文档库 最新最全的文档下载
当前位置:文档库 › 因子分析步骤范例

因子分析步骤范例

因子分析步骤范例
因子分析步骤范例

因子分析步骤

范例来源:语言研究应用SPSS软件实例大全

某对外汉语培训中心对在该中心学习的外国留学生进行了一项汉语学习动机问卷调查。使用李克特五级式量表。第一级为最不喜欢,第五级为最喜欢。随机抽取18人参加调查。其中—个项目调查的是“内在动机”或称“内在兴趣动机”,了解留学生对汉语语言、文化的兴迎与喜爱。该项目分为六个问题。整理数据如下

一、建立数据集

二、打开Factor analysis主对话框

1. Analyze(分析)—Deta reduction (数据化简)--factor (因素)

2. 所有数据放入variable框内

三、进入Factor analysis主对话框右边的子对话框

(一) Descriptive子对话框

1. 选择Univariables(单变量描述统计量):会输出每个变量的平均数、标准差和观测量

2.选择Initial solution(初步结果):会输出原始分析结果:公因子方差、协方差、各因子的特征值、所占总方差的百分比、累计百分比。这是默认系统,应该保留。

3. Correlation Matrix(相关矩阵)围栏,选项含可选择的相关指标与相关检验:常常选择(1)(4)

(1)coeffieient (相关系数),列出各变量间的相关系数矩阵。

(2)Significance level(显著性水平),列出各变量单侧检验的P值。

(3)Determinant(行列式)选项,输出相关系数矩阵的行列式。

(4)KMO and Barlett’s tests of sphericity (开塞-梅耶-欧巴金和巴莱特球性检验)选项(K-Kaiser, M-Meyer, O-Olkin): 列出球性检验的结果,显示因素模型是否合理。

(5)Inverse (逆矩阵):列出相关系数的逆矩阵。

(6)Reproduced (在生相关矩阵),列出因子分析后估计的相关矩阵与残差。

(7)Anti(逆影像):列出包括相关系数的负值,包括方差的负值的逆影像方差矩阵。

(二)Extraction(提取因子) 子对话框。

1. Method:七种方法区别不大。用默认Principal components (主成分分析法):从解释变量的变异出发,使变异的方差能够被主成分所解释,主要用于获得初始因子的结果。

2. Analyze围栏:

(1)Correlation matrix(变量间相关矩阵)。保留默认。

(2)Covariance matrix (变量间协方差矩阵)

3. Display围栏(输出结果)

(1) a. Unrotated factor solution(显示未经旋转变化的因子提取结果)

(2)Scree plot(碎石图):横轴为因子序号,纵轴表示特征值大小。该图按特征值大小依次排列因子,可以看出哪些是主要因子。Maximum Iterations for convergence (收敛最大迭代次数)

4. Extract (设定公因子提取标准)围栏:

(1)Eigenvalues over (以特征大于莫数值为提取标准)。保留默认选择系统默认值1.

(2)Number of factors(自提取因子的数量)。保留默认选择值1.

(3)Maximum iterations for convergence (收敛最大迭代次数),保留默认选择25.

4. Rotation (旋转)

(1)method. 选择Varimatrix(正交旋转法)

(2)Display(输出结果显示)

a. Rotated solution (旋转解法):正交旋转,输出旋转后的模式矩阵和因子转换矩阵。

b. Loading plot (载荷散点图:三维图:坐标值为因子值,各个变量以三点形式分布其中,可以直观了解变量与因子之间的关系。

5. Scores(因子得分)。保留默认。

6. Options,保留默认。保留默认。

确认,得到以下表格:

FACTOR

/VARIABLES 我喜欢汉语本身我对汉语学习有天生的兴趣我非常欣赏汉语的书法我喜爱汉语歌曲我喜欢汉语戏剧我喜欢汉语文学我喜欢汉语文

/MISSING LISTWISE

/ANALYSIS 我喜欢汉语本身我对汉语学习有天生的兴趣我非常欣赏汉语的书法我喜爱汉语歌曲我喜欢汉语戏剧我喜欢汉语文学我喜欢汉语文化

/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION

/PLOT ROTATION

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/SAVE REG(ALL)

/METHOD=CORRELATION.

