文档库 最新最全的文档下载
当前位置:文档库 › 平面向量教材分析

平面向量教材分析

平面向量教材分析
平面向量教材分析

第五章平面向量教材分析

这一章主要介绍平面向量的基础知识,包括平

本章教学时间约25课时,具体安排如下:

5.1向量约1课时

5.2向量的加法与减法约2课时

5.3实数与向量的积约2课时

5.4平面向量的坐标运算约2课时

5.5线段的定比分点约l课时

5.6平面向量的数量积及运算律约2课时

5.7平面向量数量积的坐标表示约1课时

5.8平移约1课时

5.9正弦定理、余弦定理约4课时

5.10解斜三角形应用举例约2课时

5.11实习作业约2课时

5.12研究性课题向量在物理中的应用约3课时

小结与复习约2课时

(一)本章内容

向量这一概念是由物理学和工程技术抽象出来

的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用

绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等

量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两

第一大节是“向量及其运算”,内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;线段的定比分点、平面向量的数量积及运算律、平面向量数量积的坐标表示、平移等

这一大节可以看成是向量知识的应用,内容包括正弦定理、余弦定理,解斜三角形应用举例,实习作业和研究性课题等正弦定理、余弦定理是关于任意三角形边角之间关系的两个重要定理,教科书通过向量的数量积把三角形的边与角联系起来,推导出了这两个定理,并运用这两个定理初步解决了测量、工业、几何等方面的实际问题

为培养学生的创新意识和实践能力,激发学生学习数学的好奇心,启发学生能够发现问题和提出问题,学会分析问题和创造性地解决问题,本节中安排了一个实习作业和研究性课题

为扩大学生的知识面,本章中还安排了两个阅读材料,即“向量的三种类型”和“人们早期怎样测量地球的半径”

本章重点是向量的概念,向量的几何表示和坐标表示,向量的线性运算,平面向量的数量积,线段的定比分点和中点坐标公式,平移公式,解斜三

角形等

(二)本章教学要求

1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念

2.

3.掌握实数与向量的积,理解两个向量共线的充

4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算

5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件

6.掌握平面两点间的距离公式,掌握线段的定比分点公式和中点坐标公式,并且能熟练运用,掌握平移公式

7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决斜三角形的计算问题,通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力通过实习作业和研究性

课题,培养学生从数学角度对某些日常生活中和其他学科中出现的问题进行研究探索的能力

本章一开始,从帆船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、

向量的加法与减法、实数与向量的积,实际是向量的线性运算知识

法运算律,然后用相反向量及向量的加法定义向量

书又通过向量的加法引入了实数与向量的积的定义,接着给出了实数与向量的积的运算律,最后介绍了向量共线的充要条件和平行向量基本定理,这样为后面介绍平面向量的坐标表示奠定了理论基础在“向量及其表示”中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量

在“向量的线性运算”中,介绍向量加法的定

义,向量加法的运算律;向量减法的定义,向量方程,向量长度的三角不等式;数乘向量的定义,单

在“向量的共线与共面”中,介绍平行向量,共线向量,共面向量,两个向量共线的充要条件,直线的向量方程,三个向量共面的充要条件

在“向量的内积”中,介绍两个向量的夹角,向量内积的定义,向量内积的几何意义,向量内积

通过建立直角坐标系,给出了向量的另一种表示式----坐标表示式,这样就使得向量与它的坐标建立起了一一对应的关系,然后给出了向量的加法、减法及实数与向量的积的坐标运算,这就为用“数”

