文档库 最新最全的文档下载
当前位置:文档库 › 区域CORS系统的定位精度分析

区域CORS系统的定位精度分析

区域CORS系统的定位精度分析
区域CORS系统的定位精度分析

徕卡测量新技术应用专栏

区域CORS系统的定位精度分析

江苏省测绘工程院丁玉平许友清

一、引言

区域CORS系统是在一定区域内建立多个连续运行参考站,对该地区构成网状覆盖,并以这些参考站的一个或多个为基准,计算和播发误差改正信息,对该地区的卫星定位用户进行实时改正。近年来,随着CORS系统相关技术的发展及良好的应用前景,国内外掀起了CORS系统建设的高潮。江苏省全球导航卫星连续运行参考站综合服务系统(JSCORS)是国内首个建成的省域CORS系统,通过建设72个连续运行参考站,从而建立一个高精度、高时空分辨率、高效率的全球导航卫星系统综合信息服务网。系统可提供多种精度、多种模式的导航定位服务。系统建成后,其定位的精度、稳定性及可靠性是系统运行过程中最为关键的问题。因此,本文结合JSCORS系统,在简要分析影响CORS系统定位精度的因素的基础上,对系统定位的精度和稳定性进行探讨。

二、影响JSCORS系统定位精度的因素

JSCORS系统的定位精度除受到信号传播误差、轨道误差、卫星钟差、接收机钟差以及多路径效应的影响外,还受到定位参考框架的选择、参考站坐标解算过程中IGS跟踪站的选取,以及流动站在参考站网中的位置、观测时段及卫星分布情况、系统定位算法的优劣等影响。

对于影响CORS系统定位的部分误差,可以利用差分技术进行消除或削弱。双差残余误差有卫星轨道误差、电离层延迟、对流层延迟、多路径效应及观测噪声等。其中,卫星轨道误差、电离层延迟和对流层延迟经差分后被减小。不少文献在对这些误差的减弱或消除方面作了大量的研究。

CORS系统的定位算法中主要有VRS、MAC、FKP和CBI等。JSCORS系统的定位算法采用Leica 的主辅站技术,是对各参考站的观测数据进行综合处理后再播发改正信息给流动站,所以流动站和参考站网之间的相对位置关系以及所采用的插值算法对流动站的定位精度也有一定的影响。为使流动站坐标信息更具有实用性,JSCORS的坐标系统采用江苏省C级网框架下的WGS-84大地坐标系(ITRF93框架,1996.35历元),选择ITRF93框架相比ITRF2005框架对精度有一定的损失。另外,定位解算中使用地方坐标系,需要以一定的转换参数将WGS-84坐标转换到所需的地方坐标系下,而转换参数受参考站的点位误差、坐标转换计算方法等因素的影响,导致流动站的定位精度因选取转换参数的不同会造成在同一测站点定位精度的不同。

三、JSCORS系统定位精度分析

JSCORS提供实时定位和事后精密定位两种定位服务。实时定位是利用流动站每10个历元的观测数据解算得到流动站坐标;事后精密定位是利用流动站的观测数据和参考站的原始观测数据的联合解算得到流动站坐标。为检验系统的定位精度、稳定性及可靠性,系统定位精度检验采用坐标比较的方式进行,即将已知坐标作为真值,利用观测值与真值的差值进行分析。

1.实时定位精度检验

实时定位采用静态检测的方法,利用JSCORS 的网络RTK功能来实现实时定位,JSCORS系统将流动站的观测数据每10个历元进行一次解算以获得流动站的坐标值,并求解流动站坐标的内、外符合精度(已知点是基于江苏省C级网下的WGS-84坐标)。实时定位精度检验选取周围观测环境良好(四周开阔无遮挡、无电磁波信号干扰等)的点作为试验点。观测时段为上午9:00—12:00、下午15:00—17:50,测试结果如表1所示。

从表1可知,各试验点N、E方向的内符合精度

68测绘通报2011年第3期

优于?1cm,H方向精度较N、E方向的低,基本在?4cm以内;外符合精度在N、E、H三个方向的分布与内符合精度相似,在N、E方向上优于?5cm,但H方向精度较差。试验结果符合江苏省测绘局发布的JSCORS工程技术指标。

表1实时定位试验点内外符合精度统计表m

点号

内符合精度外符合精度

N方向E方向H方向N方向E方向H方向

10.00680.00500.0190.00880.01440.0936 20.00700.00700.0170.0200.02640.1703 30.00600.00600.0210.00930.01610.1193 40.00540.00870.0310.00580.00870.7405 50.0020.0020.0080.0390.0190.063

2.事后定位精度检验

JSCORS系统可以提供精密的坐标参考,系统将流动站的观测数据与参考站的原始数据进行事后联合数据处理,以获得高精度的流动站的坐标信息。为检验JSCORS系统事后定位解算的精度,采用2009年1月1日全天的连续观测数据,分别采用1h、2h、4h、6h、8h、10h、12h、24h的观测数据进行联合解算。星历采用IGS最终精密星历,并对参考站坐标实施强约束(0.001m),各时段解算的流动站的坐标与已知值的差值及其精度分别如图1、图2所示

图1流动站坐标差值与观测时段之间的关系图

(精密星历

)

图2流动站坐标精度与观测时段之间的关系图

(精密星历)

由图1、图2可知,随着参与计算的观测时间(即参与计算的观测数据量)的延长,流动站的定位精度也随之变高。当参与解算的时间超过1h时,流动站坐标在三个方向上的差值均小于1cm,定位精度优于?5mm;当参与解算的时间超过2h时,流动站坐标在三个方向上的差值均小于6mm,定位精度优于?2mm,且解算精度趋于平缓。

四、结束语

本文通过对CORS系统定位精度的影响因素分析,采用静态检测的方式对JSCORS系统覆盖区域内的流动站的定位精度、稳定性进行了检验。检验结果表明,JSCORS系统流动站实时定位,N、E方向的内符合精度较高,一般在?(0.2 1)cm之间,H 方向精度较N、E方向的低,一般在?(1 4)cm之间。实时定位服务可应用于车辆导航、施工放样及大比例尺测图等方面。JSCORS系统定位事后解算的结果表明,参数解算的时间超过1h的精度即可达到?5mm,系统定位精度随观测时间的延长有明显的提高;当参与解算的时间超过?2h后,精度提高已趋于平缓。事后解算服务可应用于大地测量、城市地面沉降监测等方面。

