文档库 最新最全的文档下载
当前位置:文档库 › 供配电系统可靠性分析

供配电系统可靠性分析

供配电系统可靠性分析
供配电系统可靠性分析

供配电系统可靠性分析

发表时间:2018-10-10T09:55:54.720Z 来源:《建筑模拟》2018年第20期作者:薄志勇闫彦理[导读] 电力系统中,“供配电系统”存在于发电厂与受电用户之间,是一个不可或缺的部分。供配电系统可靠性直接影响到整个电力系统的稳定性和安全性。薄志勇闫彦理山东东明石化集团摘要:电力系统中,“供配电系统”存在于发电厂与受电用户之间,是一个不可或缺的部分。供配电系统可靠性直接影响到整个电力系统的稳定性和安全性。本文首先概述了供配电系统在电能传输过程中的作用及其在整个电力系统中所处的地位,进而介绍了供配电系统可靠性分析的主要内容,并在此基础上对供配电系统可靠性的常用分析方法展开研究。

关键词:供配电系统可靠性分析方法

电力系统是由发、供、配、用四大部分构成,而供配电系统涉及电力系统的供和配两大部分。要想电能在电力系统中正常输配,供配电系统可靠性是基本保证。供配电系统故障就必将导致电能不能连续有效地传输。随着社会发展、经济快速增长,以及科技的不断进步,人们对供配电系统运行提出了可靠、稳定、安全的高要求。

一、供配电系统概述电力系统是由发电厂、供配电系统和用户组成的统一整体。由于燃料或者水资源等材料的限制,从经济的角度考虑,发电厂一般多建在偏远的地区,职能主要是生产电能供给用户使用,然而用户显著的特点却是离发电厂较远且分布较为分散。在当前科技形式下,电能具有不能大量存储的特点,其发出、传输、配送以及消耗整个过程都是同时进行的。因此,要实现用户能用上发电厂发出的电能,就需要供配电系统来完成输配电的工作。供配电系统就是由变电所和不同电压等级的电力线路所组成。输电线路和配电线路组成供配电系统的线路。其中输电线路的电压等级一般定义在35kV及以,是从升压变到降压变之间的部分,它的作用主要是实现电能的输送;而配电线路存在于降压变和各用户之间,电压等级一般为10kV及以下,它实现各类用电户的电能配送。由此可知,供配电系统在电能传输过程中的作用和在电力系统中的地位是十分重要的。通过供配电系统,不仅能实现电能在发电厂与用户之间的传输、配送,还能实现对该过程进行控制和计量,并通过在线监测方式对在系统中随时可能出现的各种故障进行快速而且有效的检测和保护,供配电系统可靠运行能基本保证电力系统正常运行。

二、供配电系统可靠性分析的主要内容:电力系统可靠性指的是电力系统能够在任何时候都能满足用户的用电需求并能在随时可能发生的事故中起到检测保护作用避免大面积停电。电力系统可靠性包括两方面的内容:即充裕度和安全性。供配电系统可靠性在电力系统可靠性中占有十分重要的地位。相关数据显示,80%以上用户停电故障是由供配电系统故障引起的,研究供配电系统的可靠性的具有一定的必要性。供配电系统的可靠性主要由其属性决定。供配电系统的属性是由系统的接地方式,系统的主接线方式,系统的运行方式以及系统的测量、监控及保护方式组成,通过四种方式配合运行决定了供配电系统的安全性、可靠性、整体性和合理性。供配电系统是由供电系统和配电系统组成的一个有机统一体,供电系统关系到电能传输的安全性和可靠性。而电力系统投资建设的整体性和合理性,以及建成后系统运行的经济性受到配电系统的影响。由此,供配电系统可靠性分析就是研究这四种方式的配合和优化,其中系统的主接线方式在四种方式起到主要作用,如果主接线方式确定了那么其他三种方式对可靠性的影响就相对削弱。

三、供配电系统可靠性的常用分析方法:模拟法和解析法两类分析方法是供配电系统可靠性分析中常用的。其中模拟法主要是指蒙特卡罗模拟法,该方法的使用不受系统规模限制,有灵活的特点,但同时也存在精度不足、耗时较长的缺点,在发、输电组合系统的可靠性分析中使用广泛。而解析法可进一步分为最小割集法和网络法也就是故障模式影响后果分析法(FMEA),其中FMEA在配电系统可靠性分析中最为常用,也是可靠性分析中传统的方法。随着电力行业的发展,综合模拟法和解析法两者优点的混合法得到了越来越多的应用。(一)模拟法即蒙特卡罗法蒙特卡罗法的基本思想是:元件的出厂参数具有较高的可靠性,蒙特卡罗法就是以此为基础建立概率模型,在通过抽样实验的方式随机模拟可能出现的状态,然后再利用数理统计的方法进行求解,得到配电系统的可靠性指标。由于这种方法方法需要计算的只是模拟元件对配电系统中各个负荷点的影响,因此系统的规模通常不会影响蒙特卡罗法的计算量,蒙特卡罗法也就常常被用于一些规模较大的、复杂的供配电系统的可靠性分析当中。在使用时该方法还能给出可靠性指标的概率分布。但该方法有唯一的缺点就是需要消耗较长的时间。(二)解析法现阶段供配电系统可靠性研究中使用最广泛的一种方法就是解析法。解析法的优点是原理简单、模型准确等,在比较简单的供配电系统可靠性分析中使用较多。而对于较为复杂的供配电网络必须要简化配电网络才能够使用解析法进行分析。该方法分析在使用时首先建立分析模型,该模型符合系统的具体情况,然后借助数学分析的方法对所建立模型求解出可靠性指标。典型的解析法有如下这两种: 1.最小割集法。该方法是在最小路法的基础上形成基本最小路和辅助最小路的概念。其基本思想是一个最小割集在切断所有基本最小路的同时也必将切断所有的辅助最小路。也就是说在只要通过切断基本最小路的故障元件对网络元件进行重新组合,就能充分地导出网络的全部最小割集。最小割集发的步骤大致为:当配电网络具有多个电源点及负荷点时,首先把它生成配电系统的网络拓扑结构形成最小路树,然后通过最小路树导出基本最小路,进而得到最小割集。该方法的优点是缩短了导出最小割集花费的时间,同时该方法也具有容易实现编程的优点,且计算效率较高。

2.网络法即FMEA,该方法在供配电系统可靠性分析中是最为流行的原因是配电网的拓扑结构与网络模型较为相似,而且模型较为简单。FMEA是通过枚举的方法先确定出配电系统中负荷点的失效事件,根据其对系统可靠性产生的影响,形成一个系统的事故影响表,进而归类分析得出整个系统的可靠性指标。该方法主要步骤是通过逐步组合串并联设备而得出等效网络。虽然简便快捷,但在分析非简单串并联系统的时候比较困难,同时如果简化次数较多,不可靠部分对系统可靠性的影响将变得难以鉴别。因此该方法不太适合复杂网络。