在向量坐标运算的基础上,还导出了线段的定比分点坐标公式和线段的中点公式

向量的数量积体现了向量的长度和三角函数之间的一种关系,特别用向量的数量积能有效地解决

把向量的数量积应用到三角形中,

高中数学竞赛讲义(8)平面向量

高中数学竞赛讲义(八) ──平面向量 一、基础知识 定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b共线的充要条件是存在实数0,使得a=f 定理 3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义 3 向量的坐标,在直角坐标系中,取与x 轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。 定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos =|a|·|b|cos,也称内积,其中|b|cos叫做b 在a上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2), 1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2), 2.λa=(λx1, λy1), a·(b+c)=a·b+a·c, 3.a·b=x 1x2+y1y2, cos(a, b)=(a, b0), 4. a//b x1y2=x2y1, a b x1x2+y1y2=0. 定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若 P1,P,P2的坐标分别为(x1, y1), (x, y), (x2, y2),则 定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x, y)是F上任意一点,平移 到上对应的点为,则称为平移公式。 定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

平面向量复习讲义

平面向量复习讲义 一.向量有关概念: 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是 || AB AB ± ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0 ); 6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如 下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相 同,终点相同。(3)若AB DC = ,则ABCD 是平行四边形。(4)若ABCD 是平行四边形, 则AB DC = 。(5)若,a bb c == ,则a c = 。(6)若/,/a bb c ,则//a c 。其中正确的是_______ (答:(4)(5)) 二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i , 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+= ,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的线性运算: (1)向量加法: ①三角形法则:(“首尾相接,首尾连”),如图,已知向量a 、b.在平面内任取一点A ,作AB =a , =b ,则向量叫做a 与b 的和,记作+a b 定:a + 0-= 0 + a =a, 当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; 当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,

平面向量全部讲义

第一节平面向量的概念及其线性运算 1.向量的有关概念 (1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量. (4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 例1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线 C .不可能都是零向量 D .不可能都是单位向量 例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC 等价于四边形 ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .④⑤ CA 2.向量的线性运算 平行四边形法则 例3:化简AC →-BD →+CD →-AB →得( ) A.AB → B.DA → C.BC → D .0 例4:(1)如图,在正六边形ABCDEF 中,BA +CD +EF =( ) A .0 B .BE C .A D D .CF (2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23 BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________. 巩固练习: 1.将4(3a +2b )-2(b -2a )化简成最简式为______________. 2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB → 的关系是( ) A .平行 B .重合 C .垂直 D .不确 定 3.若菱形ABCD 的边长为2,则|AB -CB +CD |=________ 4.D 是△ABC 的边AB 上的中点,则向量CD 等于( ) A .-BC +12BA B .-B C -12BA C .BC -12 BA D .BC +12 BA 5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC +AD ;③AC -BD =DC +AB .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE → . DD 1 2 巩固练习 1。16a +6b 2。C 3。2 4。A 5。C 6.解:AB →=AC →+CB → =-3a +2b ,∵D ,E 为AB →的两个三等分点,∴AD →=13AB →=-a +23b =DE →. ∴CD →=CA →+AD →=3a -a +23b =2a +23 b .∴CE →=CD →+DE → =2a +23b -a +23b =a +43b. 3.共线向量定理:向量a (a ≠0)与b 共线等价于存在唯一一个实数λ,使得b =λa . 例5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________ 例6. 设两个非零向量a 与b 不共线,(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

高一 平面向量讲义

平面向量讲义 §2、1 平面向量得实际背景及基本概念 1.向量:既有________,又有________得量叫向量. 2.向量得几何表示:以A 为起点,B 为终点得向量记作________. 3.向量得有关概念: (1)零向量:长度为__________得向量叫做零向量,记作______. (2)单位向量:长度为______得向量叫做单位向量. (3)相等向量:__________且__________得向量叫做相等向量. (4)平行向量(共线向量):方向__________得________向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作________. ②规定:零向量与__________平行. 考点一 向量得有关概念 例1 判断下列命题就是否正确,并说明理由. ①若a ≠b ,则a 一定不与b 共线;②若AB →=DC → ,则A 、B 、C 、D 四点就是平行四边形得四个顶 点;③在平行四边形ABCD 中,一定有AB →=DC → ;④若向量a 与任一向量b 平行,则a =0;⑤若a =b ,b =c ,则a =c ;⑥若a ∥b ,b ∥c ,则a ∥c 、 变式训练1 判断下列命题就是否正确,并说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ; (2)若向量|a |=|b |,则a 与b 得长度相等且方向相同或相反; (3)对于任意|a |=|b |,且a 与b 得方向相同,则a =b ; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反. 考点二 向量得表示方法 例2 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD → |、 考点三 相等向量与共线向量 例3 如图所示,O 就是正六边形ABCDEF 得中心,且OA →=a ,OB →=b ,OC → =c 、 (1)与a 得模相等得向量有多少个? (2)与a 得长度相等,方向相反得向量有哪些? (3)与a 共线得向量有哪些? (4)请一一列出与a ,b ,c 相等得向量. §2、2 平面向量得线性运算 1.向量得加法法则 (1)三角形法则 如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC → =b ,则向量________叫做a 与b 得与(或与向量),记作__________,即a +b =AB →+BC → =________、上述求两个向量与得作图法则,叫做向量求与得三角形法则. 对于零向量与任一向量a 得与有a +0=________+______=______、 (2)平行四边形法则