图表结果说明:

Correlation Matrix(相关矩阵表):该表给出了这七个变量的相关系数矩阵。它们的相关系数并不怎么高,有的还是负相关。可以进行分析,不必考虑会有严重的共线性问题。

表2 汉语学习动机调查因子分析开塞-梅耶-欧巴金和巴莱特球性检验表

图表说明:

KMO and Barlett’s tests of sphericity (开塞-梅耶-欧巴金和巴莱特球性检验)表:该表专门用来判断对所涉及的的数据能否进行因子分析。

第一行是检验变量间偏相关的性的KMO统计值,为0.591,接近0.52,说明这七个变量是相关的。根据统计学家的观点,如果KMO值小于0.5,就不宜进行因子分析。我们这一数值略大于他们提出的临界值,可以进行因子分析。

第二行为Bartlett's(巴莱特)检验卡方值。该值为35.249,自由度为21度,显著者为0.027,他们之间有共同因素存在,适合进行因子分析。这一结论与我们观察KMO值得出的理解是完全一致的。看

表3 Communalities (公因子方差表)

表格说明

Communalities (公因子方差表):表中给出了各变量中信息分别被提出的比例。提取比例最高的是汉语歌曲0.874,最低的是汉语戏剧0.652.

表4 Total Variance Explained (能解释的方差比例表),也称主成份列表。

图表说明

Total Variance Explained (能解释的方差比例表),也称主成份列表,是一个非常重要的表格。一个因子所解释的方差比例越高,这个因子包含原有变量信息的量就越多。第一个成分的初始特征值为2.231,能解释的方差比例为31.621%,第二个与第三个分别为25.6%和21.4%。其余四个成分都小于1,说明这几个成分的解释力度还不如直接引入原变量大。这七个变量只需要提取出头三个成分即可。Extraction Method: Principal Component Analysis (提取方法,主成份分析表)

表4 Scree Plot 碎石图

图表说明:

Scree Plot 碎石图中,从第三个成分以后的特征值就降得非常低。第三个成分就是这一图形的“拐点”。这一之前是主要因子,这一之后是次要因子。因此,这一碎石图用直观的方法向我们显示,在我们这一实例中,只需要提取三个主要成分就行了。

表5 Component Matrix 成分矩阵表

图表说明:

Component Matrix 成分矩阵表,表中列出未使用旋转方法时使用因子能解释的各个变量的比例(各变量的信息被主成份提取了多少)。

Extraction Method: Principal Component Analysis. 提取方法:主成份分析法

a. 3 components extracted. 提取了三个主成份

表6 Rotated Component Matrix a旋转后成分矩阵表

图表说明:

表中列出了使用旋转方法后因子能解释的各个变量的比例。对比表5可以看出,旋转后,原先较大的比例变得更大,较小的比例则变得更小。

Extraction Method: Principal Component Analysis:提取方法:主要成分分析法

Rotation Method: Varimax with Kaiser Normalization:旋转方法:开塞正态方差最大变异法

表7 Component Transformation Matrix 成分转换矩阵表

图表说明

Component Transformation Matrix 成分转换矩阵表,用来说明旋转前后主成份间的系数对应关系。Extraction Method: Principal Component Analysis:提取方法:主要成分分析法

Rotation Method: Varimax with Kaiser Normalization:旋转方法:开塞正态方差最大变异法

表8 Component Plot Rotated Space (旋转后的三维主成份图)

图表说明

Component Plot Rotated Space (旋转后的三维主成份图),从图中可见,我们的七个变量并没有在一个方位上,因此提取一个主成份并不能解释大部分信息。这就是系统提取了三个主成分的原因。