(本专栏由徕卡测量系统和本刊编辑部共同主办)

78

2011年第3期丁玉平,等:区域CORS系统的定位精度分析

GNSS精密单点定位基本原理及应用

GNSS精密单点定位基本原理及应用 【摘要】文中详细介绍了GN SS精密单点定位技术的基本原理及在各领域中的应用前景,供国土测绘界同行参考。 【关键词】GN SS;精密单点定位;大地测量 1.前言 精密单点定位是指利用全球若干地面跟踪站的GNSS观测数据计算出的精密卫星轨道和卫星钟差,对单台GNSS接收机所采集的相位和伪距观测值进行定位解算,利用这种预报的GNSS卫星的精密星历或事后的精密星历作为已知坐标起算数据;同时利用某种方式得到的精密卫星钟差来替代用户GNSS定位观测值方程中的卫星钟差参数;用户利用单台GNSS双频双码接收机的观测数据在数千万平方公里乃至全球范围内的任意位置都可以2- 4dm级的精度,进行实时动态定位或2- 4cm级的精度进行较快速的静态定位,精密单点定位技术是实现全球精密实时动态定位与导航的关键技术,也是GNSS 定位方面的前沿研究方向。 2.精密单点定位基本原理 单点定位是利用卫星星历和一台接收机确定待定点在地固坐标系中绝对位置的方法,其优点是一台接收机单独定位,观测组织和实施方便,数据处理简单。缺点是精度主要受系统性偏差(卫星轨道、卫星钟差、大气传播延迟等)的影响,定位精度低。应用领域:低精度导航、资源普查、军事等。对于单点定位的几何描述,保持GNSS卫星钟同GNSS接收机钟同步;GNSS卫星和接收机同时产生相同的信号;采用相关技术获得信号传播时间;GNSS卫星钟和GNSS接收机钟难以保持严格同步,用相关技术获得的信号传播时间含有卫星钟和接收机钟同步误差的影响。单点定位虽然是只需要一台接收机即可,但是单点定位的结果受卫星星历误差、卫星钟差以及卫星信号传播过程中的大气延迟误差的影响较为显著,故定位精度一般较差。 精密单点定位为技术针对单点定位中的影响,采用了精密星历和精密卫星钟差、高精度的载波相位观测值以及较严密的数学模型的技术,如用户利用单台GNSS 双频双码接收机的观测数据在数千万平方公里乃至全球范围内,点位平面位置精度可达1- 3cm,高程精度可达2- 4cm,实时定位的精度可达分米级。 利用上述推导的观测模型,即可采用卡尔曼滤波的方法或最小二乘法进行非差精密单点定位计算,在解算时,位置参数在静态情况下可以作为常未知数处理;在未发生周跳或修复周跳的情况下,整周未知数当作常数处理,在发生周跳的情况下,整周未知数当作一个新的常数参数进行处理;由于接收机钟较不稳定,且存在着明显的随机抖动,因此将接收机钟差参数当作白噪声处理;而对流层影响变化较为平缓,可以先利用Saastamonen或其他模型改正,再利用随机游走的方

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

精密单点定位软件rtklib的静态定位测试

精密单点定位软件RTKLIB 的静态定位测试 摘要:阐述了RTKLIB 精密单点定位中使用的数据预处理方法以及电离层、对流层、频间偏差等误差项的采用的改正方法,设计了精密单点定位的解算策略并配置了RTKLIB 软件界面中的关键参数,采用事后、快速、超快速等四种星历及钟差产品对北京站单天观测值进行解算。结果表明四种种产品单天误差均在厘米级,其中igs 和igr 误差较小。 1 引言 精密单点定位(PPP ),即非差相位单点定位,提出于上世纪七十年代子午卫星时代,九十年代中期国际IGS 组织开始向全球用户提供精密星历和精密钟差产品,为精密单点定位的发展提供了良好的机会。由于其具有单台接收机实现高精度定位、定位不受作用距离限制、作业机动灵活、成本低效率高、应用广泛等优点,越来越受到人们的重视,相关学者与研究机构也对其进行了深入的研究,取得了一系列成果。美国喷气推进实验室的Zumberge 等研究人员利用GIPSY 软件和IGS 星历,取得了单天解静态定位精度1到2cm 左右,动态2.3到3.5 dm 左右的实验结果(1997) ;加拿大Calgary 大学的高扬博士对PPP 的理论和算法进行了深入的研究,并开发了相关软件;武汉大学叶世榕博士在其博士论文中对精密单点定位进行了详细的研究(2002) ;武汉大学的张小红教授经过多年理论研究,开发出了精度和可靠性已达国际先进水平的高精度PPP 商业化软件TriP ;武汉大学卫星导航定位中心自主研发的PANDA 软件在精密定轨和PPP 方面也具有很高的精度;此外还有本文使用的日本东京海洋大学的Tomoji Takasu 研发的RTKLIB 软件。 本文简要介绍了精密单点定位的理论基础,采用RTKLIB 软件对IGS 北京站观测数据进行静态精密单点定位实验,利用不同星历钟差产品对其定位精度进行了详细的分析,并将解算结果与准确值对比,为使用该软件提供了参考。 2 精密单点定位数学模型 GPS 伪距观测值观测方程如式(1)所示,GPS 载波相位观测值如式(2)所示。 )()(/i i ion trop orb i P d d d dT dt c P ερ++++-+= (1) )()(/i i i i ion trop orb i N d d d dT dt c Φ++-++++=Φελρ (2) 式中,i P 、i Φ分别为伪距观测值和载波相位观测值;ρ为GPS 接收机和卫星间的几