中学数学竞赛讲义——平面向量

中学数学竞赛讲义——平面向量 一、基础知识 定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λf 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作 a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做 b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 2 1 2121y x y x y y x x +?++(a, b ≠0), 4. a ?⊥?定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使 21PP P P λ=,λ叫P 分21P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP OP 。由 此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

平面向量讲义 - 学生版

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念. 知识点一 向量的概念 思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 思考2 两个数量可以比较大小,那么两个向量能比较大小吗? 梳理 向量与数量 (1)向量:既有________,又有________的量统称为向量. (2)数量:只有________,没有________的量称为数量. 知识点二 向量的表示方法 思考1 向量既有大小又有方向,那么如何形象、直观地表示出来? 思考2 0的模长是多少?0有方向吗? 思考3 单位向量的模长是多少? 梳理 (1)向量的表示 ①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度 也叫作有向线段AB →的长度,记作________. ②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________. ③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a → , b → , c → ,…来表示. (2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0. 知识点三 相等向量与共线向量 思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗? 思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗? 思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗? 梳理 (1)相等向量:____________且____________的向量叫作相等向量. (2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线. ①记法:a 与b 平行或共线,记作________. ②规定:零向量与____________平行. 类型一 向量的概念 例1 下列说法正确的是( ) A .向量A B →与向量BA →的长度相等 B .两个有共同起点,且长度相等的向量,它们的终点相同

第4讲 极化恒等式-新高考数学之平面向量综合讲义

第4讲 极化恒等式 一.选择题(共3小题) 1.已知ABC ?是边长为4的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值为( ) A .3- B .6- C .2- D .83 - 【解析】解:以BC 中点为坐标原点,建立如图所示的坐标系, 则(0A ,,(2,0)B -,(2,0)C , 设(,)P x y ,则(PA x =-,)y -,(2,)PB x y =---,(2,)PC x y =--, 所以则()PA PB PC +的最22(2)(23)(2)242x x y y x y =--+--=-+ 222[2(3]x y =+-; 所以当0x =,y =()PA PB PC +取得最小值为2(3)6?-=-, 故选:B . 2.在等腰直角ABC ?中,90ABC ∠=?,2AB BC ==,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足||2MN =BM BN 的取值范围为( ) A .3 [2 ,2] B .3 (2 ,2) C .3 [2 ,2) D .3 [2 ,)+∞ 【解析】解:以等腰直角ABC ?的直角边为坐标轴,建立平面直角坐标系, 如图所示;则(0,0)B ,直线AC 的方程为2x y +=; 设(,2)M a a -,则01a <<, 由||2MN =(1,1)N a a +-;

