文档库 最新最全的文档下载
当前位置:文档库 › 2014届高考数学一轮复习教学案基本不等式(含解析) ——谢丹军

2014届高考数学一轮复习教学案基本不等式(含解析) ——谢丹军

2014届高考数学一轮复习教学案基本不等式(含解析) ——谢丹军
2014届高考数学一轮复习教学案基本不等式(含解析) ——谢丹军

第四节

基本不等式

[知识能否忆起]

一、基本不等式ab ≤a +b

2

1.基本不等式成立的条件:a >0,b >0.

2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式

a 2+

b 2≥2ab (a ,b ∈R );b a +a

b ≥2(a ,b 同号).

ab ≤????a +b 22(a ,b ∈R );????a +b 22≤a 2

+b 2

2(a ,b ∈R ). 三、算术平均数与几何平均数

设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:

两个正数的算术平均数不小于它们的几何平均数.

四、利用基本不等式求最值问题 已知x >0,y >0,则:

(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)

(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2

4

.(简记:和定积最大)

[小题能否全取]

1.(教材习题改编)函数y =x +1

x (x >0)的值域为( )

A .(-∞,-2]∪[2,+∞)

B .(0,+∞)

C .[2,+∞)

D .(2,+∞)

解析:选C ∵x >0,∴y =x +1

x ≥2,当且仅当x =1时取等号.

2.已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81

D .243

解析:选A ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.

3.(教材习题改编)已知0

D.23

解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =1

2时等

号成立.

4.若x >1,则x +4

x -1的最小值为________.

解析:x +4x -1=x -1+4

x -1+1≥4+1=5.

当且仅当x -1=4

x -1,即x =3时等号成立.

答案:5

5.已知x >0,y >0,lg x +lg y =1,则z =2x +5

y 的最小值为________.

解析:由已知条件lg x +lg y =1,可得xy =10. 则2x +5y

≥2 10

xy

=2,故????2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.

答案:2

1.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.

2.对于公式a +b ≥2ab ,ab ≤??

??a +b 22

,要弄清它们的作用和使用条件及内在联系,

两个公式也体现了ab 和a +b 的转化关系.

3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤????a +b 22

(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.

典题导入

[例1] (1)已知x <0,则f (x )=2+4

x

+x 的最大值为________.

(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5

D .6

[自主解答] (1)∵x <0,∴-x >0, ∴f (x )=2+4

x +x =2-???

?4-x +(-x ).

∵-4x +(-x )≥24=4,当且仅当-x =4

-x ,即x =-2时等号成立.

∴f (x )=2-????4-x +(-x )≤2-4=-2,

∴f (x )的最大值为-2.

(2)∵x >0,y >0,由x +3y =5xy 得15???

?

1y +3x =1. ∴3x +4y =15·(3x +4y )·????1y +3x =15????3x y +4+9+12y x =135+15????3x y +12y x ≥135+15×2

3x y ·12y

x

=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5. [答案] (1)-2 (2)C

本例(2)条件不变,求xy 的最小值.

解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y , ∴xy ≥12

25,当且仅当x =3y 时取等号.

∴xy 的最小值为12

25

.

由题悟法

用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.

以题试法

1.(1)当x >0时,则f (x )=

2x

x 2

+1

的最大值为________.

(2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.

(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1

=2x +1x ≤22=1,

当且仅当x =1

x ,即x =1时取等号.

(2)由log 2a +log 2b ≥1得log 2(ab )≥1,

即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b

2(当且仅当3a =32b ,即a =2b 时取等号).

又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.

即当a =2b 时,3a +9b 有最小值18.

(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.

答案:(1)1 (2)18 (3)10

典题导入

[例2] (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴

在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -1

20

(1+k 2)x 2(k >0)表

示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;

(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.

[自主解答] (1)令y =0,得kx -1

20(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,

故x =20k 1+k

2=20k +1k ≤20

2=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.