四、结语

配电可靠性准则及规定

配电系统可靠性准则及规定 一、电力系统可靠性准则的一般概念 所谓电力系统可靠性准则,就是在电力系统规划、设计或运行中,为使发电和输配电系统达到所要求的可靠度满足的指标、条件或规定,它是电力系统进行可靠性评估所依据的行为原则和标准。 电力系统可靠性准则的应用范围为发电系统、输电系统、发输电合成系统和配电系统的规划、设计、运行和维修工作。 电力系统可靠性准则考虑的因素一般有:①电力系统发、输、变、配设备容量的大小;②承担突然失去设备元件的能力和预想系统故障的能力;③对系统的控制、运行及维护;④系统各元件的可靠运行;⑤用户对供电质量和连续性的要求;⑥能源的充足程度,包括燃料的供应和水库的调度;⑦天气对系统、设备和用户电能需求的影响等。其中①、②、⑥等因素可由规划、设计来控制,其余各因素则反映在生产运行过程之中。 电力系统可靠性准则按其所要求的可靠度获取的方法、考虑的系统状态过程及研究问题的性质不同,有以下几种不同的分类方法: 1.1. 概率性准则和确定性准则 电力系统可靠性准则按其要求的可靠度获取的方法,分为概率性准则和确定性准则。 (1)概率性准则。它是以概率法求得数字或参量来表示提供或规定可靠度的目标水平或不可靠度的上限值,如电力(电量)不足期望值或事故次数期望值。因此,概率性准则又称为指标或参数准则。此类准则又被构成概率性或可靠性评价的基础。 (2)确定性准则。它采取一组系统应能承受的事件如发电或输电系统的某些事故情况为考核条件,采用的考核或检验条件往往选择运行中最严重的情况。考虑的前提是如果电力系统能承受这些情况并保证可靠运行,则在其余较不严重的情况下也能够保证系统的可靠运行。因此,确定性准则又称为性质或性能的检验准则。此类准则是构成确定性偶发事件评价的基础。

配电网馈线系统保护原理及分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 配电网馈线系统保护原理及分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8696-71 配电网馈线系统保护原理及分析(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二.配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电

厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1 传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保

企业电力供配电系统运行可靠性与安全性分析

企业电力供配电系统运行可靠性与安全性分析 摘要:电力系统是由发、供、配、用四大部分构成,而供配电系统涉及电力系 统的供和配两大部分。要想电能在电力系统中正常输配,供配电系统可靠性是基 本保证。通过供配电系统不仅能实现电能在发电厂与用户之间的传输、配送,还 能实现对该过程进行控制和计量,并通过在线监测方式对在系统中随时可能出现 的各种故障进行快速且有效的检测和保护,供配电系统可靠运行能基本保证电力 系统正常运行。 关键词:供配电系统;运行;可靠性;安全性 1企业电力供配电系统运行可靠性与安全性现状 1.1管理不规范 管理不规范会出现混乱局面,由于大多数人缺乏对电路分布情况的全面了解,导致在这 个过程中存在大量的安全隐患。而管理层也没有起到有效作用,管理人员的整体素质不高, 没有肩负起身上的责任,没有发挥出实际效果。随着城市经济的飞速发展以及不断加快的城 市化进程,为了更好地建设城市,常常会出现大量的施工活动,这些大规模的施工活动对配 电线路容易造成严重破坏,例如很多时候地面施工时,就会出现地下电缆被挖断、地上电缆 被折断等问题。其次在电力线路基础设施建设上面,有些城市没有设置专用架设杆线,这样 造成的后果是多种线路共架,不仅安全性受到影响,还增加了日常维护的难度,并且这样的 设置使得外界因素的不利影响也有所增加。部分用户肆意用电,私自增大使用负荷,给线路 增加了负担,影响到稳定运行。 1.2设备落后 设备是供配电网运行当中的重要组成部分,其中所存在的问题有:第一,在供配电网中 对部分质量没有达标的套管材料以及绝缘子进行应用。该情况的存在,在高压高负荷以及雷 击状态下,则有较大的几率出现线路短路跳闸故障问题,因此将导致严重永久性故障的发生,不仅会导致发生经济方面的损失,且有可能导致大面积停电事故的发生;第二,在供配电网 设置中,在柱上断路器安置质量方面存在不达标问题,对于工作人员来说,如果没有对其进 行及时的维修,则可能导致安全事故的发生。对于断路器来说,其具有较为特殊的连接方式,在具体操作中,如存在不可靠操作情况,则将对安全运行带来非常大的隐患,而需要通过远 程操作方式对人员安全进行保证。可以说,供配电设备的滞后性以及陈旧性都将直接影响到 系统维护调试工作的进行。 1.3后期的防范保护工作不到位 后期的防范保护具体涉及三点:自然环境问题、人为因素、一些飞鸟等小动物。此类问 题基本上都属于意外情况,需要配电人员对电路情况掌握熟悉,能够及时找出问题的出现点 并及时修理。 2企业电力供配电系统运行可靠性与安全性的提升策略 2.1完善供配电系统功能 科学技术的快速发展要求各个行业与时俱进,当前,自动化技术逐渐融入各个行业中, 实现了对传统生产模式和管理模式的调整。供配电系统运行中经常会出现停电现象,归根究

配电系统的可靠性评估方法探讨

配电系统的可靠性评估方法探讨 所谓配电系统的可靠性评估,就是采用现代分析工具对配电系统参数进行设置,包括停电频率以及停电时间等,如果参数设置的比较合理,系统就可以按照预期规划运行,实现系统可靠性的控制。文章简述了配电系统可靠性分析的思路,分析了具体评估方法。 标签:配电系统;可靠性;评估方法 前言 当前我国在规划配电系统的过程中,一般都不设置具体的可靠性目标,而是采用隐性处理的方式,这样配电系统在投入使用时,就需要花费大量资金维护供电的可靠性。为了避免这种规划方式的弊端,需要采用科学的手段对配电系统可靠性进行评估,按照实际需求对电力资源进行合理分配,减低供电费用,提升配电系统运行的可靠性。 1 配电系统可靠性分析思路 配电系统可靠性分析的主要目标就是可以准确评价出系统运行时的可靠性,并将评估结果作为依据,对设计中存在的问题进行修正。具体评估思路如下:首先,对系统数据进行分析,评估历史的可靠性,就是根据历史数据判断系统运行能力。一般都是由系统运行部门负责这项工作,分析系统没有大大预期可靠性的原因,判断系统的薄弱环节在哪。如果问题出在设计方案上,需要与工程规划部门共同合作解决问题。其次是制作预测模型,就是根据备选设计方案预测系统未来一段时间内运行的可靠性,主要是针对配电系统中的某一个部分,预见其在运行时有可能出现的问题,提出提升系统运行可靠性的方法。最后是校正预测模型,预测模型建立以后,需要将历史数据作为依据对其进行校正,使其与历史情况相符,这样才能保证预测模型不脱离实际。值得注意的是,模型校正是一个非常复杂的过程,需要配电系统运行部门提供真实、完整的历史数据,并考虑到系统运行的外界环境因素,用电需求变化因素等,将所有因素都考虑到,然后对参数进行谨慎调整,这样才能对系统未来运行状态进行准确预测,判断其可靠性是否可以达到预期要求[1]。 2 配电系统可靠性评估方法 2.1 计算流程 第一,需要设置一个可靠性限值,主要包括两项内容,一是基本目标值,二是所允许的偏差范围;第二,在计算程序中输入模型和相关数据,数据可以来源于现有系统,也可以来源于拟建的配电系统;第三,启动计算程序,开始计算,得出预期可靠性。这种评估性的计算主要包括两项内容,一是预期停电频率,二是预期停电时间,一般都是采用图形的方式显示计算结果,这种方法比较直观,

