文档库 最新最全的文档下载
当前位置:文档库 › 光纤实验报告

光纤实验报告

光纤实验报告
光纤实验报告

实验1 数字发送单元指标测试实验

一、实验目的

1.了解数字光发端机平均输出光功率的指标要求

2.掌握数字光发端机平均输出光功率的测试方法

3.了解数字光发端机的消光比的指标要求

4.掌握数字光发端机的消光比的测试方法

二、实验仪器

1.ZYE4301G型光纤通信原理实验箱1台

2.光功率计1台

3.FC/PC-FC/PC单模光跳线1根

4.示波器1台

5.850nm光发端机1个

6.ST/PC-FC/PC多模光跳线1根

三、实验原理

四、实验内容

1.测试数字光发端机的平均光功率

2.测试数字光发端机的消光比

3.比较驱动电流的不同对平均光功率和消光比的影响

五、实验步骤

A、1550nm数字光发端机平均光功率及消光比测试

1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM 编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm 光发模块输入端T151连接,作为信号源接入1550nm光发端机。

2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。

3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。

4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。

5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。

6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。

B、1310nm数字发端机平均光功率及消光比测试

8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。

9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。

10.将BM1拨至数字,BM2拨至1310nm。

11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。

12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。

13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。

14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

15.将P1,P0代入公式2-1式即得1310nm数字光纤传输系统消光比。

16.重复9-15步,调节电位器W101,调节驱动电流大小为下表中数值时,测得的平均光功率及消

光比填入下表。

六、实验报告

1.记录光发端机的平均光功率。(拍照)

(1)、1550nm数字光发端机平均光功率55.99uw

(2)、1310nm数字发端机平均光功率85.82uw

2.通过实验数据计算光发端机的消光比。(1)、1550nm数字光发端机的消光比P0=10.16uw P1=9

3.73uw

EXT=10*lg(P1/P0)=9.65dB (2)、1310nm数字发端机的消光比P0=2.25uw P1=110.7uw

EXT=10*lg(P1/P0)=16.92dB

实验2 光无源器件特性测试实验

一、 实验目的

1. 了解光无源器件,Y 型分路器以及波分复用器的工作原理及其结构

2. 掌握它们的正确使用方法

3.

掌握它们主要特性参数的测试方法

二、 实验仪器

1. ZYE4301G 型光纤通信原理实验箱

1台 2. 光功率计 1台 3. 示波器 1台 4. FC-FC 法兰盘 1个 5. Y 型分路器 1个 6.

波分复用器

2个

三、 实验原理

测试方法为:先测试出光源输出的光功率P 0,将Y 型分路器接入其中组成图

4-1所示测试系统后,分别测出Y 型分路器输出端的光功率P 1和P 2,分别代入4-1,4-2,4-3式即可得到待测Y 型分路器的性能指标。 波分复用器性能指标有耦合比CR 、插入损耗L t 、附加损耗L e 、光串扰(隔离度)DIR 等。这里只讨论光串扰。

光串扰是指一个输入端的光功率和由耦合器反射到其他输出端口的光功率的比值。其测试原理图如图4-2所示。

上图中波长为λ1=1310nm 、λ2=1550nm 的光信号经波分复用器复用以后输出的光功率分别为P 01、P 02,解复用后分别输出光信号,此时从1310窗口输出1310nm 的光功率为P 11,输出1550nm 的光功率为P 12;从1550窗口输出1550nm 的光功率为P 22,输出1310nm 的光功率为P 21。将各数字代入下列公式。

21

0112lg

10P P L

(4-4)

图4-1 Y 型分路器性能测试实验框图

12

0221lg

10P P L = (4-5)

上式中L 12 、L 21即为相应的光串扰。

由于便携式光功率计不能滤除波长1310nm 只测1550nm 的光功率,同时也不能滤除1550nm 只测1310nm 的光功率。所以改用下面的方法进行光串扰的测量。

测量1310nm 的光串扰的方框图如4-3(a )所示。

测量1550nm 的光串扰的方框图如4-3(b )所示:

在这种方法中,光串扰计算公式为:

12112lg

10P P L = (4-6) 21221lg 10P P

L = (4-7)

上式中L 12,L 21即是光波分复用器相应的光串扰。

四、 实验内容

1. 测量Y 型分路器的插入损耗

2. 测量Y 型分路器的附加损耗

3.