(2)因为a >0,所以炮弹可击中目标?存在k >0,使3.2=ka -1

20(1+k 2)a 2成立

?关于k 的方程a 2k 2-20ak +a 2+64=0有正根

?判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ?a ≤6.

所以当a 不超过6千米时,可击中目标.

由题悟法

利用基本不等式求解实际应用题的方法

(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.

(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.以题试法 2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入1

6(x 2-600)万元作为技改费用,投入50

万元作为固定宣传费用,投入1

5x 万元作为浮动宣传费用.试问:当该商品明年的销售量a

至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.

解:(1)设每件定价为t 元,

依题意,有????8-t -25

1×0.2t ≥25×8,

整理得t 2-65t +1 000≤0,解得25≤t ≤40.

因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,

不等式ax ≥25×8+50+16(x 2-600)+1

5x 有解,

等价于x >25时,a ≥150x +16x +1

5有解.

150x +1

6

x ≥2 150x ·1

6

x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.

1.已知f (x )=x +1

x -2(x <0),则f (x )有 ( )

A .最大值为0

B .最小值为0

C .最大值为-4

D .最小值为-4

解析:选C ∵x <0,∴f (x )=- ????(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1

-x ,

即x =-1时取等号.

2.(2013·太原模拟)设a 、b ∈R ,已知命题p :a 2

+b 2

≤2ab ;命题q :????a +b 22≤a 2

+b

2

2,

则p 是q 成立的( )

A .必要不充分条件

B .充分不必要条件

C .充分必要条件

D .既不充分也不必要条件

解析:选B 命题p :(a -b )2≤0?a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件.

3.函数y =x 2+2x -1(x >1)的最小值是( )

A .23+2

B .23-2

C .2 3

D .2

解析:选A ∵x >1,∴x -1>0.

∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1

=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2

≥2

(x -1)3x -1

+2=23+2.

当且仅当x -1=3

x -1

,即x =1+3时,取等号.

4.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a

A .a

B .v =ab C.ab

2

D .v =a +b

2

解析:选A 设甲、乙两地的距离为s ,则从甲地到乙地所需时间为s

a

,从乙地到甲地

所需时间为s b ,又因为a

=2ab a +b <2ab

2ab

=ab ,

2ab a +b >2ab

2b

=a ,即a

1

m +4

n

的最小值为( ) A.32

B.53

C.25

6

D .不存在

解析:选A 设正项等比数列{a n }的公比为q ,由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2.

由a m a n =4a 1,即2m +n -22

=4,得2m +n -

2=24,即m +n =6.

故1m +4n =16(m +n )????1m +4n =56+16????4m n +n m ≥56+46=32,当且仅当4m n =n m 时等号成立. 6.设a >0,b >0,且不等式1a +1b +k

a +

b ≥0恒成立,则实数k 的最小值等于( )

A .0

B .4

C .-4

D .-2

解析:选C 由1a +1b +k

a +

b ≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4(a =b 时取等号),

所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2

ab 恒成立,应有k ≥-4,即实数k 的最小值等于

-4.

7.已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.

解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当?????

4x =3y ,4x +3y =12,即??

???

x =3

2

,y =2

时xy

取得最大值3.

答案:3

8.已知函数f (x )=x +p

x -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实

数p 的值为________.

解析:由题意得x -1>0,f (x )=x -1+

p

x -1

+1≥2p +1,当且仅当x =p +1时取等

号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =9

4

.

答案:94

9.(2012·朝阳区统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元.

解析:每台机器运转x 年的年平均利润为y x =18-????x +25x ,而x >0,故y

x ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.

答案:5 8

10.已知x >0,a 为大于2x 的常数, (1)求函数y =x (a -2x )的最大值; (2)求y =

1

a -2x

-x 的最小值. 解:(1)∵x >0,a >2x , ∴y =x (a -2x )=1

2

×2x (a -2x )

≤12×????2x +(a -2x )22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x

+a -2x 2-a 2≥2

12-a 2=2-a

2

. 当且仅当x =a -2

2时取等号.