配电系统可靠性评估方法

浅谈配电系统可靠性评估方法 刘旭军 (大唐石门发电有限责任公司,湖南常德415300) 摘要:随着社会的发展,电力系统正在处于一个飞速发展的阶段,作为电力系统中最重要的组成部分配电系统,其可靠性直接关系着整个电力系统的正常运行,配电系统如果不稳定将会给电力系统带来巨大的经济损失。本文首先从配电系统常见的可靠性指标出发,探讨了当前配电系统可靠性评估的常见方法。 关键词:配电系统;电力系统;可靠性,评估方法 中图分类号:TM76 文献标识码:A 文章编号:1003-5168(2012)24-0001-01 1 常见配电系统可靠性指标 配电系统是用户与电力系统联系最重要的基础,它对整个用户的用电质量有着重要的影响,因此,对配电系统的可靠性进行有效的研究就显得非常重要。对配电系统可靠性的评价指标一般可以分为用户侧和系统侧两个方面。 1.1 用户侧可靠性指标 用户侧可靠性指标是对用户侧可靠性进行评估的基本指标,它是配电系统故障对某一区域产生影响大小的重要反应,同时也是下一级配电系统可靠性评估的重要依据和指标。通常用户侧可靠性指标有:用户侧故障率、用户侧故障导致的平均停电时间、用户侧年平均停电时间等。 1.2 系统侧可靠性指标 系统侧可靠性指标是评价配电系统向用户供应和分配电能以及供电质量的重要依据,系统侧可靠性指标更加注重从全局的角度对配电系统对整个电力系统的影响。系统侧可靠性指标一般包括:电力系统平均停电频率、电力系统平均停电持续时间、用户平均停电频率、用户平均停电时间、平均供电可用率等等。 2 配电系统可靠性评估的常见方法及改进 一般在实际的应用中,配电系统的拓扑结构较为复杂,对整个电网运行的影响因素较多,因此,如果直接利用相关的可靠性指标公式进行计算将会非常复杂。近几年,一些相关的研究工作取得了一定的进展,一些相关的学者和研究人员经过研究发现和总结了一些操作方便和方法和改进技术,这些方式方法通过大量的实践验证,证明其具有一定的实用性和有效性。当前较为常见的配电系统可靠性评估方法有故障式后果分析法、最小路法、网络等值法等等。 2.1 故障式后果分析法 这种评估方法又被称之为FMEA,它是用来评估电力系统可靠性最为传统的一种方法。这种方法主要是利用科学的故障判别准则来将配电系统的状态分为故障状态和正常状态两种,并对配电系统中所有可能出现故障的设备进行充分的分析,从而得到一个所有故障类型的列表,然后利用计算的方式获得配电系统可靠性的相关指标。一般这种方法只能在由主线和馈线组成的辐射式简单配电系统中进行应用,在一些多故障模式的复杂分支系统中很少使用。这种方法在实际应用过程中,并没有充分考虑线路的传输容量问题,所以,利用这种方法获得的相关评估指标会与真实的数值之间存在一定的差异,使评估结果出现一定的偏差。 随着现实中研究工作的不断深入,相关学者通过对故障后的潮流和电压约束的考虑,总结出了一种结合最小割集法的FMEA法。这种方法可以在一些大型的配电系统可靠性评估中进行应用。后来一些研究人员有总结出了应用于带子馈线的复杂配电系统可靠性评估方法。这种方法主要是利用了馈线分区思想,以馈线为基本单位进行馈线分区,然后建立起一个网络模型,这一网络模型主要由区域节点和开关弧组成,然后利用前面所说的FMEA方

配电系统供电可靠性统计方法

配电系统供电可靠性统计方法 (试行) SD 137-85 第一章总则 第一条配电系统供电可靠性统计,可以直接反映配电系统对用户供电能力,是配电系统可靠性管理的基础,也是电力工业可靠性管理的一个重要组成部分。其统计对象是以对用户是否停电为标准。 第二条为了统一配电系统供电可靠性统计方法及评价指标,特制定本办法,其目的在于: 1.收集配电系统运行方面的可靠性资料,建立供电可靠性的数据系统和指标; 2.为编制配电系统运行方式,维护检修计划提供可靠的数据及资料; 3.为配电系统设计和规划提供必需的可靠性数据; 4.制定统一的、明确的供电可靠性标准和准则; 5.为提高配电系统对用户的连续供电能力提供最佳可靠性的决策依据。 第三条本暂行办法适用于10(6)kV配电系统的可靠性数据统计和分析。 第四条各供电部门均应按本办法要求进行可靠性统计、计算及填报,并设专职人员负责此项工作。 第二章定义及分类 第五条配电系统供电可靠性的定义 配电系统供电可靠性——配电系统对用户连续供电能力的程度。 第六条配电系统及用户设备 1.配电系统——由各变电站(发电厂)10(6)kV出线母线侧刀闸开始至公用配电

分界点为止范围内所构成的配电网络。 2.配电系统设备 (1)配电系统变电站设备——包括从变电站(发电厂)10(6)kV母线侧出线刀闸算起,至下述各连接点为止的所有中间设备。即: 当以架空线路出线时,至出线终端杆塔引连线为止; 当以电缆线路出线的架空线路时,至出线终端杆塔电缆头搭头为止; 当以电缆出线的长距离电缆线路时,至变电站(发电厂)开关柜下部出线隔离开关与电缆头连接点为止。 (2)线路设备——由变电站(发电厂)10(6)kV出线杆塔或出线电缆头搭头至用户用电配电变压器二次侧出线套管或用户高压设备引连线搭头为止所连接的中间设备。 3.用户设备——固定资产属于用户的设备。 第七条配电系统的状态 1.供电状态——配电系统处于对用户预定供应电能的状态。 2.停电状态——配电系统不能对用户供应电能的状态。 但是对于配电系统来说,由于系统结构的不同,某些设备的停运和动作,不一定会影响配电系统对用户的供电(即不一定造成对用户的停电或限电)。 在下述情况下,不应视为对用户停电: (1)自动重合闸动作,重合成功,或备用电源自动投入。 (2)经批准停用自动重合闸装置,但在开关跳闸后3min内试送成功。 (3)小于3min的调电操作。 (4)并列运行的设备停止运行超过3min而未对用户供电产生影响。 第八条配电系统设备的状态及停运时间