定位模块在高速高精度定位系统中的应用

随着现代工业的发展,对于产品制造加工所要求的精度越来越高,特别是在电子工业中,所要求生产加工的精度要求很高,在现代日常生活中,许多日用电子产品的更新换代特别快,所用的研制开发、生产周期特别短,而在此环节中,生产环节就显得尤为重要,所以就对生产设备的要求也就越来越高,生产设备要能够适应多种不同产品的生产,特别是新产品的生产适应能力,还要能够保证产品的精度。在TFT生产中,在基板完成电路印刷等一系列的工作以后有一道工序,就是基板的切割,因为在前道生产根据设备和工艺的要求是一块比较大的基板,在一块大的基板上可能有好多块小的基板组成,这根据制造面板本身的用途来定。如手机面板,目前在生产的一块大的基板上有30到104块不等的小的基板组成,这还要根据手机面板的尺寸来定,如图1所示。经过切割以后,变成一片一片小的基板,如图2所示。可以看出,基板由两层玻璃组合而成,在两层之间有印刷电路,而且在切割的时候上下不是在一条线上,而是成一个阶梯状,在TFT面的A处有印刷电路端子,切断过程中绝对不能碰伤端子。在如图3中所示,A-F中5个尺寸精度要全部达到±0.1mm,并且切断后在基板的边缘不能有毛边,这样就要在切断过程中要很好的控制压力、切入量,根据不同玻璃材质就要设定不同的压力和切入量,另外切断的步骤也是比较重要的,一般都采用的步骤是:①CF面切; ②TFT面剖; ③TFT面切; ④CF面剖。现代划线设备都是采用的多把刀(以前都是单刀作业),一般在5~7把刀,此系统中采用了5把刀,在此系统中刀的切入量和左右运动都采用伺服系统来控制,而且都采用了高速运动,这样能够大大提高工作的效率。 图1:手机面板基本组成

(精密单点定位)

简介 精密单点定位--precise point positioning(PPP) 所谓的精密单点定位指的是利用全球若干地面跟踪站的GPS 观测数据计算出的精密卫星轨道和卫星钟差, 对单台GPS 接收机所采集的相位和伪距观测值进行定位解算。利用这种预报的GPS 卫星的精密星历或事后的精密星历作为已知坐标起算数据; 同时利用某种方式得到的精密卫星钟差来替代用户GPS 定位观测值方程中的卫星钟差参数; 用户利用单台GPS 双频双码接收机的观测数据在数千万平方公里乃至全球范围内的任意位置都可以2- 4dm级的精度, 进行实时动态定位或2- 4cm级的精度进行较快速的静态定位, 精密单点定位技术 是实现全球精密实时动态定位与导航的关键技术,也是GPS 定位方面的前沿研究方向。 编辑本段精密单点定位基本原理 GPS 精密单点定位一般采用单台双频GPS 接收机, 利用IGS 提供的精密星历和卫星钟差,基于载波相位观测值进行的高精度定位。所解算出来的坐标和使用的IGS 精密星历的坐标框架即ITRF 框架系列一致, 而不是常用的WGS- 84 坐标系统下的坐标,因此IGS 精密星历与GPS 广播星历所对应的参考框架不同。 编辑本段密单点定位的主要误差及其改正模型 在精密单点定位中, 影响其定位结果的主要的误差包括:与卫星有关的误差(卫星钟差、卫星轨道误差、相对论效应);与接收机和测站有关的误差(接收机钟差、接收机天线相位误差、地球潮汐、地球自转等);与信号传播有关的误差(对流层延迟误差、电离层延迟误差和多路径效应)。由于精密单点定位没有使用双差分观测值, 所有很多的误差没有消除或削弱,所以必须组成各项误差估计方程来消除粗差。有两种方法来解决:a.对于可以精确模型化的误差,采用模型改正。b.对于不可以精确模型化的误差,加入参数估计或者使用组合观测值。如双频观测值组合,消除电离层延迟;不同类型观测值的组合,不但消除电离层延迟,也消除了卫星钟差、接收机钟差;不同类型的单频观测值之间的线性组合消除了伪距测量的噪声,当然观测时间要足够的长,才能保证精度。 什么是PPP(精密单点定位)? (2009-08-02 13:58:03) GPS从投入使用以来,其相对定位的定位方式发展得很快,从最先的码相对定位到现在的RTK,使GPS的定位精度不断升高。而绝对定位即单点定位发展得相对缓慢,传统的GPS 单点定位是利用测码伪距观测值以及由广播星历所提供的卫星轨道参数和卫星钟改正数进行的。其优点是数据采集和数据处理较为方便、自由、简单, 用户在任一时刻只需用一台GPS 接收机就能获得WGS284 坐标系中的三维坐标。但由于伪距观测值的精度一般为数分米至数米;用广播星历所求得的卫星位置的误差可达数米至数十米, 卫星钟改正数的误差为±20

