课题提供了广阔的生机。光纤通信技术和光纤传感技术在20世纪后半叶至21世纪初期的几十年里日新月异,极大地推动了人类社会的进步。光纤传感技术随着光通信技术的发展应运而生,尤其是光纤光栅的出现不仅给光纤传感技术,而且给相关领域带来了一次里程碑式的革命[1],使人们可以设计和制作大量基于光纤光栅的新型智能传感器[2]。与传统的各类传感器相比光纤光栅传感器具有以下优点[3]: 1)抗电磁干扰,电绝缘,本质安全 由于光纤传感器是利用光波传输信息,而光纤是电绝缘的传输媒质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这一特性使其在高压、强电磁干扰、易燃、易爆的环境中能有效的传感。 2)耐腐蚀 由于光纤表面的涂覆层是由高分子材料组成,承受环境或者结构中酸碱等化学成分腐蚀的能力强,适合于结构的长期健康监测。 3)测量精度高 光纤传感器采用波长调制技术,分辨率可达到波长尺度的皮米量级,对应温度监测中0.1℃与应变监测中1με。光测量及波长调制技术使光纤传感器的灵敏度优于一般的传感器。 4)测量对象广泛

光纤光栅

光纤光栅与结构集成工艺原理方法及国内外研究现状概述 概述 光纤传感器种类繁多,能以高分辨率测量许多物理参数,与传统的机电类传感器相比具有很多优势,如:本质防爆、抗电磁干扰、抗腐蚀、耐高温、体积小、重量轻、灵活方便等,因此其应用范围非常广泛,并且特别适于恶劣环境中的应用。但是因为裸光纤纤细、质脆、尤其是剪切能力差,直接将光纤光栅作为传感器在工程中遇到了铺设工艺上的难题。因此,对裸FBG 进行封装,是将FBG 传感器在实际应用中推广的一个重要环节,对于研制满足航空航天领域需要的体积小、质量轻FBG 传感器具有重要意义。 一、光纤光栅工作原理 光纤光栅的最基本原理是相位匹配条件: β1、β2是正、反向传输常数,Λ是光纤光栅的周期,在写入光栅的过程中确定下来。当一束宽谱带光波在光栅中传输时,入射光在相应的频率上被反射回来,其余的不受影响从光栅的另外一端透射出来。光纤光栅起到了光波选频的作用,反射的条件称为布拉格条件。由光纤光栅相位匹配条件得到反射中心波长(布拉格波长)表达式: 二、光纤光栅的写入 2.1 短周期光纤光栅的写制 内部写入法(又称驻波法) 将波长488nm 的基模氢离子激光从一个端面祸合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅。此方法是早期使用的,该方法要求 122πββ-=Λ Λ =n B 2λ

锗含量很高,芯径很小,并且只能够制作布拉格波长与写入波长相同的光纤光栅,因此目前很少被采用。 全息成删法(又称外侧写入法) 1989年,Meltz等人首次用此方法制作了横向侧面曝光的光纤光栅。用两束相干紫外光束在掺锗光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。写制设备装置如图2.1所示。通过改变入射光波长或两相干光束之间的夹角,可以得到不同栅格周期的光纤光栅。但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。该方法采用多脉冲曝光技术,光栅性质可以精确控制,但是容易受震动或温度的影响,目前这种方法使用也不多。 单脉冲写入法由于准分子激光具有很高的单脉冲能量,聚焦后每次脉冲可达J/cm2,近年来又发展了用单个激光脉冲在光纤上形成高反射率光栅。英国南安普敦大学的Archambanlt等人对此方法进行了研究,他们认为这一过程与二阶和双光子吸收有关。由于光栅成栅时间短,因此环境因素影响较小。此外,此法可以在光纤拉制过程中实现,避免了光纤受到额外的损伤,保证了光栅的良好强度和完整性。但是形成光栅的短波长损耗严重,且不稳定。该方法对光源的要求不高,适用于低成本、大批量生产。 相位掩膜法将用电子束曝光刻好的图形掩膜置于裸光纤上,相位掩膜具有压制零级,增强一级衍射的功能。紫外光经过掩膜相位调制后衍射到光纤上形成干涉条纹,写入周期为掩膜周期一半的Bragg光栅。这种成栅方法不依赖于入射光波长,只与相位光栅的周期有关,因此对光源的相干性要求不高,简化了光栅的制造系统。这种方法的缺点是制作掩膜复杂。用低相干光源和相位掩膜版来制

相关文档