故y =1a -2x -x 的最小值为2-a

2.

11.正数x ,y 满足1x +9

y =1.

(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9

y ≥2

1x ·9y 得xy ≥36,当且仅当1x =9

y

,即y =9x =18时取等号,故xy 的最小值为36.

(2)由题意可得x +2y =(x +2y )????1x +9y =19+2y x +9x

y ≥19+2 2y x ·9x

y

=19+62,当且仅当2y x =9x

y

,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 12.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑

高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.

(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f (x )的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?

解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元, 建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元), 楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元), 建筑第x 层楼时,该楼房综合费用为

y =f (x )=72x +x (x -1)2×2+100=x 2+71x +100,

综上可知y =f (x )=x 2+71x +100(x ≥1,x ∈Z ).

(2)设该楼房每平方米的平均综合费用为g (x ),则g (x )=f (x )×10 0001 000x =10f (x )

x

10(x 2+71x +100)x =10x +1 000

x

+710≥2

10x ·1 000

x

+710=910.

当且仅当10x =1 000

x

,即x =10时等号成立.

综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.

1.(2012·浙江联考)已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( )

A .1

B .2

C .3

D .4

解析:选B 依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =

2y 时取等号),即x +22xy x +y 的最大值是2;又λ≥x +22xy

x +y ,因此有λ≥2,即λ的最小值是

2.

2.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2

xz 的最小值是________.

解析:由已知条件可得y =x +3z

2

所以y 2xz =x 2+9z 2

+6xz 4xz

=14????x z +9z x +6 ≥14?

??

?

2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2

xz 取得最小值3.

答案:3

3.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.

(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?

(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.

解:(1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1),

设平均每天所支付的总费用为y 1元, 则y 1=[9x (x +1)+900]

x +1 800×6

900

x

+9x +10 809 ≥2

900x

·9x +10 809=10 989, 当且仅当9x =900

x

,即x =10时取等号.

即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉. 设该厂利用此优惠条件后,每隔x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2

元,

则y 2=1

x [9x (x +1)+900]+6×1 800×0.90

900

x

+9x +9 729(x ≥35). 令f (x )=x +100

x

(x ≥35),x 2>x 1≥35,

则f (x 1)-f (x 2)=????x 1+100x 1-????x 2+100x 2=(x 2-x 1)(100-x 1x 2)x 1x 2.∵x 2>x 1≥35, ∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0, 故f (x 1)-f (x 2)<0,f (x 1)<f (x 2), 即f (x )=x +100

x

,当x ≥35时为增函数.

则当x =35时,f (x )有最小值,此时y 2<10 989. 因此该厂应接受此优惠条件.

1.函数y =a 1-

x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >

0)上,则1m +1

n

的最小值为________.

解析:因y =a x 恒过点(0,1),则A (1,1),又A 在直线上,所以m +n =1(mn >0). 故1m +1n =m +n mn =1mn ≥1????m +n 22

=4, 当且仅当m =n =1

2时取等号.

答案:4

2.已知直线x +2y =2分别与x 轴、y 轴相交于A 、B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值是________.

解析:∵A (2,0),B (0,1),∴0≤b ≤1, 由a +2b =2,得a =2-2b ,

ab =(2-2b )b =2(1-b )·b ≤2·

????(1-b )+b 22=12

. 当且仅当1-b =b ,即b =1

2时等号成立,此时a =1,

因此当b =12,a =1时,(ab )max =1

2.

答案:1

2

3.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.

解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x

2+x >0,0<x <30.

(1)xy =-x 2+30x

x +2

=-x 2-2x +32x +64-64x +2

=-x -64

x +2

+32

=-???