配电网可靠性评估算法的分类

配电网供电可靠性的评估算法 配电系统可靠性的评估方法是在系统可靠性评估方法的基础上,结合配电系统可靠性评估的特点而形成的。配电系统可靠性评估的大致思路是根据配电系统中元件运行的历史数据评价元件的可靠性指标,根据网络的拓扑结构、潮流分析、保护之间的配合关系以及元件的可靠性指标评价各个负荷点可靠指标,最后综合各个负荷点的可靠性指标,得出配电系统的可靠性指标。 目前研究电力系统可靠性有两种基本方法:一种是解析法,另一种是模拟法。 一:解析法:用抽样的方法进行状态选择,最后用解析的方法进行指标计算。 (1)故障模式影响分析法:通过对系统中各元件可靠性数据的搜索,建立故障模式后果表,然后根据所规定的可靠性判据对系统的所有状态进行检验分析,找出各个故障模式及后果,查清其对系统的影响,求得负荷点的可靠性指标。适用于简单的辐射型网络。。 (2)基于最小路的分析法:是先分别求取每个负荷点的最小路,将非最小路上的元件故障对负荷点可靠性的影响,根据网络的实际情况,折算到相应的最小路的节点上,从而,对于每个负荷点,仅对其最小路上的元件与节点进行计算即可得到负荷点相应的可靠性指标。算法考虑了分支线保护、隔离开关、分段断路器的影响,考虑了计划检修的影响,并且能够处理有无备用电源和有无备用变压器的情况。 (3)网络等值法:利用一个等效元件来代替一部分配电网络,并将那部分网络的可靠性等效到这个元件上,考虑这个元件可靠性对上下级馈线的影响,从而将复杂结构的配电网逐步简化成简单辐射状主馈线系统。 (4)分层评估算法:利用系统元件的可靠性数据与系统网络拓扑结构建立了系统的可靠性数学模型,在基于故障扩散的分层算法来进行系统的可靠性评估。可快速算出可靠性指标并找出供电的薄弱环节。 (5)基于最小割集的分析法。最小割集是一些元件的集合,当它们完全失效时,会导致系统失效。最小割集法是将计算状态限制在最小割集内,避免计算系统的全部状态,大大节省了时间,并近似认为系统的失效度可以为各个最小割集的不可靠度的总和。当每条支路存在大量元件时,计算量显著降低;且效率高,编程思路清晰,易于实现。本方法的关键是最小割集的确定。 (6)递归算法:先将网络用树型(多叉树)数据结构表示,利用后序遍历和前序遍历将每一馈线都用一包含了此馈线的所有数据节点来表示,由负荷点所在的顶端依次往上递归,并保留原节点,这样不仅可以算出整体可靠性指标,还可以算出所有负荷点的可靠性指标。 (7)单向等值法:将下一层网络单向等值为上一层网络,将断路器/联络开关间的元件和负荷点等值为一节点,再由下而上削去断路器/联络开关,最终可等值一个节点,便可得出整体的可靠性。由于馈线中有熔断器、变压器等存在,因此在等值前后整个网络的可靠性指标

配电网论文题目

配电网故障恢复与网络重构 [1]邹必昌.含分布式发电的配电网重构与故障恢复算法研究[D].武汉大学 2012 [2]潘淑文加权复杂网络抗毁性及其故障恢复技术研究[D].北京邮电大学 2011 [3]周永勇.配电网故障诊断、定位及恢复方法研究[D].重庆大学2010 [4]丁同奎.配电网故障定位、隔离及网络重构的研究[D].东南大学2006 [5]周睿.配电网故障定位与网络重构算法的研究[D].哈尔滨工业大学 2008 [6]姚玉海.基于网络重构和电容器投切的配电网综合优化研究[D].华北电力大学 2012 配电网脆弱性分析与可靠性评估 [1]汪隆君.电网可靠性评估方法及可靠性基础理论研究[D].华南理工大学 2010 [2]何禹清.配电网快速可靠性评估及重构方法研究[D].湖南大学2011 [3]王浩鸣.含分布式电源的配电系统可靠性评估方法研究[D].天津大学 2012

[4]任婷婷.改进网络等值法在配电网可靠性评估中的应用研究[D].太原理工大学 2012 [5]吴颖超.含分布式电源的配电网可靠性评估[D].华北电力大学2011 [6]王新智.电网可靠性评估模型及其在高压配电网中的应用[D].重庆大学 2005 [7]郑幸.基于蒙特卡洛法的配电网可靠性评估[D].华中科技大学2011 配电网快速仿真与模拟 [1]周博曦.基于IEC 61968标准的配电网潮流计算系统开发[D].山东大学 2012 [2]徐臣.配电快速仿真及其分布式智能系统关键问题研究[D].天津大学 2009 [3]马其燕.智能配电网运行方式优化和自愈控制研究[D].华北电力大学(北京)2010 [4]康文文.面向智能配电网的快速故障检测与隔离技术研究[D].山东大学 2011 [5]许琪.基于配电网的馈线自动化算法及仿真研究[D].江苏科技大学 2012