层次分析法步骤.doc

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措

因素分析法

因素分析法的相关知识 一、概念:因素分析法也称因素替代法。它是对某个综合财务指标或经济指标的变动原因按其内在的影响因素,计算和确定各个因素对这一综合指标发生变动的影响程度的一种分析方法 二、适用范围:适用于多种因素构成的综合指标的分析,如:成本、利润、资金收益率等指标。 三、前提条件:当有若干因素对分析对象发生影响作用时,假定其他各个因素都无变化,顺序确定每一因素单独变化所产生的影响,是在具有乘积关系的指数体系中进行 四、一般程序: 1. 要根据经济指标形成的过程,找出该项经济指标受哪些因素变动的影响; 2. 要根据经济指标与各影响因素的内在关系,建立起分析计算公式; 3. 按照一定顺序依次进行因素替换,以计算各因素变动对经济指标的影响程度。计算某一因素变动对经济指标影响程度时,假定其他因素不变,通过每次替代后计算的结果与上一次替代后计算的结果相比较,以逐次确定各个因素的影响程度。 4. 验证各因素影响程度计算的正确性。各因素影响程度的代数和应等于指标变动总差异。 五、主要作用:因素分析是从数量方面研究现象动态变动中受各种因素变动的影响程度,它主要借助于指数体系来分析社会经济现象变动中各种因素变动发生作用的影响程度。 六、方法:因素分析法有连环替代法和差额计算法两种。连环替代法是将影响某项经济指标的各个因素列成算式,按照一定顺序替代各个因素,以确定各个因素变动对该项经济指标变动的影响程度的一种分析方法。分析计算时以计划指标为基础,用各个因素的实际数依次替代计划数,每次替代后实际数就被保留下来,直到所有的因素都变为实际数。差额分析法是根据各个因素实际数同计划数的差异,分别确定各该因素的变动对某项经济指标的影响程度的一种分析方法。分析计算时也要按一定顺序逐项以实际数与计划数进行对比。差额分析法实际上是连环替代法的另一种形式,即直接用实际数与计划数之间的差额来计算各因素变动对指标的影响程度。这一方法较连环替代法更为简便。 差额分析法在发电企业燃煤成本分析中的Excel应用的具体操作实例 众所周知,在目前,电价由国家控制的情况下燃煤成本的管理好坏决定着发电企业的存亡问题,发电企业的燃煤成本占发电总成本的比例不低于60%,在当前煤价持续长涨的趋势下,这个比例将会更高,因此必须加大对燃煤成本的分析力度,从内部挖潜,加强管理,才是企业生存之本。而影响燃煤成本的因素是多方面的,各方面又相互关联,完全依靠手工相对因难,而各相关因素看起来也不直观,借助于Excel,可以实现自动化分析。下面通过具体的实例来说明Excel在燃煤成本分析中的具体应用。有关资料数据如下表所示。 M电厂2009年1月原煤成本分析表 A B C D 1 项目计划实际差异

主成分分析、因子分析步骤

主成分分析、因子分析步骤不同 点 主成分分析因子分析 概念具有相关关系的p 个变量,经过线性 组合后成为k个不 相关的新变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量 主要目标减少变量个数,以 较少的主成分来解 释原有变量间的大 部分变异,适合于 数据简化 找寻变量间的内部相关性 及潜在的共同因素,适合做 数据结构检测 强调重点强调的是解释数据 变异的能力,以方 差为导向,使方差 达到最大 强调的是变量之间的相关 性,以协方差为导向,关心 每个变量与其他变量共同 享有部分的大小 最终结果应用形成一个或数个总 指标变量 反映变量间潜在或观察不 到的因素 变异解释程度它将所有的变量的 变异都考虑在内, 因而没有误差项 只考虑每一题与其他题目 共同享有的变异,因而有误 差项,叫独特因素

是否需要旋转主成分分析作综合 指标用, 不需要旋转 因子分析需要经过旋转才 能对因子作命名与解释 是否有假设 只是对数据作变 换,故不需要假设 因子分析对资料要求需符 合许多假设,如果假设条件 不符,则因子分析的结果将 受到质疑 因子分析 1【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置 KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是 否适合作因子分析)。 (2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法 分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25. (3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋 转解”。 (4)因子得分(Scores)对话框设置