测量波分复用器的光串扰

五、 实验步骤

A、Y 型分路器性能测试

1. 用FC-FC 光跳线将1310nm 光发端机与光功率计相连,组成简单光功率测试系统。

2.信号源的产生:信号源由CPLD 下载模块产生,请参看系统简介中的CPLD 下载模块,将PCM 编译码模块中的4.096MH Z 时钟信号由T661输入到CPLD 下载模块的NRZ 信号产生电路的时钟输入端983,这样在输出端T980将输出4M 速率24-1位的伪随机信号,将其作为信号源接入到1310nm 光发端机信号输入端T101。并用示波器检测此信号。

1. 拨码开关BM1拨到数字,BM2和BM3拨到1310nm 。 2. 接通PCM 编译码模块、CPLD 下载模块、光发模块的电源。 3. 用万用表监控R110两端电压,用W101调节半导体激光器驱动电流,使之为25mA 。万用表示值为25mV 。

4. 用光功率计测得此时光功率为P 0。

5.拆除FC-FC光纤跳线,将Y型分路器按照图4-1中方法组成测试系统。

6.用光功率计分别测出Y型分路器输出两端光功率P1和P2。

B、波分复用器性能测试

7.信号源的产生同步骤2。

8.按图4-3(a)连接波分复用器:将波分复用器(A)标有“1310nm”的光纤接头插入“1310nm”

光发端(1310nmT)。将标有“1550nm”的光纤接头用保护帽遮盖起来;用FC-FC法兰盘将两个波分复用器(A)和(B)的“IN”端相连。

9.将拨码开关BM1拨到数字,BM2和BM3均拨到1310nm。

10.接通PCM编译码模块、CPLD下载模块、1310nm光发模块的电源。

11.用万用表监控R110两端电压,调节半导体激光器驱动电流,使之为25mA。

12.用光功率计测得此时波分复用器(B)标有“1310nm”端光功率为P11,测得标有1550nm端光功率为P12。

13.拆除波分复用器“IN”端FC-FC法兰盘,测得波分复用器(A)标有“IN”端输出光功率为P1。

14.代入上式计算1310nm光串扰。

15.根据4-3(b)测试框图和上述波分复用器1310nm光功率串扰步骤,设计步骤并测试1550nm光串扰。

16.将所得光功率数据代入公式4-6和4-7计算波分复用器的光串扰。

六、实验报告

1.记录各实验数据,根据实验结果计算Y型分路器插入损耗和附加损耗。(拍照)

插入损耗 1端口

10*1g(P0/P1)=4.87 dB 2端口

10*lg(P0/P2)=3.84 dB 附加损耗

10*lg(P0/(P1+P2))=1.31dB

2.根据实验结果,计算获得波分复用器光串扰。

在WDM系统中,每一波长的光信号都具有一定的光功率,当经过光放大器后,在光线中传输的光功率将会提高,较高的光功率会引起光纤的非线性效应,光纤的非线性效应会造成传输信号能量附加损耗、信号频率变化以及信道间串扰等不良影响。

实验3 模拟信号光纤传输实验

一、实验目的

1. 了解模拟信号光纤系统的通信原理

2. 了解完整的模拟信号光纤通信系统的基本结构

二、实验仪器

1.ZYE4301G型光纤通信原理实验箱1台

2.20MHz双踪模拟示波器1台

3.万用表1台

4. FC/PC-FC/PC单模光跳线1根

5. 850nm光发端机和光收端机1套

6. ST/PC-ST/PC多模光跳线1根

三、实验原理

LD模拟信号调制实验中,有兴趣时可采用预失真补偿电路对模拟信号波形进行失真补偿,可观察出补偿后的传输效果与补偿前的效果的不同。关于预失真补偿可参见附录。

本实验箱850nm为LED光源,1310nm和1550nm为LD光源。

图5-3 模拟信号光纤传输系统框图

四、实验内容

1. 各种模拟信号LED模拟调制:三角波、正弦波、方波。

2. 各种模拟信号LD模拟调制:三角波,正弦波、方波。

五、实验步骤

本实验采用模拟信号源模块输出的信号做为待传输的模拟信号。

A、LD模拟信号调制实验

1.模拟信号源用模拟信号源模块的1K正弦波信号,将输出端T303与1310nm光发模块模拟信号输入端T111连接。

2. 用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,K121置2、3通。

3. 将拨码开关BM1拨到模拟,BM2和BM3拨到1310nm。

4. 用K30打开模拟信号源模块电源;用K10打开光发模块电源。

5. 将K31置中间两脚通,调节1K正弦波信号幅度调节电位器W306,用示波器CH1通道从TP303观测,

使波形幅度约为2V ,且无明显失真。

6. 调节输入模拟信号幅度调节电位器W111、模拟信号驱动电流调节电位器W112和1310nm 光收模块输出信号幅度调节电位器W121,用示波器CH2通道从TP121观测,使得输出信号波形幅度为2V 且无明显失真,画出两信号的波形。再用示波器从TP112观察驱动电流信号;观察模拟信号光纤传输调制过程。