∴(,2)BM a a =-,(1,1)BN a a =+-; ∴2213(1)(2)(1)2222()22 BM BN a a a a a a a =++--=-+=-+ . 01a <<,∴当12a = 时,BM BN 取得最小值32 , 且0a =或1时,2BM BN =,无最大值; ∴BM BN 的取值范围是3 [2 ,2). 故选:C . 3.正ABC ?P 在其外接圆上运动,则AP PB 的取值范围是( ) A .33[,]22 - B .31[,]22 - C .13[,]22 - D .11[,]22 - 【解析】解:如图所示. 由正ABC ?P 在其外接圆上运动. 120AOB ∴∠=?,1R = =. ∴()()AP PB OP OA OB OP =-- 2 OP OB OP OA OB OA OP =--+ cos 1cos120cos POB AOP =∠--?+∠ 1 2cos cos()2AOB AOP POB =∠∠-∠- 1cos()2 AOP POB =-∠-∠- , 1cos()1AOP POB -∠-∠, ∴31[,]22 AP PB ∈-. 故选:B .

必修4 平面向量(讲义和练习)

《必修4》 第二章 平面向量 一、知识纲要 1、向量的相关概念: (1) 向量: 既有大小又有方向的量叫做向量,记为AB 或a 。 向量又称矢量。 ①向量和标量的区别:向量既有大小又有方向;标量只有大小,没有方向。普通的数量都是标量,力是一种常见的向量。②向量常用有向线段来表示,但也不能说向量就是有向线段,因为向量是自由的,可以平移;有向线段有固定的起点和终点,不能随意移动。 (2)向量的模:向量的大小又叫向量的模,它指的是:表示向量的有向线段的长度。 记作:|AB |或|a |。 向量本身不能比较大小,但向量的模可以比较大小。 (3)零 向 量: 长度为0的向量叫零向量,记为0 ,零向量的方向是任意的。 ①|a |=0; ②0 与0的区别:写法的区别,意义的区别。 (4)单位向量:模长为1个单位长度的非零向量叫单位向量。 若向量a 是单位向量,则|a |= 1 。 2、 向量的表示: (1) 几何表示法:用带箭头的有向线段表示,如AB ,注意:方向是“起点指向终点”。 (2) 符号表示法:用一个小写的英文字母来表示,如a ,b → 等; (3) 坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴正方向相同的两个单位向量 i 、j 为基底向量,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的 坐标,a =(),x y 叫做向量a 的坐标表示。此时|a |。 若已知1122(,)(,)A x y B x y 和,则()2121=--AB x x y y ,, 即终点坐标减去起点坐标。 特别的,如果向量的起点在原点,那么向量的坐标数值与向量的终点坐标数值相同。

平面向量的基本概念及线性运算一对一辅导讲义

教学目标1、了解向量的背景及概念,能够区别向量与数量; 2、掌握相等向量和共线向量的概念及其求法; 3、平面向量的线性运算。 重点、难点教学重点:相等向量和共线向量的概念及其求法 教学难点:平面向量的线性运算 考点及考试要求考点:相等向量和共线向量的概念;平面向量的线性运算 教学内容 第一课时平面向量的基本概念及线性运算知识点梳理 1、下列说法正确的是() A、数量可以比较大小,向量也可以比较大小. B、方向不同的向量不能比较大小,但同向的可以比较大小. C、向量的大小与方向有关. D、向量的模可以比较大小. 2、下列各量中不是向量的是() A、浮力 B、风速 C、位移 D、密度 3、设O是正方形ABCD的中心,则向量,,, AO BO OC OD是() A、相等的向量 B、平行的向量 C、有相同起点的向量 D、模相等的向量 4、判断下列各命题的真假: (1)向量AB的长度与向量BA的长度相等; (2)向量a与向量b平行,则a与b的方向相同或相反; (3)两个有共同起点的而且相等的向量,其终点必相同; (4)两个有共同终点的向量,一定是共线向量; (5)向量AB和向量CD是共线向量,则点A、B、C、D必在同一条直线上; (6)有向线段就是向量,向量就是有向线段. 其中假命题的个数为() A、2个 B、3个 C、4个 D、5个 课前检测