单因素方差分析的计算步骤

单因素方差分析的计算 步骤 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、 单因素方差分析的计算步骤 假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。结果如下表: m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设() m j n i a N x j ij ,2,1;,2,1,,~2==σ。 可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。因此检验因素A 的各水平之间是否有显着的差异,就相当于检验: μ====m a a a H 210:或者 具体的分析检验步骤是: (一)计算水平均值 令j x 表示第j 种水平的样本均值, 式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数 (二)计算离差平方和 在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。 首先,总离差平方和,用SST 代表,则, 其中,n x x ij ∑∑=它反映了离差平方和的总体情况。 其次,组内离差平方和,用SSE 表示,其计算公式为: 其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。 最后,组间平方和,用SSA 表示,SSA 的计算公式为:

因子分析的基本概念和步骤

因子分析的基本概念和步骤 一、因子分析的意义 在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在: 计算量的问题 由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。 变量间的相关性问题 收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。 因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点: ↓因子个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓因子能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓因子之间的线性关系并不显著 由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。 ↓因子具有命名解释性 通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解

SPSS探索性因子分析的过程

SPSS探索性因子分析的过程

现要对远程学习者对教育技术资源和使用情况进行了解,设计一个李克特量表,如下图所示: 一. 因子分析的定义

在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测。因此研究者往往设计出多个观测变量,从多个变量收集大量数据以便进行分析寻找规律。多变量大样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的难度。更重要的是许多变量之间存在一定的相关关系,导致了信息的重叠现象,从而增加了问题分析的复杂性。 因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因子。因子分析就是用少数几个因子来描述许多指标之间的联系,以较少几个因子反应原资料的大部分信息的统计方法。 二. 数学模型 Z i i1F1 i2^ i3F3 …im F m U i 乙为第i个变量的标准化分数;(标准分是一种由原始分推导出来的相对地位量数,它是用来说明原始分在所属的那批分数中的相对位置的。) F m为共同因子; m为所有变量共同因子的数目; U为变量Z的唯一因素; i个变量与第im为因子负荷。(也叫因子载荷,统计意义就是第 m个公共因子的相关系数,它反映了第i个变量在第m个公共因子上的相对重要性也就是第m个共同因子对第i个变量的解释程

度。) 因子分析的理想情况,在于个别因子负荷im不是很大就是很小,这样每个变量才能与较少的共同因子产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则U彼此间不能有关联存在。 所谓的因子负荷就是因子结构中原始变量与因子分析时抽取出共同因子的相关,即在各个因子变量不相关的情况下,因子负荷.就是第i个原有变量和第m个因子变量间的相关系数,也就是Z在第m个共同因子变量上的相对重要性,因此,.绝对值越大则公共因子和原有变量关系越强。在因子分析中有两个重要指针:一为“共同性”,二为“特征值”。 所为共同性,也称变量共同度或者公共方差,就是每个变量在每个共同因子的负荷量的平方总和(一横列中所有因子负荷的的平方和),也就是个别变量可以被共同因子解释的变异量百分比,这个值是个别变量与共同因子间多元相关的平方。从共同性的大小可以判断这个原始变量与共同因子间的关系程度。如果大部分变量的共同度都高于0.8,则说明提取出的共同因子已经基本反映了各原始变量80%以上的信息,仅有较少的信息丢失,因子分析效果较好。而各变量的唯一因素就是1减掉该变量共同性的值,就是原有变量不能

方法:因子分析法

因子分析基础理论知识 1 概念 因子分析(Factor analysis ):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 主成分分析(Principal component analysis ):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。 两者关系:主成分分析(PCA )和因子分析(FA )是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。 2 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显着的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显着的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 3 类型 根据研究对象的不同,把因子分析分为R 型和Q 型两种。 当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。 但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。 4分析原理 假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 : ?????? ????? ???=np n n p p x x x x x x x x x X ΛM M M M ΛΛ212222111211