下面给出了以正弦波为例TP111、TP112、TP121各点的波形, 7. 将T303

换成T302(三角波)或T301(方波),观察各测试点波形效果。

B 、LED 模拟信号调制实验

根据LD 模拟信号调制实验步骤,设计LED 模拟信号调制步骤,并通过实验实现。

六、 实验报告

1. 记录并画出各模拟信号的波形,对模拟信号光传输前后的波形进行比较。(拍照)

W306和Tp121

TP111

TP112

TP121

W306和Tp121

2.比较LD与LED模拟信号调制的效果。

LED模拟信号调制比LD模拟信号调制的效果更好,因为LED光的输出特性曲线线性更好。

实验4 数字信号光纤传输实验

一、实验目的

1.了解数字信号光纤传输系统的通信原理

2.掌握完整数字光纤通信系统的基本结构

二、实验仪器

1.ZYE4301G型光纤通信原理实验箱1台

2.20MHz双踪模拟示波器1台

3.万用表1台

4.FC/PC-FC/PC单模光跳线1根

5.850nm光发端机和光收端机1套

6.ST/PC-ST/PC多模光跳线1根

三、实验原理

数字信号光纤传输系统组成框图如图6-3所示:

对原始数字信号产生模块的信号进行各种不同方式的编码和处理,然后通过光纤传输,在接收端

经译码后从测试端口观测输出端的信号波形,并且比较发光二极管的数字驱动与半导体激光器数字驱

动效果的异同。

四、实验内容

本实验用1310nm和850nm光纤传输系统直接传输数字信号源的NRZ码信号。关于光发、收端机参见实验二、三;数字信号源参见系统简介。

1.观察各种数字信号在LD(1310nm)光纤传输系统中的波形

2.观察各种数字信号在LED(850nm)光纤传输系统中的波形

五、实验步骤

A、LD数字信号调制实验

1.用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,K121置2、3通,组成1310nm光纤传输系统。

2.信号源用数字信号源模块产生的NRZ码信号,将其输出端T504与光发模块数字信号输入端T101连接,K511置2、3通(1、2通速率为64K,2、3通为256K),用示波器CHI通道观测此信号。

3.将拨码开关BM1拨到数字数字,BM2和BM3拨到1310nm。

4.用K50接通数字信号源模块电源,用K10接通光发模块电源。

5. 用万用表监控R110两端电压,用W101调节半导体激光器驱动电流,使之小于25mA 。

6. 调节1310nm 光收模块输出信号幅度调节电位器W121,用示波器CH2通道从TP121观测,使得输出信号波形幅度为3.5V 且无明显失真。记录以上两信号波形;再从TP102观测驱动电流波形;从而观察数字信号光纤传输调制过程。下面给出了以方波为例TP101、TP102、TP121各点的波形示意图

7. 改变数字信号源模块拨码开关状态,观察各测试点波形变化。

8. 有兴趣者可改用实验箱中其他码型的数字信号进行上述步骤,观察各种码型的波形(PCM 编码信号,CMI 编码信号,脉冲信号等)。

B 、LED 数字信号调制实验

根据1310nm 光纤通信系统数字信号调制实验步骤,设计850nmLED 光纤通信系统数字调制实验步骤并进行实验。

六、

实验报告

1.

记录并画出LD (1310nm )数字信号调制过程中各测试点波形。(拍照)

Tp101和Tp121

TP101

TP102

TP121

Tp101和Tp102

实验5 PCM 数字电话光纤传输系统实验

一、 实验目的

1. 了解电话及语音信号通过光纤传输的全过程

2. 掌握数字电话光纤传输的工作原理

二、 实验仪器

1. ZYE4301G 型光纤通信原理实验箱

1台 2. 20MHz 双踪模拟示波器 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 电话单机 2部 5. 万用表 1台 6. 850nm 光发端机和光收端机 1套 7.