GPS单点定位精度分析

GPS单点定位精度分析 摘要:GPS单点定位因其体积小灵敏度高等优势在旅游、测绘等众多领域得到了广泛的应用,但测量精度低是其进一步推广的瓶颈。本文对GPS单点定位时,误差经过多长时间才会稳定在一个较小的范围内进行了研究。 关键词:GPS单点定位;手持GPS接收机;等精度观测值的最或然值人们在GPS应用过程中,一般都会采用相对定位的作业方式,以便于通过组差消除接收机钟差、卫星钟差等公共误差以及削弱对流层延迟、电离层延迟等相关性比较强的误差影响,以达到提高精度的目的。这种作业方式不需要考虑复杂的误差模型,具有定位精度高、解算模型简单等优势,但也有不足之处,比如作业时必须有两台以上的接收机,其中至少需要一台放在已知站点上观测,这样就影响了作业效率,增加了作业的成本。除此之外,随着距离的增加,电离层延迟、对流层延迟等误差相关性减弱,这样只有延长观测的时间,才能达到预期的效果和精度。因此,许多研究人员已经开始对单点定位进行研究。 1数据采集 本次实验所采用的工具为GARMINlegend传奇手持GPS接收机。选择四周空旷,易于接收GPS的信号的实验场地,可以减少多路径误差的影响。 本次实验的时间选在5月11日、5月13日、5月15日、5月17日、5月19日这5天下午15:00-16:00,实验日期的天气都是晴天少云,有助于提高GPS定位的精度。特征点选取后,在五天内利用手持GPS接收机,每天下午15:00-16:00对特征点进行1小时的连续观测。 2数据处理 由于条件的限制,没能得到特征点的真实坐标,由此只能用数学方法以求出特征点的平均坐标,这里使用最或然值法求特征点的坐标,即把手持GPS 接收机测得的特征点的坐标依次记录,并算出特征点的这些测量结果的经度最或然值、纬度最或然值和海拔高度最或然值。 为更好的提高GPS单点定位的精度,可以采取外部数据的处理方法即定位数据后处理的方法来提高手持GPS的定位精度。手持GPS接收机定位时,每输出一次定位数据仅需一秒钟,因此在持续的连续测量时,就可以测得大量的GPS 定位数据,定位数据后处理正是依据大量的测量数据,利用数学方法对这些测量数据进行处理,用以提高GPS 的定位精度。我们采用的最或然值法是一种简便可行的方法。 (1)出N、E、H的坐标值随测量时间的变化图。由于数据变化都在后两位数,为了数据处理简便我们支取后两位数进行处理,最后再加上前面的数据(如N37°23.280′、E117°58.966′我们分别只取了80和66)。利用Excel将数据依测量

高精度车载定位系统方案设计

高精度车载定位系统

目录 第1章系统概述 (2) 1.1系统建设背景 (2) 1.2系统实现目标 (4) 第2章高精度车载定位系统解决方案 (5) 2.1系统架构 (5) 第3章实施本方案需考虑要素 (10)

第1章系统概述 1.1 系统建设背景 随着国家信息化程度的提高及计算机网络和通信技术的飞速发展,电子政务、电子商务、数字城市、数字省区和数字地球的工程化和现实化,需要采集多种实时地理空间数据,因此,中国发展CORS系统的紧迫性和必要性越来越突出。几年来,国内不同行业已经陆续建立了一些专业性的卫星定位连续运行网络,目前,为满足国民经济建设信息化的需要,一大批城市、省区和行业正在筹划建立类似的连续运行网络系统,一个连续运行参考站网络系统的建设高潮正在到来。 广东省深圳市建立了我国第一个连续运行参考站系统(SZCORS),目前已开始全面的测量应用。全国部分省、市也已初步建成或正在建立类似的省、市级CORS系统,如:广东省、江苏省、北京、天津、上海、广州、东莞、成都、武汉、昆明、重庆等。 四川地震局建立的CDCORS,已经运行三年多,原本主要目标是用来做监控四川地区地震灾害,但是通过对其潜在功能的挖掘,在GPS大地测量方面开发利用,通过授权拨号登录,对外开放网络使用权,实现用户GPS实时高精度差分定位,取得了一定的收益。 建立CORS的必要性和意义“空间数据基础设施”是信息社会、知识经济时代的必备的基础设施。城市连续运行参考站系统(CORS)是“空间数据基础设施”最为重要的组成部分,可以获取各类空间的位置、时间信息及其相关的动态变化。通过建设若干永久性连续运行的GPS基准站,提供国际通用各式的基准站站点坐标和GPS测量数据,以满足各类不同行业用户对精度定位,快速和实时定位、导航的要求,及时地满足城市规划、国土测绘、地籍管理、城乡建设、环境监测、防灾减灾、交通监控,矿山测量等多种现代化信息化管理的社会要求。建立CORS的必要性和意义主要体现在以下几个方面: 1、CORS的建立可以大大提高测绘精度、速度与效率, 降低测绘劳动强度和成本, 省去测量标志保护与修复的费用, 节省各项测绘工程实施过程中约30% 的控制测量费用。由于城市建设速度加快,对GPS-C、D、E级控制点破坏较大,一般在5-8年需重新布设,至于在路面的图根控制更不用说,一二年就基本没有了,各测绘单位不是花大量的人力重新布设,就是仍以支站方式,这不但保证不了精度,还造成了人力物力财力的大量浪费。随着CORS基站的建设和连续运行,就形成了一个以永久基站为控制点的网络。所以,可以利