?(x +2)+64

x +2+34≤18,当且仅当x =6时取等号,

因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32

x +2

-1

=x +2+32x +2-3≥82-3,当且仅当???

x =42-2,y =42-1

时等号成立,又x +y =x +2+

32

x +2-3<30,因此x +y 的取值范围是[82-3,30).

2014年上海市高考数学试卷(理科)

上海乌托邦教育 2014年上海市高考数学试卷(理科) 一、填空题(共14题,满分56分) 1.(4分)(2014?上海)函数y=1﹣2cos2(2x)的最小正周期是_________. 2.(4分)(2014?上海)若复数z=1+2i,其中i是虚数单位,则(z+)?=_________. 3.(4分)(2014?上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为 _________. 4.(4分)(2014?上海)设f(x)=,若f(2)=4,则a的取值范围为_________.5.(4分)(2014?上海)若实数x,y满足xy=1,则x2+2y2的最小值为_________. 6.(4分)(2014?上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为_________(结果用反三角函数值表示). 7.(4分)(2014?上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是 _________. 8.(4分)(2014?上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=_________.9.(4分)(2014?上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是_________. 10.(4分)(2014?上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_________(结果用最简分数表示). 11.(4分)(2014?上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=_________. 12.(4分)(2014?上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3= _________. 13.(4分)(2014?上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为_________. 14.(4分)(2014?上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上 的Q使得+=,则m的取值范围为_________. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分

高考数学复习专题 基本不等式 (文 精讲)

专题7.3 基本不等式 【核心素养分析】 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】 知识点一 基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2 +b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+ b 2 2 (a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的 算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频 考点一 利用基本不等式求最值 【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .

2014届高考数学总复习(考点引领+技巧点拨)第九章 平面解析几何第11课时 直线与圆锥曲线的综合应用

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第九章 平面解析几何第11课时 直线与圆锥曲线的综 合应用 1. (选修11P 44习题4改编)以双曲线x 24-y 25 =1的中心为顶点,且以该双曲线的右焦点为焦点的拋物线方程是__________. 答案:y 2=12x 解析:双曲线x 24-y 25 =1的中心为O(0,0),该双曲线的右焦点为F(3,0),则拋物线的顶点为(0,0),焦点为(3,0),所以p =6,所以拋物线方程是y 2=12x. 2. 以双曲线-3x 2+y 2=12的焦点为顶点,顶点为焦点的椭圆的方程是________. 答案:x 24+y 216=1 解析:双曲线方程可化为y 212-x 24=1,焦点为(0,±4),顶点为(0,±23).∴ 椭圆的焦点在y 轴上,且a =4,c =23,此时b =2,∴ 椭圆方程为x 24+y 216=1. 3. 若抛物线y 2=2px 的焦点与椭圆x 26+y 22 =1的右焦点重合,则p =________. 答案:4 解析:椭圆x 26+y 22=1的右焦点(2,0)是抛物线y 2=2px 的焦点,所以p 2 =2,p =4. 4. 已知双曲线x 2-y 23 =1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→2PF 2→的最小值为________. 答案:-2 解析:设点P(x ,y),其中x≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).PA 1→2PF 2→=(-1-x ,-y)2(2-x ,-y)=(x +1)(x -2)+y 2=x 2+y 2-x -2= x 2+3(x 2-1)-x -2=4x 2-x -5=4? ????x -182-8116 ,其中x≥1.因此,当x =1时,PA 1→2PF 2→取得最小值-2. 5. 已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P(x 0,y 0)满足x 202 +y 20≤1,则PF 1+PF 2的取值范围为________. 答案:[2,22] 解析:当P 在原点处时,PF 1+PF 2取得最小值2;当P 在椭圆上时,PF 1+PF 2取得最大值22,故PF 1+PF 2的取值范围为[2,22].