ST/PC-ST/PC 多模光跳线

1根

三、 实验原理

电话语音信号的光纤传输分为两种方式,一种方式为模拟电话光纤传输,即电话用户接口输出的模拟信号直接送入光纤模拟信号传输信道,从而实现两部电话的通话。由于模拟信号无法直接进行时分复用,因此模拟电话光纤传输只能传输一路电话语音信号,另一路电话语音信号直接用连接导线代替光纤,实验方框图如图7-1所示。

图中,只有电话乙通过光纤传输,电话甲则通过导线传输。 另一种方式为数字电话光纤传输,将电话用户接口输出的模拟信号经过PCM 编码,利用时分复用的方式,将PCM 数字信号调制成一路信号,然后送入光发端机中进行光纤传输,光收端机接收的信号通过时分解复用,实现信号的分离,分别送入电话用户接口电路中,实现电话的全双工通话。本实验系统只设置了两部电话,

其方框图如图7-2所示。

图7--2 电话数字光纤传输

实验系统的PCM 编译码电路见系统简介。 在PCM 编译码中,帧同步信号为

8KHz ,

图7-1 电话模拟光纤传输

一帧信号分为四个时隙,分别为时隙0、时隙1、时隙2和时隙3;时隙0为帧同步信号,其同步码为固定的码流“0 1 1 1 0 0 1 0”,时隙1和时隙2分别为两路电话语音调制数据,时隙3为空时隙,在本实验中没有用到(用低电平表示),T601为电话甲模拟语音信号输入端,T603为电话甲译码输出端,T611为电话乙模拟语音信号输入端,T613为电话乙译码输出端,T621(TP621)为PCM 编码输出测试点,T631(TP631)为PCM 译码输出测试点,图7-3为PCM编码一帧的结构示意图。

四、实验内容

1.模拟电话光纤传输系统实验

2.数字电话光纤传输系统实验

五、实验步骤

A、模拟电话光纤传输系统实验

1.参考实验五, 调整1310nm光纤通信系统使能够正常传输模拟信号。

2.按图7-1连接导线:电话用户接口模块的甲方模拟语音信号输出端T401与光发模块模拟信号输入端T111连接,乙方模拟语音信号输入端T412与光收模块信号输出端T121连接,甲方模拟语音信号输入端T402与乙方模拟语音信号输出端T411用导线连接,并在电话甲、电话乙口分别接上电话单机。

3.用FC-FC光纤跳线将1310nm光发端机(1310nmT)与1310nm光收端机(1310nmR)连接起来,K121置2、3通,组成1310nm光纤传输系统。

4.将拨码开关BM1拨到模拟, 、BM2和BM3均拨到1310nm。

5.用K40,K41接通电话用户接口模块电源,用K10接通光发模块电源。

6.摘机进行两人通话实验,用示波器测试并比较TP401,TP412的波形(由于话音信号的波形比较复杂,所以可选用双音多频信号的按键音来观察测试点的波形),并做记录。

7.根据上述步骤,设计并执行850nm光纤传输系统模拟电话传输实验。

B、数字电话光纤传输系统实验

1.参考实验六, 调整1310nm光纤通信系统使能够正常传输数字信号。

2.按图7-21连接导线,将K601,K602,K603置1、2通,以便使用本地位同步信号。

3.接通电话用户接口模块、PCM编译码模块和光发模块的直流电源。

4.分别从TP650、TP651、TP652、TP653观测0时隙、1时隙、2时隙、帧同步码信号,比较它们时间上的关系。

5.摘机进行两人通话实验,用示波器测试并比较TP411,TP402,TP401、TP412的波形(可选用双音多频信号的按键音来观察测试点的波形),并做记录。

6.用示波器从TP101观察PCM编码输出信号波形,从TP121观察经信道传输后的PCM 信号波形。

7.根据上述步骤,设计并执行850nm光纤传输系统数字电话传输实验。

六、实验报告

1.记录实验过程中各点的波形。(拍照)

TP650、TP651、TP652、TP653图形如下:

TP101,TP121图形如下:

2.评估模拟电话通话和数字电话通话的质量。

数字电话的通话质量要比模拟电话的通话质量好,因为数字电话系统的抗噪声性能更好,更能更好的还原出通话信号。

3.评估850nm电话光纤传输系统和1310nm电话光纤传输系统的性能。

1310nm电话光纤传输系统的性能比850nm电话光纤传输系统的性能更好,因为1310nm的光色散为零,损耗更低。

七、注意事项

1 .若模拟电话光纤传输时有噪声,可根据模拟信号光纤传输步骤进行调试,使系统传输2K正弦波,当输出(T121)幅度为2V且无明显失真时即可。

2 .若数字电话光纤传输时有噪声,可根据数字光纤传输步骤进行调试,使系统传输普通伪随机码信号,若输出(T121)与输入波形相同,幅度大于3.5V且无误码即可。

实验6 图像光纤传输系统实验

一、实验目的

1.学习模拟视频信号光纤传输系统组成

2.熟悉图象信号在光纤系统中的传输过程

二、实验仪器

1.ZYE4301G光纤通信原理实验箱1台

2.双踪模拟示波器1台

3.万用表1台

4.小摄像头(电视信号发生器)1个

5.小电视机(视频监视器)1台

6.视频信号线2根

7.850nm光发端机和光收端机1套

8.ST/PC-ST/PC多模光跳线1根

9.FC/PC-FC/PC单模光跳线1根

三、实验原理

视频信号的传输量日益增长,尤其是有线电视(CA TV),需要将几十路电视信号送到千家万户。视频信号的光纤传输也是人们非常关注的课题。

本实验主要采用模拟信号直接调制的方法进行视频信号的光纤传输。系统主要由小摄像头(电视信号发生器)、小型电视机(视频监视器)和模拟光纤通信系统组成。通过观察视频信号的光纤传输,测试光纤传输模拟信号的性能。该实验实质上就是光纤传输模拟信号。实验框图如图8-1所示。

图8-1 图象光纤传输系统

小摄像头产生视频信号(模拟信号),经过模拟调制送入光发端机,经光纤传输后,由光收端机监测到视频信号并输出到电视机接收端,观测光纤传输视频信号的效果以及特点,以了解光纤传输电视信号的特点。在实验过程中图象效果越好说明光纤传输的性能越好。在进行光纤传输视频信号之前,先调节正弦波模拟传输,使得Vp-p=2V的正弦波正常传输,此时视频信号传输效果最佳。

实验时可以比较半导体激光器和发光二极管光纤通信系统传输视频信号的效果。

四、实验内容

1.模拟视频信号进行LED调制光纤传输

2.模拟视频信号进行LD调制光纤传输

五、实验步骤

1.连接导线:摄像头(或电视信号发生器)视频输出端与光发模块视频输入端T131连接,再用连接导线将T132与T111连接,电视机的视频输入端与光接收模块视频输出端T133连接,再用连接导线将T134与T121连接。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

光纤通信 模拟试题 J

光纤通信模拟试题1 一、选择题 1. 目前光纤通信中所使用的光波的波长区域是( ) A. 红外区 B. 远红外区 C. 紫外区 D. 近红外区 2. 表示光纤色散程度的物理量是( ) A. 时延 B. 频带带宽 C. 时延差 D. 相位差 3. 在外来光子的激发下,低能级E1上的电子吸收了光子的能量hf(=E2-E1)而跃迁到高能级 E2的过程称为( ) A. 自发辐射 B. 受激辐射 C. 受激吸收 D. 康普顿效应 4. EDFA中,光滤波器的主要作用是( ) A. 使泵浦光和信号光耦合 B. 滤除光放大器的输出噪声 C. 提高光放大增益 D. 使信号再生 5. 目前,掺铒光纤放大器的噪声系数可低达( ) A. -3 dB~0 dB B. 0 dB~3 dB C.4 dB~5 dB D. 10 dB~15 dB 二、填空题11. 利用光波作为载频的通信方式称为___________________。 12. 通常根据传播方向上有无电场分量或磁场分量,可将光(电磁波)的传播形态分成TE波, TEM波和___________________三类。 15. 按照射线理论,阶跃型光纤中光射线主要有___________________和斜射线两类。 16. 渐变型光纤中,子午射线的自聚焦是指光纤中不同的射线具有___________________的 现象。 17. 光纤是一种介质光波导,具有把光封闭在其中进行传播的导波结构。它是由直径大约只有 ___________________的细玻璃丝构成。 18. 处于粒子数反转分布状态的工作物质称为___________________。 19. 激光器能产生激光振荡的最低限度称为激光器的___________________。 20. 随着激光器温度的上升,其输出光功率会___________________。 21. EDFA的输出饱和功率是指___________________时所对应的输出功率。 22. EDFA作为发射机功率放大器使用的主要作用是___________________。 23. 在光纤通信系统中,利用光纤来传输监控信号时,通常可采用频分复用和____________ _______两种传输方式。 24. 对光隔离器的主要要求是:插入损耗低和___________________。 25. 光纤通信系统中(武汉自考)常用的线路码型有:mBnB码、插入比特码和_____________ ______等。 26. STM-1帧结构中,管理单元指针的位置在___________________列中的第4行。 27. 虚容器是SDH中最重要的一种信息结构,它由容器输出的信息净负荷和_________来组 成。 28. STM-1信号中,一帧中包含的字节数为___________________。 29. 由光电检测器引入的噪声主要有量子噪声、___________________和雪崩管倍增噪声等 三种。 30. 在保证系统误码率指标的要求下,测得接收机的最低输入光功率为0.1 μW,最大允许 输入光功率为0.1 mW,则该接收机的动态范围为___________________dB。 三、名词解释题