实时精密单点定位

实时精密单点定位(PPP)是可能通过实时卫星轨道和时钟校正的可用性广播星历,播放的实时校正(BCS)。实时BCS是目前在全球以及区域的参考帧。在这方面的贡献,PPP使用这些全球性和区域性BCS的性能分析1983北美基准(NAD83)。为当前区域NAD83 BC 方法确定的局限性和协调的差异导致了与传统方法相比,显示全球BC。虽然偏差所造成的不同的参考帧的使用被证明是亚厘米级,它也表明,他们可以通过PPP算法或区域BC方法改性降低或消除。分析了三种不同的变体进行PPP,单一频率的电离层的自由变体,双频电离层自由变体,和一个单一频率的电离层修正变异。 精密单点定位(PPP)是一个全球定位系统(GPS)处理非差伪距和载波相位测量从一个独立的GPS接收机的高精度计算分米或厘米在全世界遍地开花的位置定位方法(藏伯格等人。1997;2001 ovstedal库巴和荷鲁克斯;2002)。近年来,服务已经开发了允许高精度星历数据可实时用户(代码2006;库巴泰特里等人2003。2005烘烤2010)。这样的情况了,并将继续创造,PPP应用范围广(荷鲁克斯等人。2004、高2008;比斯纳)。这种服务的重要例子是实时(RT)的GPS卫星的轨道和时钟校正广播星历(Sohne等人。2008。这些RT 广播改正(BCS)用户提供精确的轨道和时钟校正所需的PPP。BCS在全球参考框架不仅可以(GRF)也在一组选定的区域参考框架(RRFS),如北美基准(NAD)1983(NAD83)(BKG 2010;Sohne 2010)。在这方面的贡献,这些NAD83区域BCS使用(微构件系统)的单和双频率PPP是第一时间分析及其与更传统的全球BCS的使用性能(GBC上将)的比较。 在微构件系统的理论基础是认为当处理独立的GPS数据,获得用户的位置的参考框架定义的参考系统,实现了卫星位置。因此,在文献中已GRF RRF卫星轨迹的转换是一个有用的替代GRF RRF的站坐标变换因为它有可能简化访问RRF允许用户在一个全局数据区域专门工作表明(克蕾默等人。2000;库巴2002;克蕾默2006;Schwarz 1989)。 本文的组织如下。能够评估作用的参考帧播放的PPP,NAD83简要描述和国际地球参考框架(ITRF),和他们的椭球坐标的差异,在随后的部分了。然后,GBC和红细胞的方法,单和双频率NAD83 PPP协议的分析和比较。目前的RBC 方法确定的局限性和协调的差异导致他们对GBC的方法示出。其次,它是如何修改PPP算法或红细胞的方法,这两种方法之间的一致性恢复。由于确定的PPP RBC方法的局限性是固有的作为一个结果,不同的参考帧的使用,这方面的贡献的结果是在更换NAD83 2018提供了一个新的几何数据,删除不同意ITRF计划的支持(NOAA 2008)。 对PPP的BCS是理解中的重要作用的正确使用的参考帧播放。因此,本节中的ITRF转换NAD83,其链接,这种改造在位置相关的椭球坐标的两帧之间的差异的影响作了简要的介绍。 北美基准1983 所采用的数据和参考在美国和加拿大的空间定位系统是NAD83。详细的介绍了它的定义,建立,和进化,读者可以参考施瓦茨(1989),斯奈和索勒(2000a,b),索勒和斯奈(2004),克雷默等人。(2000),与克雷默(2006)。NAD83首次实现的,这在很大程度上依赖卫星多普勒观测,由美国国家大地测量1986通过(NGS)。它被称为NAD83(1986)。自那时以来,NAD经历了又一个五实现在美国,最后一个是NAD83(cors96)。此实现,正是联系在一起的NAD83 ITRF框架,它是一个地心坐标系统的最佳实现(鲍彻和altamimi 1996)。为了这

高精度人员定位系统

从移动互联到物联网,位置是一个基础的不可或缺的信息,但是从精细化的行业应用需求来说,只有更高精度的定位信息才能带来更高的价值,人们可以更加精确地知道事物所处的位置,知道人员具体位置在哪儿,更好的管理企业、人员或物资。 一、系统简介 本系统采用物联专网进行数据传输,室内利用蓝牙定位技术,室外利用GPS定位技术,通过人员位置管理系统、视频监控系统对生产现场进行全天候的实时监控,做到全面可视化管理,并能及时发现险情。 二、系统特点 1、通信距离是传统技术的10倍,可以实现10-20公里范围内覆盖。 2、功耗是传统无线技术的1/10。 3、信号穿透性强,适用于环境复杂的应用场景。 4、抗干扰能力强。 5、大规模组建私有物联网络。 三、系统功能 1、实时定位及轨迹跟踪

每个进入指定区域内的人员都会随身佩戴定位卡或定位手环,在管理平台的电子地图上会实时显示每个人员的动态,并且可以对某个人员进行轨迹跟踪。 2、历史轨迹动态回放 管理平台上会保存每个人员的运动轨迹,若有突发情况发生,想查看某人的历史轨迹,可通过选择时间段及人员信息进行查看。 3、一键报警&视频联动 每个人员佩戴的电子定位标签上都配有一键报警按钮,若遇到紧急情况,可通过报警按钮进行求救。管理平台会收到求救信息,并联动视频监控画面,管理员可立即通过视频监控画面查看现场情况,派救援人员前去现场处理。 常州市场景信息科技有限公司是一家成立于2015年,自主研发室内外高精度人、物、车定位物联网产品和工业企业安全生产信息化管理平台,致力于打造以智慧工厂、智慧园区、智慧医疗、智慧工地、智慧城市为核心的五大智慧体系,为客户提供优质的整体解决方案。

精密单点定位技术及其应用

精密单点定位技术及其应用 摘要:GPS 精密单点定位技术是目前GPS 研究领域的热点之一。文中先简要介绍了精密单点定位的数学模型、数据处理总体思路。探讨了精密单点定位技术的定位原理及误差来源, 并比较了精密单点定位与RTK, 展望了精密单点定位技术在城市建设中的应用。 关键词:精密单点定位;解算过程;误差源;应用 1.前言 精密单点定位是利用全球若干地面跟踪站的GPS观测数据计算出的精密卫星轨道和卫星钟差, 对单台GPS 接收机所采集的相位和伪距观测值进行定位解算。利用这种预报的GPS 卫星的精密星历或事后的精密星历作为已知坐标起算数据;同时利用某种方式得到的精密卫星钟差来替代用户GPS 定位观测值方程中的卫星钟差参数;用户利用单台GPS双频双码接收机的观测数据在数千万平方公里乃至全球范围内的任意位置都可以2- 4dm级的精度, 进行实时动态定位或2- 4cm级的精度进行较快速的静态定位, 精密单点定位技术是实现全球精密实时动态定位与导航的关键技术,也是GPS 定位方面的前沿研究方向。 2 精密单点定位基本原理 GPS 精密单点定位一般采用单台双频GPS 接收机, 利用IGS 提供的精密星历和卫星钟差,基于载波相位观测值进行的高精度定位。所解算出来的坐标和使用的IGS 精密星历的坐标框架即ITRF 框架系列一致, 而不是常用的WGS- 84 坐标系统下的坐标,因此IGS 精密星历与GPS 广播星历所对应的参考框架不同。 2.1 ITRF 参考框架 ITRF 是国际协议地球参考系(ITRS)的具体体现,ITRF 的构成是基于VLBI、LLR、SLR、GPS 和DORIS 等空间大地测量技术和观测数据, 由IERS 中心局IERS CB 分析得到一组全球的站坐标和速度场。IERS 中心局每年将全球跟踪站的观测数据进行综合处理和分析, 得到一个ITRF 框架,并以IERS 年报和IERS 年报和 IERS 技术备忘录的形式发布。ITRF 的定义是通过对框架的定向、原点、尺度和框架时间演变基准的明确定义来实现。不同时期ITRF 框架之间的四个基准分量定义是不同的,存在很小的系统性的差异,当然这些差异可以通过7个参数表示。 2.2 精密单点定位数学模型