5、若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b | ②a ∥b ③|a |>0 ④|b |=±1,其中正确的是( ) A 、①④ B 、③ C 、①②③ D 、②③ 6、下列命中,正确的是( ) A 、|a |=|b |?a =b B 、|a |>|b |?a >b C 、a =b ?a ∥b D 、|a |=0?a =0 7、下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( ) A 、2个 B 、3个 C 、4个 D 、5个 8、如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形, (1)找出图中与AB 共线的向量;(2)找出图中与AB 相等的向量;(3)找出图中与|AB |相等的向量; (4)找出图中与EC 相等的向量. 1、向量的物理背景及概念 1)、向量的物理背景: 位移是既有大小,又有方向的量; 力是既有大小,又有方向; 2)、向量的概念:既有大小又有方向的量叫做向量 3)、数量的概念:只有大小,没有方向的量称为数量 2、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 3.向量的表示方法: ①用有向线段表示; ②用字母a、b (黑体,印刷用)等表示; 知识梳理 A B E C D A(起点) B (终点) a

平面向量 完全复习 与经典例题

精锐教育学科教师辅导讲义 向量共线或平行:通过有向线段如果向量的基线互相平行或重合,则称这些向量共线或平行.向量说明:共线向量的方向相同或相反,同方向且长度等于1的向量,

a a =a .用向量表示点的位置:任给一定点,过点O 作有向线段OA a =,则点的和(或和向量),即a b AB BC AC +=+=① 已知两个不共线的向量,作AB a =,AD b =,则A ,B , 向量的运算性质:a = 个向量,依次把这n 个向量首尾相连,

如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始 )一个向量减去另一个向量等于加上这个向量的相反向量 a a λ= ,存在唯一的一对实数1a ,2a ,使)基底:我们把不共线向量叫做表示这一平面内所有向量的一组基底,记作 a 关于基底{1e 注:①定理中1e ,2e 是两个不共线向量; 是平面内的任一向量,且实数对A ,B ,P

一定在l 上.OA AP OA tOB tOA =+=+-设点P 满足等式(1)OP t OA tOB =-+,则AP t AB =,即l 可推广到OAB ?)OA OB +存在. 的坐标;反之,点A 的坐标也是点A 向量OA 的坐标.122(,)a b a a b +=+;②

若向量b 不平行于坐标轴,即三、平面向量的数量积和应用 并规定0π<≤≤,在这个规定下,两个向量的夹角被唯一确定了,并且有>. 当π ,2 a b <>= 时,我们说向量向量的数量积(内积)定义cos a b cos a b =向量内积的性质 cos a =a ⊥b a ?,且0a b ?=?a ⊥b ; 2 a a a ?=,即a a a =?; cos ,a b a b a b ?<>= ; b a b ≤. 向量数量积的运算律 ()a b c a c b c +=?+? 向量数量积的坐标运算与度量公式 {②用向量的坐标表示两个向量垂直的条件:a ⊥1120b a b a ?+=

高中 平面向量的概念及其线性运算 知识点+例题

辅导讲义――平面向量的概念及其线性运算

加法 求两个向量和的运算 (1)交换律: a + b =b +a . (2)结合律: (a +b )+ c =a +(b +c ). 减法 求a 与b 的相反向量-b 的 和的运算叫做a 与b 的差 三角形法则 a - b =a +(-b ) 数乘 求实数λ与向量a 的积的运算 (1)|λa |=|λ||a |; (2)当λ>0时, λa 的方向与a 的方向相同; 当λ<0时, λa 的方向与a 的方向相反; 当λ=0时,λa =0 λ(μa )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb [例1] 若OB OA OC =-23,则AB AC ____=.3 1 [巩固] 在矩形ABCD 中,O 是对角线的交点,若15e BC =,23e DC =,则.________=OC )35(2 1 21e e + [例2] 如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则._______=-DB AF BE [巩固1] 设M 是△ABC 的重心,记a BC =,b CA =,c AB =,且0=++c b a ,则._______=AM )(3 1 b c - [巩固2] 已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连接AM 、AG 、CD ,则._______)(2 1 =++ BC BD AB AG [例3] 如图,向量a AB =,,b AC =,c CD =,则向量,BD 可以表示为_____________. c a b +- 精典例题透析