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2018年高考数学总复习 基本不等式及其应用

第二节基本不等式及其应用 考纲解读 1. 了解基本不等式错误!未找到引用源。的证明过程. 2. 会用基本不等式解决简单的最大(小)值问题. 3. 利用基本不等式证明不等式. 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题. 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断,求取值范围问题. 本专题知识的考查综合性较强,解答题一般为较难题目,每年分值为58分. 知识点精讲 1. 几个重要的不等式 (1)错误!未找到引用源。 (2)基本不等式:如果错误!未找到引用源。,则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“”). 特例:错误!未找到引用源。同号. (3)其他变形: ①错误!未找到引用源。(沟通两和错误!未找到引用源。与两平方和错误!未找到引用源。的不等关系式) ②错误!未找到引用源。(沟通两积错误!未找到引用源。与两平方和错误!未找到引用源。的不等关系式) ③错误!未找到引用源。(沟通两积错误!未找到引用源。与两和错误!未找到引用源。的不等关系式) ④重要不等式串:错误!未找到引用源。即 调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件). 2. 均值定理 已知错误!未找到引用源。. (1)如果错误!未找到引用源。(定值),则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“=”).即“和为定值,积有最大值”. (2)如果错误!未找到引用源。(定值),则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“=”).即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证. 例7.5“错误!未找到引用源。”是“错误!未找到引用源。”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

2014年高考数学试题(江苏卷)及参考答案

2014年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 参考公式: 圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ . 4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2 个数的乘积为6的概率是 ▲ . 5. 已知函数x y cos =与)2sin(?+=x y (0≤π?<),它 们的图象有一个横坐标为 3 π 的交点,则?的值是 ▲ . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率 分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm. 开始 0←n 1+←n n 202>n 输出n 结束 (第3题) N Y 组距 频率 100 80 90 110 120 130 0.010 0.015 0.020 0.025 0.030 底部周长/cm (第6题) 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求: 1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分。考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

基本不等式-高考数学知识点总结-高考数学真题复习

§7.4 基本不等式 2014高考会这样考 1.利用基本不等式求最值、证明不等式;2.利用基本不等式解决实际问题. 复习备考要这样做 1.注意基本不等式求最值的条件;2.在复习过程中注意转化与化归思想、分类讨论思想的应用. 1. 基本不等式≤ab a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.2. 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)+≥2(a ,b 同号). b a a b (3)ab ≤ 2 (a ,b ∈R ). (a +b 2)(4) ≥2 (a ,b ∈R ). a 2+ b 22 (a +b 2)3. 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为,几何平均数为,基本不等式可叙述为:a +b 2ab 两个正数的算术平均数不小于它们的几何平均数.4. 利用基本不等式求最值问题 已知x >0,y >0,则

(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2.(简记:积定和最p 小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是.(简记:和定积最大)p 2 4[难点正本 疑点清源] 1. 在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为 正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 2. 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用 就是ab ≤ ;≥ (a ,b >0)逆用就是ab ≤ 2 (a ,b >0)等.还要注意“添、 a 2+ b 2 2 a +b 2ab (a +b 2)拆项”技巧和公式等号成立的条件等. 3. 对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +(m >0)的单调性. m x 1. 若x >0,y >0,且x +y =18,则xy 的最大值是________. 答案 81 解析 由于x >0,y >0,则x +y ≥2, xy 所以xy ≤ 2 =81, (x +y 2)当且仅当x =y =9时,xy 取到最大值81. 2. 已知t >0,则函数y = 的最小值为________. t 2-4t +1 t 答案 -2

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

2014年高考理科数学试题(湖南卷)及参考答案

2014年普通高等学校招生全国统一考试(湖南卷) 数学(理工农医类) 一、选择题:本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的 1. 满足 (z i i i z +=为虚数单位)的复数z = A .1122i + B .1122i - C .1122i -+ D .1122 i -- 2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别是123,,,p p p 则 A .123 p p p =< B .231 p p p =< C .132p p p =< D .123p p p == 3.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1,f x g x x x -=++ (1)(1)f g +则= A .-3 B .-1 C .1 D .3 4.5 1(2)2 x y -的展开式中23 x y 的系数是 A .-20 B .-5 C .5 D .20 5.已知命题2 2 :,;:,.p x y x y q x y x y >-<->>若则命题若则在命题 ①p q ∧②p q ∨③()p q ∧?④()p q ?∨中,真命题是 A .①③ B .①④ C .②③ D .②④ 6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 A .[6,2]-- B .[5,1]-- C .[4,5]- D .[3,6]- 7.一块石材表示的几何何的三视图如图2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于 A .1 B .2 C .3 D .4