主成分、因子分析步骤

主成分分析、因子分析步骤 不同点主成分分析因子分析 概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新 变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量 主要目标减少变量个数,以较少的主成分 来解释原有变量间的大部分变 异,适合于数据简化 找寻变量间的部相关性及潜在的共同因素,适 合做数据结构检测 强调重点强调的是解释数据变异的能力, 以方差为导向,使方差达到最大 强调的是变量之间的相关性,以协方差为导向, 关心每个变量与其他变量共同享有部分的大小 最终结 果应用 形成一个或数个总指标变量反映变量间潜在或观察不到的因素 变异解释程度它将所有的变量的变异都考虑 在,因而没有误差项 只考虑每一题与其他题目共同享有的变异,因 而有误差项,叫独特因素 是否需要旋转主成分分析作综合指标用, 不需要旋转 因子分析需要经过旋转才能对因子作命名与解 释 是否有假设只是对数据作变换,故不需要假 设 因子分析对资料要求需符合许多假设,如果假 设条件不符,则因子分析的结果将受到质疑 因子分析 1 【分析】→【降维】→【因子分析】 (1)描述性统计量(Descriptives)对话框设置 KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法 分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25. (3)因子旋转(Rotation)对话框设置 因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋转解”。

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

主成分、因子分析步骤

主成分分析、因子分析步骤 不同点 主成分分析 因子分析 概念 具有相关关系的p 个变量,经过线性组合后成为k 个不相关的新变量 将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量 主要 目标 减少变量个数,以较少的主成分来解释原有变量间的大部分变 异,适合于数据简化 找寻变量间的内部相关性及潜在的共同因素, 适合做数据结构检测 强调 重点 强调的是解释数据变异的能力,以方差为导向,使方差达到最大 强调的是变量之间的相关性,以协方差为导向,关心每个变量与其他变量共同享有部分的大小 最终结果应用 形成一个或数个总指标变量 反映变量间潜在或观察不到的因素 变异解释程度 它将所有的变量的变异都考虑 在内,因而没有误差项 只考虑每一题与其他题目共同享有的变异,因 而有误差项,叫独特因素 是否需要旋转 主成分分析作综合指标用, 不需要旋转 因子分析需要经过旋转才能对因子作命名与解 释 是否有假设 只是对数据作变换,故不需要假 设 因子分析对资料要求需符合许多假设,如果假设条件不符,则因子分析的结果将受到质疑 因子分析 1 【分析】→【降维】→【因子分析】 (1)描述性统计量(Descriptives )对话框设置 KMO 和Bartlett 的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法 分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25. (3)因子旋转(Rotation)对话框设置 因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋转解”。

关键因素分析法

关键因素分析法---层次分析法介绍及应用案例 一.方法介绍 层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。它是一种定性和定量相结合的、系统化、层次化的分析方法。例如,如果打算去旅游有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。 二.使用步骤 1.第一步, 通过分析, 确定所给定问题要达到的总目标, 实现目标的准则, 可供选择的措施或方案。在这一过程中, 要广泛收集信息, 注意把握问题的主要因素, 做到不重不漏。 2.第二步,建立层次结构模型。在深入分析实际问题的基础上,将有关的各个 因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。 3.第三步,构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影 响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。 4.第四步,计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征 根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

因子分析方法

因子分析法 1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 因子分析法与其他一些多元统计方法的区别: 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到。所以这种区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

研究方法-因子分析

因子分析 前言 因子分析方法的实际作用已为广大实际工作所证实。但并非每次运用它都是成功的。有时,特别是针对多维变量所做的因子分析,难以有清晰的解释。因此,有的实际工作者开始怀疑因子分析方法的科学性。但同时,不同的人针对相同的数据所做的因子分析。解释其结果却又不尽相同。有的人通过因子分析能给出问题近乎完美的答案。于是,又有人称因子分析是一种“艺术”因子分析因此也变得神秘起来了。因子分析到底是艺术还是科学呢? 因子分析的统计思想 在实践中,往往收集到的数据是多指标的。各指标之间通常不是独立的,或多或少存在着一定程度的关系。因子分析的目的是通过少数几个变量去描述这众多变量见的协方差关系。这少数几个变量是潜在的,但不能观察的。我们称之为因子。 1以相关为基础 在所收集到的众多变量中,必定存在某些是高度相关的,把这些高度相关的变量组成各组。这样同一组内变量具有高度相关,而与其他的各组变量却只有较小的相关或是不相关。这些组内高度相关的变量可以设想是一个共同的东西在影响着它们而导致高度相关。这个共同的东西称之为公共因子。如前所述,这些公共因子是潜在但不能观测的。 2通过协方差来实现 因子分析是以相关为基础,从协方差或相关阵开始把大部分变异归结为少数几个公共因子所为。把剩余的部分称为特殊因子。 3作用:寻求基本结构、数据化简 通过因子分析,可以用几个较小的有实际意义的因子来反映原来数据的基