供配电系统可靠性分析

供配电系统可靠性分析 发表时间:2018-10-10T09:55:54.720Z 来源:《建筑模拟》2018年第20期作者:薄志勇闫彦理[导读] 电力系统中,“供配电系统”存在于发电厂与受电用户之间,是一个不可或缺的部分。供配电系统可靠性直接影响到整个电力系统的稳定性和安全性。薄志勇闫彦理山东东明石化集团摘要:电力系统中,“供配电系统”存在于发电厂与受电用户之间,是一个不可或缺的部分。供配电系统可靠性直接影响到整个电力系统的稳定性和安全性。本文首先概述了供配电系统在电能传输过程中的作用及其在整个电力系统中所处的地位,进而介绍了供配电系统可靠性分析的主要内容,并在此基础上对供配电系统可靠性的常用分析方法展开研究。 关键词:供配电系统可靠性分析方法 电力系统是由发、供、配、用四大部分构成,而供配电系统涉及电力系统的供和配两大部分。要想电能在电力系统中正常输配,供配电系统可靠性是基本保证。供配电系统故障就必将导致电能不能连续有效地传输。随着社会发展、经济快速增长,以及科技的不断进步,人们对供配电系统运行提出了可靠、稳定、安全的高要求。 一、供配电系统概述电力系统是由发电厂、供配电系统和用户组成的统一整体。由于燃料或者水资源等材料的限制,从经济的角度考虑,发电厂一般多建在偏远的地区,职能主要是生产电能供给用户使用,然而用户显著的特点却是离发电厂较远且分布较为分散。在当前科技形式下,电能具有不能大量存储的特点,其发出、传输、配送以及消耗整个过程都是同时进行的。因此,要实现用户能用上发电厂发出的电能,就需要供配电系统来完成输配电的工作。供配电系统就是由变电所和不同电压等级的电力线路所组成。输电线路和配电线路组成供配电系统的线路。其中输电线路的电压等级一般定义在35kV及以,是从升压变到降压变之间的部分,它的作用主要是实现电能的输送;而配电线路存在于降压变和各用户之间,电压等级一般为10kV及以下,它实现各类用电户的电能配送。由此可知,供配电系统在电能传输过程中的作用和在电力系统中的地位是十分重要的。通过供配电系统,不仅能实现电能在发电厂与用户之间的传输、配送,还能实现对该过程进行控制和计量,并通过在线监测方式对在系统中随时可能出现的各种故障进行快速而且有效的检测和保护,供配电系统可靠运行能基本保证电力系统正常运行。 二、供配电系统可靠性分析的主要内容:电力系统可靠性指的是电力系统能够在任何时候都能满足用户的用电需求并能在随时可能发生的事故中起到检测保护作用避免大面积停电。电力系统可靠性包括两方面的内容:即充裕度和安全性。供配电系统可靠性在电力系统可靠性中占有十分重要的地位。相关数据显示,80%以上用户停电故障是由供配电系统故障引起的,研究供配电系统的可靠性的具有一定的必要性。供配电系统的可靠性主要由其属性决定。供配电系统的属性是由系统的接地方式,系统的主接线方式,系统的运行方式以及系统的测量、监控及保护方式组成,通过四种方式配合运行决定了供配电系统的安全性、可靠性、整体性和合理性。供配电系统是由供电系统和配电系统组成的一个有机统一体,供电系统关系到电能传输的安全性和可靠性。而电力系统投资建设的整体性和合理性,以及建成后系统运行的经济性受到配电系统的影响。由此,供配电系统可靠性分析就是研究这四种方式的配合和优化,其中系统的主接线方式在四种方式起到主要作用,如果主接线方式确定了那么其他三种方式对可靠性的影响就相对削弱。 三、供配电系统可靠性的常用分析方法:模拟法和解析法两类分析方法是供配电系统可靠性分析中常用的。其中模拟法主要是指蒙特卡罗模拟法,该方法的使用不受系统规模限制,有灵活的特点,但同时也存在精度不足、耗时较长的缺点,在发、输电组合系统的可靠性分析中使用广泛。而解析法可进一步分为最小割集法和网络法也就是故障模式影响后果分析法(FMEA),其中FMEA在配电系统可靠性分析中最为常用,也是可靠性分析中传统的方法。随着电力行业的发展,综合模拟法和解析法两者优点的混合法得到了越来越多的应用。(一)模拟法即蒙特卡罗法蒙特卡罗法的基本思想是:元件的出厂参数具有较高的可靠性,蒙特卡罗法就是以此为基础建立概率模型,在通过抽样实验的方式随机模拟可能出现的状态,然后再利用数理统计的方法进行求解,得到配电系统的可靠性指标。由于这种方法方法需要计算的只是模拟元件对配电系统中各个负荷点的影响,因此系统的规模通常不会影响蒙特卡罗法的计算量,蒙特卡罗法也就常常被用于一些规模较大的、复杂的供配电系统的可靠性分析当中。在使用时该方法还能给出可靠性指标的概率分布。但该方法有唯一的缺点就是需要消耗较长的时间。(二)解析法现阶段供配电系统可靠性研究中使用最广泛的一种方法就是解析法。解析法的优点是原理简单、模型准确等,在比较简单的供配电系统可靠性分析中使用较多。而对于较为复杂的供配电网络必须要简化配电网络才能够使用解析法进行分析。该方法分析在使用时首先建立分析模型,该模型符合系统的具体情况,然后借助数学分析的方法对所建立模型求解出可靠性指标。典型的解析法有如下这两种: 1.最小割集法。该方法是在最小路法的基础上形成基本最小路和辅助最小路的概念。其基本思想是一个最小割集在切断所有基本最小路的同时也必将切断所有的辅助最小路。也就是说在只要通过切断基本最小路的故障元件对网络元件进行重新组合,就能充分地导出网络的全部最小割集。最小割集发的步骤大致为:当配电网络具有多个电源点及负荷点时,首先把它生成配电系统的网络拓扑结构形成最小路树,然后通过最小路树导出基本最小路,进而得到最小割集。该方法的优点是缩短了导出最小割集花费的时间,同时该方法也具有容易实现编程的优点,且计算效率较高。 2.网络法即FMEA,该方法在供配电系统可靠性分析中是最为流行的原因是配电网的拓扑结构与网络模型较为相似,而且模型较为简单。FMEA是通过枚举的方法先确定出配电系统中负荷点的失效事件,根据其对系统可靠性产生的影响,形成一个系统的事故影响表,进而归类分析得出整个系统的可靠性指标。该方法主要步骤是通过逐步组合串并联设备而得出等效网络。虽然简便快捷,但在分析非简单串并联系统的时候比较困难,同时如果简化次数较多,不可靠部分对系统可靠性的影响将变得难以鉴别。因此该方法不太适合复杂网络。 四、结语

配电系统电力电子变压器的研究

配电系统电力电子变压器的研究 作者:佚名转贴自:电力安全论坛点击数:35 更新时间:2008-7-28 配电系统电力电子变压器的研究 方华亮,黄贻煜,范澍,陆继明,毛承雄 (华中科技大学电气与电子工程学院,武汉430074) 摘要: 供电可靠性及电能质量一直是用户和供电部门密切关注的问题。在电网中,变压器是电能转换的最基本的元件,但常规变压器难以对供电可靠性的提高和电能质量的改善作出贡献。本文介绍了一种全新的产品-电力电子变压器,它具有提高供电可靠性、改善电能质量并且体积小、重量轻、环保效果好等一系列优点,可以较好地解决这些问题。在对电力电子变压器现有方案进行分析的基础上,本文提出了一种新的实现方案,计算机仿真结果表明:变压器原方可以实现输入电流波形为正弦和功率因数接近于1,变压器副方可以获得良好的输出电压、电流。 关键词: 电力电子变压器; 高频变压器; 供电可靠性; 电能质量; 脉宽调制 1引言 当今社会经济的快速发展,使得人们对供电可靠性以及改善电能质量提出了越来越高的要求。如果一个供电系统的可靠性不能保证,停电不只是给供电企业带来损失,给用户将造成更大的经济损失。就电能质量而言,一种频率、电压、波形的电能已远远不能满足用户要求,经过变换处理后再供用户使用的电能占全国总发电量的百分比比值的高低,已成为衡量一个国家技术进步的主要标志之一。如在美国,2000年末,发电厂生产的40%以上的电能都是经变换和处理后再供负载使用,预计到21世纪二、三十年代,美国发电站生产的全部电能都将经变换和处理后再供负载使用。 如何更进一步提高供电可靠性和改善电能质量已成为供电部门十分重视和不断努力解决的问题,在供电系统中,变压器是实现电能转换的最基本、最重要的元件之一,对供电可靠性和电能质量有着重大的影响。目前广泛使用的配电系统变压器通常是采用铁芯油浸式,其运行可靠和效率较高;但同时,也存在以下一些不足之处[1]:·不能维持副方电压恒定; ·铁芯饱和时,会造成电压电流的波形畸变,产生谐波; ·原副方电压、电流紧密耦合,负荷侧的波动会影响到电网侧; ·需装备继电保护装置; ·体积大,笨重; ·矿物油会带来环境问题,且不易维护; 基于以上常规变压器的一些不足之处,如何进一步提高变压器的功能、改善其运行特性以更好的发挥其在供电系统中的作用,从而实现进一步提高供电可靠性、改善电能质量的愿望,是一个十分值得我们深入研究的课题。目前随着电力电子变流技术和大功率电力电子器件的迅速发展,以及在电力系统中的应用日益广泛,所有的这些为我们研制新型变压器奠定了很好的基础。我们要研制的新型变压器主要是采用电力电子技术实现的,我们称之为电力电子变压器。 对电力电子变压器的研究,国内在这方面还基本上未开展,国外在十多年前就已提出了这个概念。首先是美国海军的一个研究计划,提出了一种“交流-交流”的降压变换器构成的电力电子变压器;在这之后,由美国电力科学研究院(EPRI)赞助的一个研究项目也