2014届高考数学知识点总复习教案一元二次不等式及其解法

第2讲 一元二次不等式及其解法 A 级 基础演练 (时间:30分钟 满分:55分) 一、选择题(每小题5分,共20分) 1.(2012·南通二模)已知f (x )=????? x 2 ,x ≥0, -x 2+3x ,x <0, 则不等式f (x )2,因此x <0. 综上,x <4.故f (x )

3.设a >0,不等式-c 0,∴-b +c a 0的解集是 ( ). A .(0,1)∪(2,+∞) B .(-2,1)∪(2,+∞) C .(2,+∞) D .(-2,2) 解析 原不等式等价于??? x 2-2>0,log 2x >0或??? x 2 -2<0, log 2x <0. ∴x >2或00的解集为? ???? -13,12,则不 等式-cx 2+2x -a >0的解集为________. 解析 由ax 2+2x +c >0的解集为? ???? -13,12知a <0,且-13,12为方程ax 2+2x +c =0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=c a ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3) 6.在实数集上定义运算?:x ?y =x (1-y ),若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则实数a 的取值范围是________.

2014届高考数学专题汇编10:三角函数

专题10:三角函数 1.(2012年海淀一模理11)若1tan 2α= ,则cos(2)απ 2 += . 2.(2012年西城一模理5)已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( ) A .2 B .1 C . 12 D .1 4 3.(2012年门头沟一模理4)在ABC ?中,已知4 A π ∠=,3 B π ∠= ,1AB =,则BC 为 ( ) 1 1 4.(2012年东城11校联考理11)在ABC ?中,角,,A B C 所对的边分别为c b a ,,,若 sin A C =, 30=B ,2=b ,则边c = . 5.(2012年房山一模11)已知函数()()?ω+=x x f sin (ω>0, π?<<0)的图象如图所示,则ω=_ _,?=_ _. 6.(2012年密云一模理6) 已知函数sin(),(0,||)2 y x π ω?ω?=+>< 的简图如右上图, 则 ω ? 的值为( ) A. 6π B. 6π C. 3π D. 3π 7.(2012年西城二模理9)在△ABC 中,BC ,AC =,π 3 A =,则 B = _____. 8.(2012年海淀二模理1)若sin cos 0θθ<,则角θ是( ) A .第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第二或第四象限角

x y O π2π 1 -1 9.(2012年朝阳二模理4)在△ABC 中, 2AB = ,3AC = ,0AB AC ?< ,且△ABC 的面积为3 2 ,则BAC ∠等于( ) A .60 或120 B .120 C .150 D .30 或150 10.(2012年昌平二模理9)在?ABC 中,4 ,2,2π ===A b a 那么角C =_________. 11.(2012年东城二模理11)在平面直角坐标系xOy 中,将点 A 绕原点O 逆时针旋转 90到点 B ,那么点B 的坐标为____,若直线OB 的倾斜角为α,则sin2α的值为 . 12.(2012年海淀二模理11)在AB C ?中,若 120=∠A ,5c =,ABC ? 的面积为, 则a = . 13.(2013届北京大兴区一模理科) 函数()cos f x x =( ) A .在ππ (,)22 -上递增 B .在π(,0]2-上递增,在π(0,)2上递减 C .在ππ (,)22 -上递减 D .在π(,0]2-上递减,在π(0,)2上递增 14.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知函数sin() y A x ω?=+的图象如图所示,则该函数的解析式可能..是( ) A .41 sin(2)55y x =+ B .31 sin(2)25y x = + C .441 sin()555 y x =- D .441 sin()555 y x =+ 15.(北京市丰台区2013届高三上学期期末考试 数学理试题)函数2sin()y x ω?=+在一个 周期内的图象如图所示,则此函数的解析式可能是( ) A .2sin(2)4 y x π =- B .2sin(2)4y x π =+ C .32sin()8 y x π =+ D .72sin()216 x y π =+ 16.(2013届北京大兴区一模理科)函数 f x x x ()s i nc o s =的最大值是 。