北斗高精度定位技术的运用实践研究

龙源期刊网 https://www.wendangku.net/doc/b912159760.html, 北斗高精度定位技术的运用实践研究 作者:胡娅莉 来源:《电脑知识与技术》2016年第33期 摘要:现代列车运行系统需要通过实时位置信息定位来实现控制可能,而我国自主研发的北斗卫星系统就能实现针对列车的高精度定位技术,加强列车运行定位结果的可靠性,为列车高速稳定运行提高安全指数。本文主要研究了基于北斗与GPS双模卫星系统的列车高精度定位方法及其相关技术理论实践过程。 关键词:北斗定位;GPS;高精度;双模卫星系统;加权完好算法 中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)33-0214-02 北斗卫星导航系统是我国自主研发并独立运行的全球卫星导航系统,它目前已经基本无缝覆盖我国本土及周边地区,在水利防汛、交通运输、森林防火、军事防卫领域都有应用,具有极高的全境范围导航定位可用性。到2020年为止,我国计划建成服务范围覆盖全球的新一代北斗导航系统。 1 关于列车定位 1)列车定位概述 列车定位的精确性与安全可靠性决定了其运行控制系统的稳定,实现了列车的高速运行效率。考虑到现如今铁路环境越来越复杂,针对它的接收卫星数量呈现几何式分布且要求较高,所以应该采用北斗卫星系统配合GPS实现双模双点定位来满足列车轨道占用识别高精度需求。从技术角度讲,两大系统都属于码分多址,都能独立应用,二者相结合在定位精度与完备性方面表现更好,所以文中会给出基于两大系统的双模卫星高精度单点定位算法,增加系统接收可见卫星数量,并改善它们的几何分布。同时也要采用加权自主完好性监测功能来剔除可能存在的故障卫星,进一步提升列车定位的精度与可靠性。 2)北斗与GPS双模卫星系统的定位方式分析 目前在我国,针对列车的北斗卫星设置分布还偏少,所以在观测条件较差的环境中定位列车还存在很大局限性,因此本文选择北斗卫星配合基于原始观测数据的GPS系统,实现双模卫星高精度单点定位目的。从技术层面来看,北斗卫星与GPS观测数据系统在双模组合定位过程中会统一坐标及时间系统,同时考量两定位系统的卫星码偏差异同,所以首先要对其坐标系统实施统一校正。具体来说,一般北斗卫星所采用的都是CGCS2000坐标系,而GPS则采用的是WGS84坐标系统,将两坐标系统在原点、尺度与定向方面统一定义,并设置二者的椭球常数为[a、f、GM、ω]。在这里,扁率[f]是存在微小差异的,这种所产生的坐标差异主要是同一点在两个坐标系在参考椭球扁率差异时所形成的,它的具体转换方式如下:

低成本高精度的定位技术-UWB定位.docx

低成本的高精度定位技术-UWB定位 除了全球定位系统(GPS)在导航和室外环境的应用定位以外,人们对室内定位、短距离定位等应用不甚了解。随着各式各样的建筑的建立人们在室内的时间是室外的4倍,室内定位的需求也越来越大。 未来无线定位技术的趋势是室内定位与室外定位相结合,实现无缝的、精确的定位。现有的网络技术还不能完全满足这个要求,而UWB技术由于功耗低、抗多径效果好、安全性高、系统复杂度低、定位精度极高等优点,在众多无线定位技术中脱颖而出。 UWB定位实现原理: 超宽带(Ultra Wide-Band,UWB)UWB定位是一种新型的无线通信技术。该技术采用TDOA(到达时间差原理),利用UWB技术测得定位标签相对于两个不同定位基站之间无线电信号传播的时间差,从而得出定位标签相对于四组定位基站的距离差。 使用TDOA技术不需要定位标签与定位基站之间进行往复通信,只需要定位标签只发射或只接收UWB信号,故能做到更高的定位动态和定位容量。 UWB定位特点: 1.定位基站之间使用无线同步,减少施工成本 2.网络简单,部署规划成本极低,自恢复能力强 3.可选多种基站定位方式,定位标签续航时间最短超过一个月。具有电量监测效用,定位基站电量不足时及时提醒充电 4.终端实时显示位置信息,实现导航效用,容量无限大 5.可通过移动通信网络实现远程位置跟踪 6.可应用于复杂的工业现场,以最优性价比实现了较好的效果

UWB定位的应用可以为哪些行业带来改变? 工业制造: UWB定位系统可以实时记录显示工人位置信息,实现自动考勤,提高员工出勤率;通过跟踪监测人员、物资、设备,来保障物资及工人的安全、减少人工管理成本。 医院、养老院: 老人或病人,由于生活自理能力差,且自我判断和保护能力不足,容易迷失方向,遇到危险时也很难实现自救和求助。 通过UWB定位技术能够有效对老人和医院病人可以实时的跟踪定位,及时处理应急情况,为他们的生命健康安全和日常生活提供有力保障,同时减轻工作人员的压力。 司法监狱: 监狱安全管理一直是备受关注的问题,通过UWB定位技术如何杜绝监狱犯人管理漏洞、降低监管执法风险呢? 运用UWB定位技术能够很好监管:实时掌握人员的实时位置、人数清点、监狱犯人腕带防拆报警、电子围栏、聚众分析、行动轨迹跟踪、回放、摄像联动警报等,能够很大程度的降低监管执法的风险,防止意外事故的发生。 隧道: 隧道施工过程中作业现场点多面广,安全管控难度大。运用UWB定位可以提供的集风险管控、人员管理、实时显示、应急救援等效用的智慧监