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

2008《光纤通信》试题及详解

2007-2008年度教学质量综合评估测验试卷 《光纤通信》试题 注:1、开课学院:通信与信息工程学院。 命题组:通信工程教研组·张延锋 2、考试时间:90分钟。 试卷满分:100分。 3、请考生用黑色或蓝色中性笔作答,考试前提前带好必要物件(含计算器)。 4、所有答案请写于相应答题纸的相应位置上,考试结束后请将试卷与答题 一、 选择题(每小题仅有一个选项是符合题意要求的,共10小题,每小题2分,共20分) 1、表示光纤色散程度的物理量是 A.时延 B.相位差 C.时延差 D.速度差 2、随着激光器使用时间的增长,其阈值电流会 A.逐渐减少 B.保持不变 C.逐渐增大 D.先逐渐增大,后逐渐减少 3、当平面波的入射角变化时,在薄膜波导中可产生的三种不同的波型是 A.TEM 波、TE 波和TM B.导波、TE 波和TM 波 C.导波、衬底辐射模和敷层辐射模 D.TEM 波、导波和TM 波 4、平方律型折射指数分布光纤中总的模数量等于 A. 121n n n - B. ?21n C. 22V D. 4 2 V 5、光接收机中将升余弦频谱脉冲信号恢复为“0”和“1”码信号的模块为 A. 均衡器 B. 判决器和时钟恢复电路 C. 放大器 D. 光电检测器 6、在光纤通信系统中,EDFA 以何种应用形式可以显著提高光接收机的灵敏度 A.作前置放大器使用 B.作后置放大器使用 C.作功率放大器使用 D.作光中继器使用 7、EDFA 中用于降低放大器噪声的器件是 A.光耦合器 B.波分复用器 C.光滤波器 D.光衰减器 8、关于PIN 和APD 的偏置电压表述,正确的是 A.均为正向偏置 B.均为反向偏置 C.前者正偏,后者反偏 D.前者反偏,后者正偏 9、下列哪项技术是提高每个信道上传输信息容量的一个有效的途径? A.光纤孤子(Soliton)通信 B. DWDM C. OTDM D. OFDM 10、光纤数字通信系统中不能传输HDB3码的原因是 A.光源不能产生负信号光 B.将出现长连“1”或长连“0” C.编码器太复杂 D.码率冗余度太大 二、 填空题(本题共三部分,每部分6分,共18分) (一)、基本概念及基本理论填空(每空1分,共4小题6小空,共6分)

光电信息实验要求掌握的48个问题

光电信息技术实验需要掌握的48个问题 1、你认为撰写实验报告应该包括哪些要素?这些要素应该从哪些角度去撰写? 2、撰写实验报告的目的是什么?通过撰写实验报告,应该学会什么? 3、你认为撰写实验报告的过程中,重点应该放在哪个部分?为什么? 4、就你对本学期光信息技术实验这门课所设置的实验而言,你认为开展光信息技术实验中需要注意哪些问题? 5、你认为保持光学实验室的整洁卫生重要吗?为什么? 6、导轨上的光学实验和光学平台上的光学实验有什么区别?你认为作为学生实验来说,哪种模式更好?为什么? 7、光学平台主要由哪些部分组成?各部分的功能是什么? 8、选用铁磁不锈钢材料和选择铝材作为光学平台的台板时,各有什么优缺点? 9、铝膜反射镜的缺点是反射率不够高,仅84%左右,膜层的机械强度不够高,膜层表面容易损伤,为了保护铝膜反射镜,在其表面受到污染后应该怎么去处理? 10、什么样的光学元件可以被称为分束镜?分束镜是用来做什么的?一般有哪些类型? 11、从偏振片的结构描述自然光透过偏振片后为什么会变成偏振光? 12、什么是波片?为什么波片也会被称为相位延迟片? 13、根据学过的光学知识,设计一套扩束-准直系统,并介绍其工作原理。 14、与普通透镜相比,傅里叶变换透镜有什么特点?在设计傅里叶变换透镜时,需要注意什么? 15、什么样的光学元件叫滤光片?按光谱波段、光谱特性、膜层材料、应用特点等方式分类,滤光片一般可以分为哪些类型? 16、什么是平晶?简述用平晶测量光学元件表面平整度的原理。 17、He-Ne激光管在没有调出激光的时候所发的光是荧光,简述He-Ne激光管发荧光的工作原理。 18、根据本学期对He-Ne激光器的调节实验的练习,结合上学期《激光原理》方面的知识,简述He-Ne激光器的结构、基本类型和工作原理。 19、结合上学期《激光原理》方面的知识,简述半导体激光器的结构和工作原理。 20、在光信息技术实验中,我们用到过两种光电探测器,一种是硅光电探测器,另一种是平方率探测器,请给出这两种探测器的区别与联系。 21、偏振光是我们在实验中经常用到的,请根据我们已经学过的知识,说出你所了解的产生偏振光的方法,并简要描述从自然光变成偏振光的过程。 22、根据你对法拉第效应实验原理的掌握,请设计出一套可以测量Verdet常数的实验装置,并介绍该装置是如何测量Verdet常数的。 23、根据你对法拉第效应实验原理的掌握,你是否认为该装置可以用来测量线圈内的磁场强度?为什么? 24、从唯象角度来解释法拉第效应旋光角的形成机制。 25、在《验证马吕斯定律实验》中,我们得出透过检偏器的光强I与透过检偏器的最大光强I max之间有什么关系?请推导为什么二者之间呈现的是这种关系。 26、请说出光纤的结构、光纤的分类以及光在光纤中传输的基本规律。