本结构。例如: 例1:Linden 对二战以来奥运会十项全能比赛的得分作了研究,将100 米、跳远、铅球、跳高、400米、110米栏、铁饼、撑杆跳、标枪、1500米的成绩归结到短跑速度、爆发性臂力、爆发性腿力、耐力四个方面。 例2:公司面试,从简历、外貌、专业能力、讨人喜欢的能力、自信 心、洞察力、诚实、理解力等15个方面进行打分,最后归结外申请者的外露能力、受欢迎程度、工作经验、专业能力这四个方面 通过因子分析,可以用少数几个因子代替原来的变量做回归分析÷据类分析等。 正交因子模型分析 1模型的直观描述 既然因子分析的目的是用少数几个称之为公共因子的因子去描述众多变量间协方差关系。巡着这一思路,针对每一个具体的变量。去掉共同的东西剩余的变异部分由两个部分组成,一个是公共因子的贡献的部分,另一个就是剩余的部分,即特殊因子。须提醒一下,这里特殊因子与公共因子不应相关。直观上,若公共因子与特殊因子相关则说明特殊因子中还可以抽出共同的东西到公共部分。由此可见模型中公共因子与特殊因子是不相关的。 2正交因子模型的数学表达式 考虑p 个成分的随机观测向量x 。因子模型要求线性相依,其中有m 个公共 因子f1 f 2…..fm 和特殊因子 p εεεΛ21,组成。具体如下: 1 ) 1)((???+= p m m P AF X ε 如果fi 与fj 相互独立(i ≠j ),则称该因子模型为正交因子模型。正交因子模型具有如下 是简单相关数 为特殊因子为公因子,其中pm i i p m pm p p p m m m m a f f a f a f a x f a f a f a x f a f a f a x ,2211222221212112121111εεεε???????+++=+++=+++=ΛM ΛΛ

因素分析法

因素分析法 1、因素分析法。又称经验分析法,是一种定性分析方法。该方法主要指根据价值工程对象选择应考虑的各种因素,凭借分析人员的知识和经验集体研究确定选择对象。 步骤 1、确定分析对象,利用比较分析法将分析对象与选择的标准进行比较,确定差异数. 2、确定分析对象的影响因素. 3、确定分析对象与影响因素之间的数量关系,建立函数关系式. 4、按一定的顺序依次代入各影响因素,确定各因素对分析对象的影响程度. ,某一个财务指标及有关因素的关系由如下式子构成:实际指标:Po=Ao×Bo×Co;标准指标:Ps=As×Bs×Cs;实际与标准的总差异为Po-Ps,P G 这一总差异同时受到A、B、C三个因素的影响,它们各自的影响程度可分别由以下式子计算求得: A因素变动的影响:(Ao-As)×Bs×Cs; B因素变动的影响;Ao×(Bo-Bs)×Cs; C因素变动的影响:Ao×Bo×(Co-Cs). 最后,可以将以上三大因素各自的影响数相加就应该等于总差异Po-Ps. 简单来说就是保持两个不变,其中一个换成实际数,看与标准数的差距