分布式电源对配电网的可靠性影响

分布式电源对配电网的可靠性影响 摘要:凭借运行方式灵活、环境友好等特点,越来越多的分布式电源被接入到配电网中,这在对配电系统的结构和运行产生一系列影响的同时,也将改变原有的配电系统可靠性评估的理论与方法。由于用户可以同时从传统电源和分布式电源两方面获取电能,配电系统的故障模式影响分析过程将发生根本性改变,需要考虑系统的孤岛运行。此外,风机、光伏等可再生分布式电源出力波动性以及储能装置运行特性的影响更加剧了问题的复杂性。 本文使用一种分布式电源低渗透率情形下配电系统可靠性评估的准序贯蒙特卡洛模拟方法,计算与用户相关的配电类可靠性指标,指标分别为EENS,SAIDI,和SAIFI。应用馈线区的概念,研究了分布式电源接入后配电系统的故障模式影响分析过程,对系统中的孤岛进了分类,并采用启发式的负荷削减方法维持孤岛内的电力平衡。在上级电源容量充足的前提下,该方法对系统中非电源元件的状态进行序贯抽样,而对风机、光伏、蓄电池组等分布式电源的状态进行非序贯抽样,可以在确保一定计算精度的同时提高模拟速度。 关键词:配电系统,可靠性评估,分布式电源,馈线区,准序贯蒙特卡洛模拟

1、分布式发电发展概况 作为集中式发电的有效补充,分布式发电近年来备受关注,分布式发电技术也日趋成熟,其发展正使得现代电力系统进入了一个崭新的时代。尽管到目前为止,分布式发电尚无统一的定义,但通常认为,分布式发电(Distributed Generation,DG)是指发电功率在几千瓦至几十兆瓦之间的小型化、模块化、分散化、布置在用户附近为用户供电的小型发电系统。它既可以独立于公共电网直接为少量用户提供电能,又可以接入配电系统,与公共电网一同为用户提供电能。按照分布式电源(Distributed Energy Resource, DER或Distributed Generator,DG)是否可再生,分布式发电可分为两类:一类是可再生能源,包括太阳能、风能、地热能、海洋能等发电形式;另一类是不可再生能源,包括内燃机、热电联产、微型燃气轮机、燃料电池等发电形式。此外,分布式发电系统中往往还包括储能装置。 分布式发电的优势包括: 1)经济性:由于分布式发电位于用户侧,靠近负荷中心,因此大大减少了输配电网络的建设成本和损耗;同时,分布式发电规划和建设周期短,投资见效快,投资的风险较小。 2)环保性:分布式发电可广泛利用清洁可再生能源,减少化石能源的消耗和有害气体的排放。 3)灵活性:分布式发电系统多采用性能先进的中小型模块化设备,开停机快速,维修管理方便,调节灵活,且各电源相对独立,可满足削峰填谷、对重要用户供电等不同的需求。 4)安全性:分布式发电形式多样,能够减少对单一能源的依赖程度,在一定程度上缓解能源危机的扩大;同时,分布式发电位置分散,不易受意外灾害或突发事件的影响,具有抵御大规模停电的潜力。 上述分布式发电的独特优势是传统的集中式发电所不具备的,这成为了其蓬勃发展的动力。为此,世界上很多国家和地区都制定了各自的分布式发电发展战略。例如,在2001年,美国的DG容量就占到了当年总发电容量的6%,而其于同年制定完成的DG互联标准IEEE P1574,则规划在10-15年后DG容量将占到全国发电量的10-20%;欧盟也于2001年制定了旨在统一协调欧洲各国分布式电源的“Integration”计划,预计在2030年DG容量达到发电总装机容量的30%左右;我国对DG的发展也十分重视,相继颁布了《可再生能源法》和《可再生能源中长期发展计划》,计划在2020年DG容量达到总装机容量的8%。 但是,在伴随着诸多好处的同时,分布式发电的发展给电力系统,特别是配电系统的规划、分析、运行、控制等各个环节都带来了全新的挑战。分布式电源自身的特性决定了一些电源的出力将随着外部条件的变化而变化,因此这些电源不能独立地向负荷供电,且不可调度。而对于配电系统而言,当DG规模化接入配电系统后,配电系统由原来单一的分配电能的角色转化为集电能收集、电能传输、电能存储和电能分配于一体的“电力交换系统”(Power Exchange System)或“主动配电网络”(Active Distribution Networks),配电网的结构出现了根本性的变化,不再是传统的辐射状的、潮流单向流动的被动系统,给电压调节、保护协调和能量优化带来了新的问题。特别是当配电系统中DG的容量达到较高的比例,即高渗透率时,要实现配电网的功率平衡和安全运行,并保证用户的供电可靠性有着很大的困难。

配电系统供电可靠性的指标及应用

龙源期刊网 https://www.wendangku.net/doc/ba12640054.html, 配电系统供电可靠性的指标及应用 作者:邹东 来源:《科学与财富》2017年第09期 摘要:配电系统在整个用户供电系统中是直接联系用户的关键部分,其可靠性对用电户来说具有相当大的意义。本文从配电系统简介入手,分析了配电系统供电可靠性的指标,研究了供电可靠性指标在配电系统中的应用,并对如何提高供电可靠性做出了阐述。 关键词:配电系统;供电可靠性;指标;应用 1引言 配电系统中供电可靠性是电力系统可靠性的重要一部分,这部分的管理直接影响到电力系统设备的全面安全运行管理和电力系统全过程的安全管理,在现代的供电系统管理方面是较为科学的管理方法之一,并为现代化的电力工业管理起到了积极地促进作用。供电系统在整个国民经济电力需求方面的满足程度是通过配电可靠性来反映的,整个供电系统的前期设计,规划以及到实施阶段的施工建设, 以及相关的设备选型,到最后的实际运行,为用户提供服务等这些方面的质量和管理水平都是通过配电系统的可靠性来综合体现的。 2配电系统简介 在我国的电力系统中,大型发电厂与负荷点的距离往往相距甚远。一般情况下,由发电厂发出的电能需要经过高压输电线路或超高压输电线路输送至负荷点,再经由较低等级的电压网络把电能输送到电压等级不同的负荷点。在电力系统中,像这种承担着分配电能作用的系统即为配电系统。 按照电压等级的不同,我们把配电系统分为3类:高压(35~110kV)配电网络;中压(6~10kV)配电网络;低压(220~380V)配电网络。按照供电区域的不同,我们可以把配系统络分为:工厂配电系统;城市配电系统;农村配电系统。由于配电系统主要负责是给一个区域供电,所以又被称之为地方电力网。配电系统的电压等级和供电范围均比区域电力网要小。但是,配电系统位于电力系统的末端与用户直接相连,这是配电系统在其结构上的最大特征,这一特征能够灵敏迅速的反映用户在经济安全等方面的要求。 伴随着电力市场化改革的进一步加大,配电系统的可靠性对国民经济的发展及社会稳定的影响也随之加剧,而且配电系统的规划设计及升级改造也离不开配电系统的可靠性评估。由此可见,配电系统可靠性研究的意义之重要,是不言而喻的。 3供电可靠性概述