2014届高考数学知识点总复习教案基本不等式

第4讲基本不等式 A级基础演练(时间:30分钟满分:55分) 一、选择题(每小题5分,共20分) 1.(2013·宁波模拟)若a>0,b>0,且a+2b-2=0,则ab的最大值为(). A.1 2B.1 C.2 D.4 解析∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2.当且仅当 a=1,b=1 2时等号成立. 答案 A 2.函数y=x2+2 x-1 (x>1)的最小值是(). A.23+2 B.23-2 C.2 3 D.2 解析∵x>1,∴x-1>0, ∴y=x2+2 x-1 = x2-2x+1+2(x-1)+3 x-1 =(x-1)2+2(x-1)+3 x-1 =(x-1)+ 3 x-1 +2≥23+2. 当且仅当x-1= 3 x-1 ,即x=3+1时取等号. 答案 A 3.(2012·陕西)小王从甲地到乙地的时速分别为a和b(a

∵a a 2-a 2a +b =0,∴v >a . 答案 A 4.(2013·杭州模拟)设a >b >c >0,则2a 2 +1ab +1 a (a - b ) -10ac +25c 2的最小值是 ( ) . A .2 B .4 C .2 5 D .5 解析 2a 2+1 ab +1 a (a - b ) -10ac +25c 2 =2a 2+a -b +b ab (a -b )-10ac +25c 2 =2a 2+1 b (a -b ) -10ac +25c 2 ≥2a 2+1 ? ??? ?b +a -b 22-10ac +25c 2(b =a -b 时取“=”) =2a 2+4a 2-10ac +25c 2=? ? ???a 2+4a 2+(a -5c )2≥4 ? ????当且仅当a =2,b =22,c =2 5时取“=”,故选B. 答案 B 二、填空题(每小题5分,共10分) 5.(2011·浙江)设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 依题意有(2x +y )2 =1+3xy =1+32×2x ×y ≤1+32·? ?? ??2x +y 22,得5 8(2x +y )2≤1,即|2x +y |≤2105.当且仅当2x =y =105时,2x +y 取最大值210 5.