又称经验分析法。分析人员凭经验确定价值工程活动对象的方法。通常先由熟悉产品性能和生产过程的专业人员,对产品存在的问题、影响因素和可能改进的方法提出意见,然后通过集体讨论确定分 析对象;也可在专家评分法的基础上进行综合分析。特点是简单易行,节约时间,但缺乏确切依据,精确度不高。 3、变动成本差异分析的基本公式——因素分析法(差额分析法) 1.基本公式 1)用量差异=(实际用量-实际产量下标准用量)×标准价格2)价格差异=实际用量×(实际价格-标准价格) 2.注意问题 1)分析顺序:(顺序性、连环性)数量因素在先、价格因素在后 2)标准用量——实际产量下标准用量=实际产量×用量标准 (三)直接材料成本差异的计算分析 1.直接材料用量差异=(实际用量-实际产量下标准用量)×标准价格 1)有生产部门原因,也有非生产部门原因。如产品设计结构、原料质量、工人的技术熟练程度、废品率的高低; 2)责任需要通过具体分析才能确定,但主要往往应由生产部门承担。 2.直接材料价格差异=实际用量×(实际价格-标准价格) =实际材料成本-实际用量×标准价格

主成分、因子分析步骤

主成分、因子分析步骤 主成分分析、因子分析步骤 不同点主成分分析因子分析概念具有相关关系的p个变量,经过将原数据中多个可能相关的变量综合成少数几 线性组合后成为k个不相关的新个不相关的可反映原始变量的绝大多数信息的变量综合变量 主要减少变量个数,以较少的主成分找寻变量间的内部相关性及潜在的共同因素,目标来解释原有变量间的大部分变适合做数据结构检测 异,适合于数据简化 强调强调的是解释数据变异的能力,强调的是变量之间的相关性,以协方差为导向,重点以方差为导向,使方差达到最大关心每个变量与其他变量共同享有部分的大小最终结形成一个或数个总指标变量反映变量间潜在或观察不到的因素果应用 变异解它将所有的变量的变异都考虑只考虑每一题与其他题目共同享有的变异,因释程度在内,因而没有误差项而有误差项,叫独特因素是否需主成分分析作综合指标用,因子分析需要经过旋转才能对因子作命名与解要旋转不需要旋转释 是否有只是对数据作变换,故不需要假因子分析对资料要求需符合许多假设,如果假假设设设条件不符,则因子分析的结果将受到质疑 因子分析 1 【分析】?【降维】?【因子分析】

(1)描述性统计量(Descriptives)对话框设置 KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。 (2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25.

(3)因子旋转(Rotation)对话框设置 因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋转解”。 (4)因子得分(Scores)对话框设置 “保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。

SPSS探索性因子分析的过程

S P S S探索性因子分析的 过程 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

现要对远程学习者对教育技术资源和使用情况进行了解,设计一个李克特量表,如下图所示: 一.因子分析的定义 在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测。因此研究者往往设计出多个观测变量,从多个变量收集大量数据以便进行分析寻找规律。多变量大样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的难度。更重要的是许多变量之间存在一定的相关关系,导致了信息的重叠现象,从而增加了问题分析的复杂性。 因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因子。因子分析就是用少数几个因子来描述许多指标之间的联系,以较少几个因子反应原资料的大部分信息的统计方法。 二.数学模型 Z为第i个变量的标准化分数;(标准分是一种由原始分出来的,它是用来说明原始分i 在所属的那批分数中的相对位置的。)

m F 为共同因子; m 为所有变量共同因子的数目; i U 为变量i Z 的唯一因素; im α为因子负荷。(也叫因子载荷,统计意义就是第i 个变量与第m 个公共因子的相关 系数,它反映了第i 个变量在第m 个公共因子上的相对重要性也就是第m 个共同因子对第i 个变量的解释程度。) 因子分析的理想情况,在于个别因子负荷im α不是很大就是很小,这样每个变量才能与较少的共同因子产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则i U 彼此间不能有关联存在。 所谓的因子负荷就是因子结构中原始变量与因子分析时抽取出共同因子的相关,即在各个因子变量不相关的情况下,因子负荷im α就是第i 个原有变量和第m 个因子变量间的相关系数,也就是i Z 在第m 个共同因子变量上的相对重要性,因此,im α绝对值越大则公共因子和原有变量关系越强。在因子分析中有两个重要指针:一为“共同性”,二为“特征值”。 所为共同性,也称变量共同度或者公共方差,就是每个变量在每个共同因子的负荷量的平方总和(一横列中所有因子负荷的的平方和),也就是个别变量可以被共同因子解释的变异量百分比,这个值是个别变量与共同因子间多元相关的平方。从共同性的大小可以判断这个原始变量与共同因子间的关系程度。如果大部分变量的共同度都高于,则说明提取出的共同因子已经基本反映了各原始变量80%以上的信息,仅有较少的信息丢失,因子分析效果较好。而各变量的唯一因素就是1减掉该变量共同性的值,就是原有变量不能被因子变量所能解释的部分。 所谓特征值,是每个变量在某一共同因子的因子负荷的平方总和(一直行所有因子