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

通信工程《光纤通信》考试题(含答案)

1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作 为传输介质以实现光通信的可能性。 2、光在光纤中传输是利用光的(折射)原理。 3、数值孔径越大,光纤接收光线的能力就越( 强),光纤与光源之间的耦 合效率就越( 高)。 4、目前光纤通信所用光波的波长有三个,它们是:(0.85μm、1.31μm、 1.55μm)。 5、光纤通信系统中最常用的光检测器有:(PIN光电二极管;雪崩光电二极 管)。 6、要使物质能对光进行放大,必须使物质中的( 受激辐射)强于( 受激吸 收),即高能级上的粒子数多于低能级上的粒子数。物质的这一种反常态 的粒子数分布,称为粒子数的反转分布。 7、在多模光纤中,纤芯的半径越( 大),可传输的导波模数量就越多。 8、光缆由缆芯、( 加强元件(或加强芯) )和外护层组成。 9、(波导色散)是指由光纤的光谱宽度和光纤的几何结构所引起的色散。 10、按光纤传导模数量光纤可分为多模光纤和( 单模光纤)。 11、PDH的缺陷之一:在复用信号的帧结构中,由于( 开销比特 )的数量很少,不能提供足够的运行、管理和维护功能,因而不能满足现代通信网对监控和网管的要求。 12、光接收机的主要指标有光接收机的动态范围和(灵敏度)。 13、激光器能产生激光振荡的最低限度称为激光器的(阈值条件)。 14、光纤的(色散)是引起光纤带宽变窄的主要原因,而光纤带宽变窄则会限制光纤的传输容量。 15、误码性能是光纤数字通信系统质量的重要指标之一,产生误码的主要 原因是传输系统的脉冲抖动和(噪声)。

二、选择题:(每小题2分,共20分。1-7:单选题,8-10:多选题) 1、光纤通信是以(A )为载体,光纤为传输媒体的通信方式。 A、光波 B、电信号 C、微波 D、卫星 2、要使光纤导光必须使( B ) A、纤芯折射率小于包层折射率 B、纤芯折射率大于包层折射率 C、纤芯折射率是渐变的 D、纤芯折射率是均匀的 3、(D )是把光信号变为电信号的器件 A、激光器 B、发光二极管 C、光源 D、光检测器 4、CCITT于(C)年接受了SONET概念,并重新命名为SDH。 A、1985 B、1970 C、1988 D、1990 5、SDH传输网最基本的同步传送模块是STM-1,其信号速率为( A )kbit/s。 A、155520 B、622080 C、2488320 D、9953280 6、掺铒光纤放大器(EDFA)的工作波长为(B)nm波段。 A、1310 B、1550 C、1510 D、850 7、发光二极管发出的光是非相干光,它的基本原理是(B)。 A、受激吸收 B、自发辐射 C、受激辐射 D、自发吸收 8、光纤通信系统的是由(ABCD )组成的。 A、电端机 B、光端机 C、中继器 D、光纤光缆线路 9、要精确控制激光器的输出功率,应从两方面着手:一是控制(B);二是控制(D)。 A、微型半导体制冷器 B、调制脉冲电流的幅度 C、热敏电阻 D、激光器的偏置电流 10、光纤传输特性主要有(AB ) A、色散 B、损耗 C、模场直径 D 、截止波长