高中数学必修4《平面向量》知识点讲义

第二章 平面向量 一、基本概念 1、数量:只有大小没有方向的量称为数量,例如温度、时间、质量、面积等。 2、向量:既有大小又有方向的量叫做向量,例如速度,位移,加速度,力等。注意:向量没有位置。 3、有向线段:带有方向的线段。 4、向量的模:向量的长度(大小),记作 。 5、零向量:长度为0的向量叫零向量,记为 ,零向量的方向任意。 6、单位向量:长度等于1个单位的向量。 7、相等向量:长度相等且方向相同的向量。 8、相反向量:长度相等但方向相反的向量, 互为相反向量。 9、平行向量(共线向量):方向相同或相反的非零向量。规定 。 二、表示与运算 代数 几何 坐标 表示 a r 或AB u u u r (x ,y ) 1122(,),A x y B x y 若(,) 2121=--AB x x y y u u u r 则(,) 加法(减法) “化减为加” a b +r r ?? ?三角形法则:首尾相连法则平行四边形法则 ()1212,x x y y ±± 说明:1、向量加法满足: (1)交换律 (2)结合律 2、 3、 0r ()0//a r r 任意向量a a r r 与 -a r a b b a +=+r r r r ()() a b c a b c ++=++u u r r r r u u r r a b a b a b +≤+r r r r r r 当且仅当与同向时,取等号。 AB BC AC AB BC CA GA GB GC ?+=++=?++=u u u r u u u r u u u r u u u r u u u r u u u r r u u u r u u u r u u u r r ABC 中,常见结论(1)(2)(3)G 为ABC 重心,则

平面向量的概念、运算及坐标表示(讲义及

平面向量的概念、运算及坐标表示(讲义) ? 知识点睛 一、平面向量的基本概念 1. 定义:既有 ,又有 的量叫做向量. ??→ 表示:a , AB ??→ 模:向量 AB 的 叫做向量的模,记作 . 2. 几个特殊的向量: 零向量、单位向量、平行(共线)向量、相等向量、相反向量二、平面向量的线性运算 1 (几何意义) 加法 减法 数乘 定 义 求两个向量和的运算 向量a 加上向量b 的 , 即 a +(-b )=a -b 实数与向量的 积是一个向量, 记作λa 法 则 法则 法则 λa = λ a 当λ>0 时,λa 与 a 的方向 ; 当λ<0 时,λa 与 a 的方向 ; 当λ=0 时,λa =0 运算律 交换律: λ(μa )= (λ+μ)a = λ(a +b )= (-λ)a = λ(a -b )= a + b = 结合律: a -b =a +(-b ) (a +b )+c = λ(μ1a ±μ2b )=λμ1a ±λμ2b

三、向量相关定理 1.共线向量定理:向量a(a≠0)与b 共线,当且仅当有唯一 一个实数λ,使. 扩充:对空间三点P,A,B,可通过证明下列任意一个结论成立来证明三点共线. ??→??→ ① PA =λPB ; ??→??→??→ ②对平面任一点O,OP =OA+t AB ; ??→??→??→ ③对平面任一点O,OP =x OA+y OB(x +y =1). 2.平面向量基本定理 (1)基底:平面内的向量e1,e2 叫做表示这一平面内所有向量的一组基底. (2)定理:如果e1,e2 是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a= . 四、向量的坐标表示及运算 1.坐标表示 在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i,j 作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j.这样,平面内的任一向量a 都可由x,y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a= . 2.坐标运算 设a=(x1,y1),b=(x2,y2), 则a+b= ,a-b= ,λa= .(1)坐标求法 ??→ 设A(x1,y1),B(x2,y2),则AB = .(2)向量位置关系与坐标 a∥b ? ?? ?.

高中数学竞赛_平面向量【讲义】

第八章 平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ??? ?++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0,又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|, 化简即为柯西不等式: ≥++++++))((2 22212222 1n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0,又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

相关文档