层次分析法的计算步骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵 任何系统分析都以一定的信息为基础。AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。 当上、下层之间关系被确定之后,需确定与上层某元素(目标A或某个准则Z)相联系的下层各元素在上层元素Z之中所占的比重。 假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。 表8.16 判断距阵 Ak B1 B2 …Bn

因子分析方法——多变量分析

因子分析方法——多变量分析 因子分析(Factor Analysis)是一种非常有用的多变量分析技术。我想说,你要想学好多变量分析技术,一是:理解多元回归分析,二是:理解因子分析;这是多变量分析技术的两个出发点。为什么这么说呢?多元回归分析是掌握有因变量影响关系的重点,无论什么分析,只要研究的变量有Y,也就是因变量,一般都是回归思想,无非就是Y的测量尺度不同,选择不同的变形方法。而因子分析则是研究没有因变量和自变量之分的一组变量X1 X2 X3 ... Xn之间的关系。 在市场研究中,我们经常要测量消费者的消费行为、态度、信仰和价值观,当然最重要的是测量消费者的消费行为和态度!我们往往采用一组态度量表进行测量,用1-5打分或1-9打分,经常提到的李克特量表。

上面的数据是我们为了测量消费者的生活方式或者价值观什么的,选择了24个语句,让消费者进行评估,同意还是不同意,像我还是不像,赞成还是不赞成等等,用1-9打分; 因子分析有探索性因子分析和证实性因子分析之分,这里我们主要讨论探索性因子分析!证实性因子分析主要采用SEM结构方程式来解决。 从探索性因子分析角度看: ?一种非常实用的多元统计分析方法; ?一种探索性变量分析技术; ?分析多变量相互依赖关系的方法; ?数据和变量的消减技术; ?其它细分技术的预处理过程; 我们为什么要用因子分析呢? 首先,24个可测量的观测变量之间的存在相互依赖关系,并且我们确信某些观测变量指示了潜在的结构-因子,也就是存在潜在的因子;而潜在的因子是不可观测的,例如:真实的满意度水平,购买的倾向性、收获、态度、经济地位、忠诚度、促销、广告效果、品牌形象等,所以,我们必须从多个角度或维度去测量,比如多维度测量购买产品的动机、消费习惯、生活态度和方式等; 这样,一组量表,有太多的变量,我们希望能够消减变量,用一个新的、更小的由原始变量集组合成的新变量集作进一步分析。这就是因子分析的本质,所以在SPSS软件中,因子分析方法归类在消减变量菜单下。新的变量集能够更好的说明问题,利于简化和解释问题。 当然,因子分析也往往是预处理技术,例如,在市场研究中我们要进行市场细分研究,往往采用一组量表测量消费者,首先,通过因子分析得到消减变量后的正交的因子(概念),然后利用因子进行聚类分析,而不再用原来的测量变量了!我想这是市场研究中因子分析的主要应用! 其实,你可以想象,例如在多元回归分析中,如果多个自变量存在相关性,如果可以用因子分析,得到几个不相关的变量(因子),再进行回归,就解决了自变量共线性问题。(理论上是这样的,但市场研究很少这么操作!) 下面是要理解的因子分析的基本概念: ?一种简化数据的技术。 ?探索性因子分析和证实性因子分析

相关文档