针对供配电系统可靠性的研究

针对供配电系统可靠性的研究 发表时间:2018-09-18T15:08:38.173Z 来源:《电力设备》2018年第14期作者:谢丽平[导读] 摘要:当今,随着社会经济不断的发展,人们的生活水平也逐步提高,对建设工程的质量也提出了更高的要求。电力设备在人们日常生活中的利用率也日益提高了,对供配电系统提出了挑战。计算机数字信息技术的普及,使得供配电系统的设计更能利用信息技术的自动化电气设备,以提高供电系统运行中的可靠性。本论文从结合电气设计实践,对建筑供配电系统的可靠性进行了分析。 (身份证号码:35072119820828xxxx)摘要:当今,随着社会经济不断的发展,人们的生活水平也逐步提高,对建设工程的质量也提出了更高的要求。电力设备在人们日常生活中的利用率也日益提高了,对供配电系统提出了挑战。计算机数字信息技术的普及,使得供配电系统的设计更能利用信息技术的自动化电气设备,以提高供电系统运行中的可靠性。本论文从结合电气设计实践,对建筑供配电系统的可靠性进行了分析。关键词:建筑电气;供配电系统;可靠性前言: 建筑物供配电系统直接与用户的电气设备相连,其可靠性直接影响到建筑物内各类电气设备的安全运行,其运行可靠性不仅关系到供配电系统本身,也可能会影响到外部供电系统。电气设计方案作为建筑物用户供电的重要环节,为了确保建筑供电系统的安全运行,工程技术人员需要从多个角度考虑相关特征量,以实现供配电系统的优化运行。 一、建筑电气供配电系统的可靠性在工程电气设计中,供配电系统的可靠性是保证系统安全运行的重要环节。对建筑物配电方式进行了评价,根据评价指标和运行中常见的供电方式对运行中存在的问题进行了检测,并根据供电运行的要求提出了新的设计方案。针对供电可靠性的要求,根据建筑供电需要将电力负荷分为三个等级,即一级负荷、二级负荷和三级负荷。建筑物消防设备一般采用一级负荷,如消防控制室、自动报警装置、建筑物应急照明系统,包括消防电梯、消防水泵等。建筑供配电系统中的一级负荷是一个非常重要的负荷,主要用于建筑中的各种安全的设施。例如:鼓风机、排风机、污水泵等,应采用一级负荷,并应增加应急电源。在通常情况下,应急供电系统是属于重要的负荷供电,在设计中往往会采用柴油发电机组供电或者使用紧急电力供给(Emergency Power Supply,简称“EPS”)二、建筑电气供配电系统设计方案(一)供电电源 在一些建筑物中,一次荷载和二次荷载的数量较多,其作用是提高建筑物的安全利用率。以高层建筑为例,为了保持建筑的连续用电,经常安装两台以上的变压器和一台柴油发电机组。就发电启动要求而言,当两台变压器的进线均无法供电时,应启动柴油发电机,为建筑物提供应急电源。两台变压器和一台应急柴油发电机非并联运行时,为了提高用电设备的利用率,两个电源采用同级统一电压供电,互为备用。但是,由于不同地区的用电需求不同,应适当调整供电电压,两种电源可以独立供电,但在大多数情况下一般都是搭配供电。这就决定了进入电网的电源也是独立的。当二级负荷容量较大时,需要通过两个电路连续供电,这种发电机组合在运行中也存在缺点。为了提高建筑供配电系统的供电可靠性,可在建筑施工中对该系统进行改进设计,以实现供配电的优化。(二)供配电系统设计根据《民用建筑电气设计规范》,为了使供电系统能够满足一级负荷供电或二级负荷供电的要求,通常需要采用两种方式同时供电,即当其中一种供电方式因故障而终止时,需要采用其他线路来满足连续供电的要求。如果是10千伏供配电系统,最好选择径向接线方式,配电级数不能超过两级。当然,根据地理环境和特殊需要,也可以选择采用环型或干线型配电系统接线设计。回路放射式主接线见图1。 回路放射式供配电系统由专用的三级负荷设备配电,当由于故障而中断供电的时候,在很长时间以内都无法供电。如果此时备用电源不能正常工作,则可以选择二级负荷供电,其优点是断电时间由备用电源的切换时间决定。如果电源独立使用,最好采用一级负荷供电方式,电源中断时间由独立备用电源的切换时间决定。 三、电气供配电系统的可靠性计算方法电力负荷的可靠性是决定供配电负荷水平的重要因素。根据设计规范,对不同的电力负荷采用不同的设计方案,并进行可靠性计算。供配电系统的部件组合包括串联和并联。在计算供配电系统的可靠性指标时,将元件的故障率设定为常数,即不能随时间的变化而变化。故障发生后,不影响其它部件的正常运行,修复时间呈指数分布趋势,部件的运行时间大于因故障停止工作的时间。元件的串联见图2。

现代配电系统可靠性评估方法与应用

现代配电系统可靠性评估方法与应用 摘要随着时间的推移,人们对电力资源及电能的依赖性越来越大,如果电力供应出现问题将会对居民的生活造成极大的困扰。由于配电系统的可靠性会对整个电网系统的运行产生重要影响,因此应当采用科学的方法对配电系统稳定性进行评估。本文先对配电系统可靠性分析思路进行简析,接着阐述了配电系统可靠性评估方法,最后探究了配电系统可靠性综合评估的应用。 关键词配电系统;可靠性;评估方法;应用 1 导言 由于配电系统处于电力系统的末端,是电力系统中直接针对用户的环节,它向用户提供电能并分配电能,直接影响着用户的供电质量和供电可靠性。对配电系统可靠性进行评估是我国电力行业建设中非常重要的一个环节,是保证电力系统运行安全的重要保证,对我国电力事业的发展具有十分重要的意义。文章就配电系统可靠性评估方法与应用展开了论述。 2 配电系统可靠性分析思路 配电系统可靠性分析的主要目标就是可以准确评价出系统运行时的可靠性,并将评估结果作为依据,对设计中存在的问题进行修正。具体评估思路如下:首先,对系统数据进行分析,评估历史的可靠性,就是根据历史数据判断系统运行能力。一般都是由系统运行部门负责这项工作,分析系统没有大大预期可靠性的原因,判断系统的薄弱环节在哪。如果问题出在设计方案上,需要与工程规划部门共同合作解决问题。其次是制作预测模型,就是根据备选设计方案预测系统未来一段时间内运行的可靠性,主要是针对配电系统中的某一个部分,预见其在运行时有可能出现的问题,提出提升系统运行可靠性的方法。最后是校正预测模型,预测模型建立以后,需要将历史数据作为依据对其进行校正,使其与历史情况相符,这样才能保证预测模型不脱离实际。值得注意的是,模型校正是一个非常复杂的过程,需要配电系统运行部门提供真实、完整的历史数据,并考虑到系统运行的外界环境因素,用电需求变化因素等,将所有因素都考虑到,然后对参数进行谨慎调整,这样才能对系统未来运行状态进行准确预测,判断其可靠性是否可以达到预期要求[1]。 3 配电系统可靠性评估方法 3.1 最小路法 该方法的基本思想是对每一负荷点求取其最小路,根据网络的实际情况,将非最小路上的元件故障对负荷点可靠性的影响折算到相应的最小路节点上,从而仅对每个负荷点最小路上的元件与节点进行计算,即可得到负荷点相应的可靠性指标。该算法虽然比FMEA方法实现起来简化了许多,但是对复杂配电系统寻