精密单点定位

精密单点定位PPP 精密单点定位(precise point positioning ,缩写PPP ),指的是利用全球若干地面跟踪站的GPS 观测数据计算出的精密卫星轨道和卫星钟差, 对单台GPS 接收机所采集的相位和伪距观测值进行定位解算。在卫星导航应用之中,GPS 作为定位的意义越来越重要,不论是军事上还是工程等方面上,导航定位的研究依然是一个不老的研究主题。精密单点定位更是导航定位中的一个很值得研究的问题。 PPP 根本上讲属于单点定位范畴,那么单点定位又是怎样进行测量定位的呢?单点定位是利用卫星星历和一台接收机确定待定点在地固坐标系中绝对位置的方法,其优点:一台接收机单独定位,观测组织和实施方便,数据处理简单;缺点:精度主要受系统性偏差(卫星轨道、卫星钟差、大气传播延迟等)的影响,定位精度低。应用领域:低精度导航、资源普查、军事等。对于单点定位的几何描述,三个站星距离,作三个球面三个球面两两相交于两点,如下图所示: 站星距离的测定:保持GPS 卫星钟同GPS 接收机钟同步;GPS 卫星和接收机同时产生相同的信号;采用相关技术获得信号传播时间;GPS 卫星钟和GPS 接收机钟难以保持严格同步,用相关技术获得的信号传播时间含有卫星钟和接收机钟同步误差的影响。单点定位虽然是只需要一台接收机即可,但是单点定位的结果受卫星星历误差、卫星钟差以及卫星信号传播过程中的大气延迟误差的影响较为显著,故定位精度一般较差。PPP 针对单点定位中的影响,采用了精密星历和精密卫星钟差、高精度的载波相位观测值以及较严密的数学模型的技术,如用户利用单台GPS 双频双码接收机的观测数据在数千万平方公里乃至全球范围内,点位平面位置精度可达1~3cm ,高程精度可达2~4cm ,实时定位的精度可达分米级。 精密单点定位的数学模型,对于伪距: (S R i i ion trop t t x V V c V c V ρ=--+?-?0()()()S R i i i i i t i ion i trop i i t V l dX m dY n dZ c V c V V V ρρ=---+?-?+---误差方程为:

我对精密超精密加工技术的认识

我对精密超精密加工技 术的认识 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

我对精密超精密加工技术的认识目前,精密、超精密技术在我国的应用已不再局限于国防尖端和航空航天等少数部门,它已扩展到了国民经济的许多领域,应用规模也有较大增长。计算机、现代通信、影视传播等行业,现都需要精密、超精密加工设备,作为其迅速发展的支撑条件。计算机磁盘、录像机磁头、激光打印机的多面棱镜、复印机的感光筒等零部件的精密、超精密加工,采用的都是高效的大批量自动化生产方式。 传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达~μ;m,最好可到μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。抛光是利用机

智慧分拣高精度定位管理系统方案

智慧分拣高精度定位管理系统 成都精位科技有限公司

目录 一、系统概述 (1) 二、现有分拣系统常见问题 (1) 三、智慧分拣UWB高精度定位管理系统介绍 (2) 3.1 UWB定位技术 (2) 3.2 UWB系统工作原理 (2) 3.3 UWB系统性能 (3) 四、智慧分拣系统业务框架 (4) 五、主要业务流程和功能 (6) 5.1 主要业务流程 (6) 5.1.1 入库分拣流程 (6) 5.1.2 出库分拣流程 (8) 5.2 基本功能 (9) 5.2.1 移动货架定位管理 (9) 5.2.2 AGV小车实时定位和展示 (9) 5.2.3 分拣工作站(工人)任务推送 (9) 5.2.4 智能调度及任务派送 (10) 5.2.5 导航与路径规划 (10)

一、系统概述 分拣是将货物按照品种、出入库先后顺序、仓储位置、运送目的地等进行快速准确分类,或者从庞大储位中快速准确查找要出库货物的一项物流配送作业,也是智慧仓储的一个重要环节。科学高效的分拣作业能够有效提升物流配送效率和服务力,提高行业竞争力,降低企业运营成本,是物流配送生产力发展的必然要求。而高精度定位系统为降低分拣误差率,降低人工干预,提高精准分拣效率提供有力的技术支撑。 本文针对现有分拣系统的效率低、容易出错、人工成本高等实际问题,结合成都精位科技有限公司在UWB高精度定位软硬件产品完全自主研发,产品性能在业界表现卓著的独有优势,提出基于高精度UWB定位的智慧仓储管理系统方案。实现货物分拣过程中AGV小车、移动货架的位置监控,AGV小车导航规范,分拣任务智能调配等功能,提高货物分拣效率和可靠性,为进一步提高仓储物流效率和企业生产率提供有力保障。 二、现有分拣系统常见问题 目前常见的分拣系统要么是人员根据货单推着车进行人工分拣,存在人力成本高,处理速度慢的问题,而且容易出错;要么采用AGV小车,在地面铺设标识符进行定轨导航和定位,存在AGV小车不能灵活移动和使用不均衡的问题。除此之外常用的问题还有: (1)电商仓库为代表的直接面向消费者的仓库,具有流动性高、品类繁多分散的特点,现有分拣方法对小批量、多品目的货物分拣非常低效; (2)分拣过程对货物的位置信息缺乏实时跟踪,分拣误差率高,容易将货品发往错误目的地; (3)分拣效率低,容易出现“人等货”、“货等人”、“车等人”、“人等车”等情况,各分拣工序之间衔接不协调; (4)人员的劳动强度大,依赖人的记忆或手工查询货品信息,花费大量的时间; (5)对分拣过程所用传输工具缺乏监管和合理分配。