实验十__可调光衰减器参数测量实验

实验十 可调光衰减器参数测量实验 一、 实验目的 1.了解光衰减器、性能参数及其用途; 2.实验操作可调光衰减器参数测量。 二、 实验仪器用具 手持式光源1套;手持式光功率计一台;可调光衰减器1只;单模光纤跳线(FC/PC)2根。 三、 学习和实验内容 1.光衰减器简介 光衰减器是一种用来降低光功率的光无源器件。根据不同的应用,它分为可调光衰减器和固定光衰减器两种。在光纤通信中,可调光衰减器主要用于调节光线路电平,在测量光接收机灵敏度时,需要用可调光衰减器进行连续调节来观察光接收机的误码率;在校正光功率计和评价光传输设备时,也要用可调光衰减器。固定光衰减器结构比较简单,如果光纤通信线路上电平太高就需要串入固定光衰减器。光衰减器不仅在光纤通信中有重要应用,而且在光学测量、光计算和光信息处理中也都是不可缺少的光无源器件。 可调光衰减器一般采用光衰减片旋转式结构,衰减片的不同区域对应金属膜的不同厚度。根据金属膜厚度的不同分布,可做成连续可调式和步进可调式。为了扩大光衰减的可调范围和精度,采用衰减片组合的方式,将连续可调的衰减片和步进可调衰减片组合使用。可变衰耗器的主要技术指标是衰减范围、衰减精度、衰耗重复性、插入损耗等。 对于固定式光衰减器,在光纤端面按所要求镀上有一定厚度的金属膜即可以实现光的衰耗;也可以用空气衰耗式,即在光的通路上设置一个几微米的气隙,即可实现光的固定衰耗。 2.光衰减器的主要类型及特性参数 (1)固定式光连接型衰减器 特点:高回波损耗、结构简单、最大承载功率(1W )、波长相关性小、低偏振相关损耗、结构紧凑。适用于:光配线架、光纤网络系统、高速光纤传输系统、有线电视(CATV)系统、长途干线密集波分复用(DWDM)系统,光分插复用器(OADM). 主要性能指标: z衰减量: 1,2,3,4,5,6,7,8,9, 10,15,20,25,30dB z衰减精度:≤5dB ±0.3dB; ≤10dB ±0.5dB; >10dB ±10% z回波损耗: PC:>40dB, UPC:>50dB, APC:>60dB z工作波长: 1310nm 和1550nm (SM) 1550nm (DSF) z可提供连接头类型:FC, SC, ST, LC, MU型 (2)1~ 30dB可调式光连接型衰减器 特点:衰减值可调、与波长变化无关、衰减精度高,附加损耗低,性价比优、可实现

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

光纤通信 期末考试试卷(含答案)

2、光在光纤中传输是利用光的(折射)原理。 5、光纤通信系统中最常用的光检测器有:( PIN光电二极管)、(雪崩光电二极管)。 6、要使物质能对光进行放大,必须使物质中的( 受激辐射 )强于( 受激吸收 ),即高能级上的粒子数多于低能级上的粒子数。物质的这一种反常态的粒子数分布,称为粒子数的反转分布。 7、在多模光纤中,纤芯的半径越( 大 ),可传输的导波模数量就越多。 9、(波导色散)是指由光纤的光谱宽度和光纤的几何结构所引起的色散。 11、PDH的缺陷之一:在复用信号的帧结构中,由于( 开销比特 )的数量很少,不能提供足够的运行、管理和维护功能,因而不能满足现代通信网对监控和网管的要求。 12、光接收机的主要指标有光接收机的动态范围和(灵敏度)。 13、激光器能产生激光振荡的最低限度称为激光器的(阈值条件)。 14、光纤的(色散)是引起光纤带宽变窄的主要原因,而光纤带宽变窄则会限制光纤的传输容量。 15、误码性能是光纤数字通信系统质量的重要指标之一,产生误码的主要原因是传输系统的脉冲抖动和(噪声)。 二、选择题:(每小题2分,共20分。1-7:单选题,8-10:多选题) 4、CCITT于()年接受了SONET概念,并重新命名为SDH。 A、1985 B、1970 C、1988 D、1990 6、掺铒光纤放大器(EDFA)的工作波长为()nm波段。 A、1310 B、1550 C、1510 D、850 7、发光二极管发出的光是非相干光,它的基本原理是()。 A、受激吸收 B、自发辐射 C、受激辐射 D、自发吸收 9、要精确控制激光器的输出功率,应从两方面着手:一是控制( B );

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信原理试题讲解学习

1.决定光纤通信中继距离的主要因素是( B ) A.光纤的型号 B.光纤的损耗和传输带宽 C.光发射机的输出功率 D.光接收机的灵敏度 2.弱导光纤中纤芯折射率n1和包层折射率n2的关系是( A ) A.n1≈n2 B.n1=n2 C.n1>>n2 D.n1<

近代物理实验教程的实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054001 近代物理实验教程的实验报告Experimental report of modern physics experiment course

工作报告| Work Report 实验报告近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算), 第2页

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

相关文档