配电自动化条件下的配网系统供电可靠性研究 杜吉斌

配电自动化条件下的配网系统供电可靠性研究杜吉斌 发表时间:2017-12-04T19:38:17.723Z 来源:《电力设备》2017年第23期作者:杜吉斌 [导读] 摘要:当前我国电网供应形成了“总量大、负荷高、质量要求高”的“一大二高”新格局,同时,随着社会经济的飞速发展,人民群众的生活水平不断提高,工业化、城镇化水平不断提高,对用电的可靠性和稳定性也相应提出了更高的要求。 (国网山东省电力公司荣成市供电公司山东威海 264300) 摘要:当前我国电网供应形成了“总量大、负荷高、质量要求高”的“一大二高”新格局,同时,随着社会经济的飞速发展,人民群众的生活水平不断提高,工业化、城镇化水平不断提高,对用电的可靠性和稳定性也相应提出了更高的要求。在这样的背景下,电力企业在电力供应上承受着巨大的压力,配电自动化技术应运而生,其实电力系统和电力企业管理发展的必然趋势和要求,也与电力市场理念相契合,保证了配电系统的可靠性和经济性一致的问题。 关键词:配电自动化;技术发展;供电可靠性;配电系统 1配电自动化条件下配电系统供电可靠性研究的必要性 由于配电系统位于整个电力系统的最末端,并且直接和用户相连,一旦发生故障,就会直接导致对用户供电的中止。但随着现如今配电系统技术的不断发展,配电系统不断朝着超高压、远距离、线路复杂多变、供电半径增大、大机组以及大容量等的方向发展,这就导致配电系统更加容易出现故障,而这些故障往往是多样多样的且层出不穷,例如,配电系统的老化、大幅度增加的电负荷导致的保险丝熔断,避震器故障、线路接地线短路、地网建设不合格、阀片受潮、器材的导流量不足、熔断器故障,绝缘层老化、电流容量不足等许许多多设备方面的故障,这些设备方面的故障一般来说,多数是由于线路的使用年限过久,或者由于经费不足等其他情况导致的未能及时对配电系统进行维护和检修而引起的,同时配电系统由于常年累月的遭受着风吹日晒和雨淋,如果没有适当的保护措施,这就极其容易导致雷雨、闪电、大风等的侵害,使得出现漏电、停电等各种各样的故障的发生,而一些人为导致的电杆出现的撞坏或者损坏等情况,以及电线电缆、铜线等被一些不法分子所盗取的现象也时有发生,这些造成配电系统故障的因素极其多样化,且不具有可控性,想要针对其采取有效的防护措施,这就需要对配电自动化条件下配电系统供电可靠性进行全面和详细的研究,从而实现避免电力供应中断或者停止而带来的经济和人力的损失,通过配电自动化条件下配电系统供电可靠性的研究,可以在很大程度上实现电力资源的节约,及时和有效满足用户的用电需求,可以说,对配电自动化条件下配电系统供电可靠性的研究,对推动我国电力的快速进步和发展有着极其重要和积极的意义。 2配电自动化条件下配电系统供电可靠性研究的意义 2.1能够减少故障停电时间 对配电自动化条件下配电系统供电可靠性的研究,可有效减少故障停电的时间,保护主设备,例如,根据北极星电力2016年所提供的2009年至2015年湖南省长沙市用户供电的可靠性统计数据显示湖南省长沙市故障平均停电时间为每次3.12小时。然而从2012年开始,湖南省长沙市开始对全市的配电线线路进行自动化建设,足足花费了四年的时间,直到2016年,湖南省长沙市通过318条配电线路的自动化建设,使得全市配电自动化覆盖率达到了100%,其中架空线互联率从72%提升到100%,架空线绝缘化率从98.71%提升到100%,“N-1”比例从88%提升到100%,自动化覆盖率从0提升到100%,最终配电自动化终端在线率100%,遥信正确率100%,遥控成功率100%,使得2016年夏天其他省会城市面对高温酷暑天气,主网变压器重载时,各种断电、停电情况频频发生的情况下,长沙市却因对配电自动化条件下配电系统供电可靠性详细的研究和运用,保证了在长沙市2016年在面临夏季长时间高温和春季多雨季节,仍能实现电网故障率为零,完全没有出现任何停电情况的傲人成绩,充分保证了长沙市配电线路的安全以及稳定的运行,全面降低了跳闸率,使得长沙市的供电可靠率稳步提升,保证了长沙市市民安全、放心的用电。 2.2能够减少巡线查找和检修所需的时间和人力资源 当配电线路一旦出现故障,通过配电自动化条件下配电系统供电可靠性的评估,配电自动化能够对配电系统的运行状况进行监控,还能控制配电系统的运行,这样一来调控员可以提前从设备信息的收集到的导线、地线、压接管、线夹、接头等是否可能存在断股、腐蚀、损伤等各种故障情况,事先做好预防措施。即使面对突如其来的外力破坏所造成的停电,调控员也可以在办公室内轻轻点击鼠标,就完成将配电系统中的故障进行隔离,并将非故障段的负荷转移到其他线路上,从而保证用户的用户能够毫无间断。之后,调控员可以在极其短暂的时间内,快速有效地锁定配电系统中可能存在的故障或者外力的破坏点,使得抢修人员能够在最短的时间内,及时赶到现场对配电系统的故障进行排除,这种通过配电自动化条件下配电系统供电可靠性的研究,能够有效节约巡线查找故障点和检修配电系统所需的时间和人力资源。 3提高配电自动化条件下配电系统供电可靠性的方法 3.1建立专门保障供电稳定性的组织机构或部门 通过构建专门保障供电稳定性的组织机构或部门,建立配电自动化条件下配电系统供电可靠性的各种可能出现的安全风险进行管理和保障,针对各种可能发生的导致配电系统出现故障的因素,如天气或者环境等,提前进行预警,做好全面的预防,尽可能地减少天气和环境因素引起的配电线路故障的安全隐患,专门保障供电稳定性的组织机构或部门可以通过确定配电自动化条件下配电系统供电可靠性中具体的技术以及规范,对配电自动化条件下配电系统供电中可能存在的重点和难点进行突击,以及全面且合理的选择和使用配电线路故障的预测方法,并根据当地电网的特点以及用电的具体情况进行分析,专门保障供电稳定性的组织机构或部门能够对配电线路的重负荷线路、重点区域以及重要线路设备等及时监测,从而保障配电线路能够无故障的运行。 3.2加强配电系统供电可靠性故障分析 为保证配电系统供电可靠性,首先要对配电系统进行综合、全面的分析,这种分析工作不仅仅是对数据的统计汇总、上报,而且包括对每个阶段供电可靠性完成情况和影响因素的分析,找出影响配电系统可靠性运行的不足之处,针对问题提出改进意见。此外,还要定期进行可靠性完成工作回顾总结,调整供电配电方案,并制定科学合理地停电计划。 3.3改进和完善停电管理制度 资料显示,电力企业计划停电占停电类型的比例很高,要不断完善、改进停电管理制度,做到科学合理的进行停电工作,并加强维护检修工作。除此之外,要针对具体情况作出决策,例如,对能带电作业的项目不应停电,多项目同时操作时单项操作不停电。在一个科学、合理地停电计划中,要充分利用并缩短停电时间、减少重复性停电,加大各项检修指标的考核力度,切实提高供电可靠性。

相关文档