实时精密单点定位研究综述

实时精密单点定位研究综述 发表时间:2016-03-24T12:00:43.883Z 来源:《基层建设》2015年24期供稿作者:高乔肖建东胡慧娟[导读] 长安大学 GPS精密单点定位(PPP)是一种利用高精度的GPS卫星星历和卫星钟差以及双频载波相位观测值. 长安大学陕西西安 710054 摘要:GPS精密单点定位(PPP)是一种利用高精度的GPS卫星星历和卫星钟差以及双频载波相位观测值,并采用非差模型进行高精度单点定位的方法。实时精密单点定位技术(RT-PPP)已成为当前GNSS领域的研究热点,也将是目前乃至未来实时高精度动态定位的主要技术手段之一。本文对其从研究背景、国内外研究现状,以及发展前景等方面进行了综述。 关键词:GPS;实时精密单点定位;研究背景;发展现状;前景 1 研究背景 全球定位系统GPS(Global Positioning System)是美国从上世纪70年代开始研制,于1994年全面建成的新一代卫星导航定位系统。目前,GPS以全天候、高精度、自动亿、高效益等显著特点,诸多领域得到了广泛应用。GPS的出现,给测绘领域带来了一场深刻的技术革命。传统的GPS单点定位是指利用单台接收机的测码伪距及广播星历的卫星轨道参数和卫星钟差改正进行定位,因其较低的定位精度已不能满足精密导航、大地测量、变形监测、精密工程测量等的要求。 为了提高精度,出现了GPS相对定位,它是用两台以上接收机同步观测相同的GPS卫星,以确定基线端点的相对位置或基线向量。GPS相对定位通过组成差分观测值来消除接收机钟差、卫星钟差等公共钟差以及减弱对流层延迟、电流层延迟等相关性的影响,因此,它是目前GPS定位中精度最好的一种方法。 PPP技术作为一种最近十几年发展起来的一项GPS定位新技术,在低轨卫星精密定轨、高精度坐标框架维持、区域或全球性科学考察、航空动态测量和海洋测绘等方面具有不可估量的应用前景,目前己经成为GPS导航和定位界的研究热点。经过近十几年国内外学者的研究,精密单点定位的事后处理算法及应用已经比较成熟。与相对定位中的实时定位技术RTK相对应,在实时GPS卫星轨道和钟差产品的支持下,精密单点定位的数据处理可以在实时情况下进行,得到实时定位结果,称之为实时PPP技术。实时PPP定位技术与目前已有两种GPS实时定位服务系统(基于单基准站RTK技术系统和基于多基准站的CORS系统)相比具有以下显著优点: 1.系统服务覆盖区域大; 2.总投资和运营成本低。 2 国内外研究现状与进展 国际GPS服务组织IGS(International GPS Service)是国际大地测量协会IAG(International Association of Geodesy)于1993年创建的一个为GPS提供应用服务的国际组织。由于IGS能够提供精密的卫星星历和卫星钟差,因此,就使得单点定位无需差分而获得高精度成为可能。JPL的Zumberge等人在1997年就提出了利用双频接收机进行非差单点定位。NRCan(Natural Resources Canada)的Kouba和Herous(2000)首先详细地论述了利用双频接收机进行非差单点定位技术。JPL的Muellerschoen(2000)等人提出了全球实时精密单点定位技术。加拿大Calgary大学的Gao Y和Shen X(2001)也对此作了详细的论述,同时提出了一种新的观测模型。除了以上的学术研究机构外,几个大的商业公司对精密单点定位技术也非常关注并且进行了不同程度的研究,如NAVCOM公司的StarFire和Omnistar-HP系统就包含有精密单点定位的内容(Bisnath,2003)。 在国内方面,黄珹等人研究了采用GIPSY软件的精密单点定位方法解算区域基准网问题。武汉大学的时世榕博士对非差相位精密单点定位技术进行了深入研究,并利用自己提出的改进模型及自行研制的定位软件进行了试算。武汉大学的张小红副教授也对PPP作了深入的研究,并首次将PPP技术应用到航空测量和极地科学考查中,并编制了Trip解算软件。 从国内外研究成果的分析来看,目前研究的重点主要集中在PPP定位模型的建立、大气折射的影响分析、软件实现和PPP静态定位精度分析等方面,对于动态精密单点定位的精度研究还不够深入。与GPS相对定位技术不同,PPP技术由于采用非差观测值进行数据处理,破坏了相位模糊度的整周特性,这使得不能进行非差相位模糊度的固定。而相对定位技术由于采用站际星际二次差观测值,UPD在二次差过程中被消去,从而使得双差模糊度具有整数特性。因此,要使PPP能够达到工程上的实时定位要求,就必须开展加快PPP定位收敛速度的研究。 国际上众多学者尝试进行精密单点定位中相位模糊度固定,并取得了可喜的进展。上述各种精密单点定位整周模糊度固定方法大致可以分为两类:一类是估计破坏相位模糊度整数特性的硬件延迟非整周部分的方法,简称为FCB方法;另一类则是不显式估计硬件延迟非整周部分,而采用卫星钟差参数吸收这些硬件延迟,从而在定位计算中恢复了模糊度整数特性的方法,简称为IRC方法。Geng等人从理论推导和算例分析两个方面证明了这两种方法是等价的。为与相对定位模式中的实时动态定位RTK区别,GPS界将整周模糊度固定的实时精密单点定位称之为PPP-RTK。显然,整周模糊度固定的FCB方法和IRC方法均可用于PPP-RTK。 综上所述,当前实时精密单点定位技术得到了广泛的重视和飞速的发展,一方面是实时精密单点定位得到了广泛的应用,出现了多个成熟的商业系统;另一方面制约精密单点定位技术实时应用的模糊度固定技术取得了重大进展,发展了多种适用于PPP的整周模糊度固定方法。可以预见,实时精密单点定位技术将取得重大突破,高精度GPS定位模式将恢复到最初GPS系统设计者的单点绝对定位模式。 3 发展前景与趋势 由于其硬件构成简便、定位灵活方便、不受作用距离限制等优点,实时精密单点定位技术已经成为当前GNSS界的研究热点之一。和静态精密单点定位相比,动态精密单点定位在对流层延迟改正、多路径效应等误差改正方面更为复杂,在探测、修复周跳和整周模糊度的确定方面也更为困难。 但与静态定位相比,动态或实时定位的研究不多。由于将来在GIS数据采集、精密导航、科研考察等领域中需要用到精密的动态定位,GPS精密单点定位将会发挥更加重要的作用,动态或实时动态GPS精密单点定位则会更具有实用价质。此外,由于目前单频GPS接收机价格较双频接收机低很多,基于单频GPS精密单点定位也是值得研究的一个课题。

相关文档