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

2014届高三高考数学最后一讲

2014届高考数学最后一讲 一、主要考点: (一)、填空题 1.复数,2.集合(简易逻辑),3.双曲线与抛物线,4.统计,5.概率,6.流程图,7.立体几何,8.导数,9.三角,10.向量,11.数列,12.解析几何,13.不等式,14.杂题(函数) 填空题的能力题体现在考试说明中的C级(8个)以及B级(36个)中,近几年,主要体现在:导数,三角计算,解析几何(直线与圆),平面向量(基本定理与数量积),不等式(线性规划、基本不等式或函数),数列综合,函数综合等. (二)、解答题 15.三角与向量,16.立体几何,17.应用题,18.解析几何,19.数列,20.函数综合二:时间安排(参考意见) 填空题(用时40分钟左右):1—6题防止犯低级错误,平均用时在2分钟左右。 7—12题防止犯运算错误,平均用时在2.5分钟左右。13—14防止犯耗时错误,平均用时在5分钟左右。 解答题(用时在85分钟左右):15—16题防止犯运算和表述错误,平均用时10分钟左右。17—18题防止犯审题和建模错误,平均用时在15分钟左右。19—20题防止犯第一问会而不做和以后的耗时错误,平均用时在16分钟左右。 三:题型分析 (一)填空题:解题的基本方法一般有:①直接求解法;②数形结合法;③特殊化法(特殊值法、特殊函数法、特殊角法、特殊数列法、图形特殊位置法、特殊点法、特殊方程法、特殊模型法);④整体代换法;⑤类比、归纳法;⑥图表法等. (二)解答题:是高考数学试卷中的一类重要题型,这些题涵盖了中学数学的主要内容,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点,解答题综合考查学生的运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力,分值占90分,主要分六块:三角函数(或与平面向量交汇)、立体几何、应用问题、函数与导数(或与不等式交汇)、数列(或与不等式交汇)、解析几何(或与平面向量交汇).从历年高考题看综合题这些题型的命制都呈现出显著的特点和解题规律,从阅卷中发现考生“会而得不全分”的现象大有人在,针对以上情况,最后几天时间里,能不断回顾之前做过的典型题目,从知识、方法等层面进行反思做到触类旁通,举一反三;考场上能将平时所掌握的知识、学到的方法体现在你的解题中,将你会做的做对,相信你的高考数学一定能取得满意成绩!!! 四:特别提醒: (1)对会做的题目:要解决“会而不对,对而不全”这个老大难的问题,要特别注意表达准确,考虑周密,书写规范,关键步骤清晰,防止分段扣分.解题步骤一定要按教科书要求,避免因“对而不全”失分. (2)对不会做的题目:对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得分.我们说,有什么样的解题策略,就有什么样的得分策略.对此可以采取以下策略: ①缺步解答:如遇到一个不会做的问题,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步.特别是那些解题层次明显的题目,每一步演算到得分点时都可以得分,最后结论虽然未得出,但分数却已过半. ②跳步解答:解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问作“已知”,先做第(2)问,跳一步再解答. ③辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

2014届高考数学(人教版)总复习提高分冲刺模拟卷6.5推理

第6章 第5节 课时作业 一、选择题 1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0?a =b”类比推出“若a ,b ∈C ,则a -b =0?a =b”; ②“若a ,b ,c ,d ∈R ,则复数a +bi =c +di ?a =c ,b =d”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2?a =c ,b =d”; ③“若a ,b ∈R ,则a -b>0?a>b”类比推出“若a ,b ∈C ,则a -b>0?a>b”.其中类比结论正确的个数是( ) A .0 B .1 C .2 D .3 【解析】 ①②正确,③错误,因为复数不能比较大小,如a =5+6i ,b =4+6i ,虽然满足a -b =1>0,但复数a 与b 不能比较大小. 【答案】 C 2.观察下列各式: 1=12, 2+3+4=32, 3+4+5+6+7=52, 4+5+6+7+8+9+10=72, …, 可以得出的一般结论是( ) A .n +(n +1)+(n +2)+…+(3n -2)=n2 B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1) 2 C .n +(n +1)+(n +2)+…+(3n -1)=n2 D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)2 【解析】 可以发现:第一个式子的第一个数是1,第二个式子的第一个数是2,…,故第n 个式子的第一个数是n ;第一个式子中有1个数相加,第二个式子中有3个数相加,…,故第n 个式子中有2n -1个数相加;第一个式子的结果是1的平方,第二个式子的结果是3的平方,…,第n 个式子应该是2n -1的平方,故可以得到n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 【答案】 B 3.“三角函数是周期函数,y =tan x ,x ∈-π2,π2是三角函数,所以y =tan x ,x ∈-π2,π 2是周期函数.”在以上演绎推理中,下列说法正确的是( ) A .推理完全正确 B .大前提不正确 C .小前提不正确 D .推理形式不正确 【解析】 y =tan x ,x ∈-π2,π 2只是三角函数的一部分,并不能代表一般的三角函数,所以小

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

相关文档 最新文档