文档库 最新最全的文档下载
当前位置:文档库 › 高中数学公式大全最全

高中数学公式大全最全

高中数学公式大全最全
高中数学公式大全最全

高中数学常用公式及结论

1 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠?

2 集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.

3 二次函数的解析式的三种形式: (1) 一般式2

()(0)f x ax bx c a =++≠;

(2) 顶点式2

()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式)

(3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)

(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。(当已知抛物线与直线y kx d =+相切且切点的横坐标为0

x 时,设为此式)

4 真值表: 同真且真,同假或假

.)

充要条件: (1)、p q ?,则P 是q 的充分条件,反之,q 是p 的必要条件;

(2)、p q ?,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ?,则P 是q 的必要不充分条件; (4)、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。

7 函数单调性:

增函数:(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212,,x x D x x ∈<且,都有12()()

f x f x <成立,则就叫f (x )在x ∈D 上是增函数。D 则就是f (x )的递增区间。

减函数: (2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212,,x x D x x ∈<且,

都有

12()()f x f x >成立,则就叫f (x )在x ∈D 上是减函数。D 则就是f (x )的递减区间。 单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;

(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;

注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

(1)设[]

1212,,,x x a b x x ∈≠那么

[]1212()()()0x x f x f x -->?[]b a x f x x x f x f ,)(0)

()(2121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数.

(2)设函数)(x f y =在某个区间可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数:定义:在前提条件下,若有()()()()0f x f x f x f x -=--+=或, 则f (x )就是奇函数。 性质:(1)、奇函数的图象关于原点对称;

(2)、奇函数在x>0和x<0上具有相同的单调区间;

(3)、定义在R 上的奇函数,有f (0)=0 .

偶函数:定义:在前提条件下,若有()()f x f x -=,则f (x )就是偶函数。 性质:(1)、偶函数的图象关于y 轴对称;

(2)、偶函数在x>0和x<0上具有相反的单调区间;

奇偶函数间的关系:

(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;

(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的) (5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 9函数的周期性:

周期函数几种常见的表述形式:

(1)、f (x+T )= - f (x ),此时周期为2T ;

(2)、 f (x+m )=f (x+n ),此时周期为2m n - ;

(3)、1

()()

f x m f x +=-

,此时周期为2m 。 10常见函数的图像:

11 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2

b

a x +=

;两个函数)(a x f y +=与)

(x b f y -= 的图象关于直线2

b a

x -=

对称. 12 分数指数幂与根式的性质: (1)m n

a

=

0,,a m n N *>∈,且1n >).

(2)1m n

m n

a a

-=

=

(0,,a m n N *

>∈,且1n >

).

(3)n

a =.

(4)当n a =;当n ,0||,0a a a a a ≥?==?-

.

13 指数式与对数式的互化式: log b a N b a N =?=(0,1,0)a a N >≠>. 指数性质: (1)1、1p p a a

-=

; (2)、01a =(0a ≠) ; (3)、()mn m n

a a = (4)、(0,,)r

s

r s

a a a a r s Q +?=>∈ ; (5)、m n

a = ;

指数函数:

(1)、 (1)x

y a a =>在定义域是单调递增函数;

(2)、 (01)x

y a a =<<在定义域是单调递减函数。注: 指数函数图象都恒过点(0,1) 对数性质:

(1)、 log log log ()a a a M N MN += ;(2)、 log log log a a a

M M N N

-= ; (3)、 log log m

a a

b m b =? ;(4)、 log log m n a a n

b b m

=

? ; (5)、 log 10a = (6)、 log 1a a = ; (7)、 log a b a b = 对数函数:

(1)、 log (1)a y x a => 在定义域是单调递增函数;

(2)、log (01)a y x a =<<在定义域是单调递减函数;注: 对数函数图象都恒过点(1,0) (3)、 log 0,(0,1),(1,)a x a x a x >?∈∈+∞或

(4)、log 0(0,1)(1,)a x a x

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

对数恒等式:log a N a N =(0a >,且1a ≠, 0N >). 推论 log log m n a a n

b b m

=

(0a >,且1a ≠, 0N >). 15对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则

(1)log ()log log a a a MN M N =+; (2) log log log a

a a M

M N N

=-; (3)log log ()n

a a M n M n R =∈; (4) log log (,)m

n a a n

N N n m R m

=∈。

16 平均增长率的问题(负增长时0p <):

如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x

y N p =+. 17 等差数列:

通项公式: (1) 1(1)n a a n d =+- ,其中1a 为首项,d 为公差,n 为项数,n a 为末项。

(2)推广: ()n k a a n k d =+-

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和: (1)1()

2

n n n a a S +=

;其中1a 为首项,n 为项数,n a 为末项。 (2)1(1)

2

n n n S na d -=+

(3)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) (4)12n n S a a a =++

+ (注:该公式对任意数列都适用)

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a +=+ ;

注:若,m n p a a a 是的等差中项,则有2m n p a a a =+?n 、m 、p 成等差。 (2)、若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列。

(3)、{}n a 为等差数列,n S 为其前n 项和,则232,,m m m m m S S S S S --也成等差数列。

(4)、,,0p q p q a q a p a +===则 ; (5) 1+2+3+…+n=

2

)

1(+n n 等比数列:

通项公式:(1) 1

*11()n n

n a a a q

q n N q

-==

?∈ ,其中1a 为首项,n 为项数,q 为公比。 (2)推广:n k

n k a a q -=?

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和:(1)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用)

(2)12n n S a a a =++

+ (注:该公式对任意数列都适用)

(3)1

1(1)(1)

(1)

1n n na q S a q q q =??

=-?≠?-?

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a ?=? ;

注:若,m n p a a a 是的等比中项,则有 2

m n p a a a =??n 、m 、p 成等比。

(2)、若{}n a 、{}n b 为等比数列,则{}n n a b ?为等比数列。

18分期付款(按揭贷款) :每次还款(1)(1)1

n n

ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 19三角不等式:

(1)若(0,)2

x π

∈,则sin tan x x x <<.

(2) 若(0,

)2

x π

,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.

20 同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=

θ

θ

cos sin , 21 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 22 和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβ

αβ±=;

tan tan tan()1tan tan αβ

αβαβ

±

±=

.

sin cos a b αα+)α?+

(辅助角?所在象限由点(,)a b 的象限决定,tan b a

?= ). 23 二倍角公式及降幂公式

sin 2sin cos ααα=22tan 1tan α

α

=

+.

2

2

2

2

cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan α

α

-=

+. 22tan tan 21tan ααα=

-. sin 21cos 2tan 1cos 2sin 2αα

ααα-==

+ 221cos 21cos 2sin ,cos 22αα

αα-+==

24 三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0)的周期2||

T π

ω=

;函数tan()y x ω?=+,,2

x k k Z π

π≠+

∈(A,ω,?为常数,且A ≠0)的周期||

T πω=

. 三角函数的图像:

25 正弦定理 :

2sin sin sin a b c

R A B C

===(R 为ABC ?外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ?===::sin :sin :sin a b c A B C ?=

26余弦定理:

2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.

27面积定理:

(1

)111

222a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222S ab C bc A ca B ===.

(3)OAB S ?=2,2

a b c S r r a b c ?

??+==

++斜边内切圆直角内切圆- 28三角形角和定理

在△ABC 中,有()A B C C A B ππ++=?=-+

222

C A B

π+?

=-

222()C A B π?=-+. 29实数与向量的积的运算律:设λ、μ为实数,那么:

(1) 结合律:λ(μa )=(λμ) a ;

相关文档