文档库 最新最全的文档下载
当前位置:文档库 › 线性代数---特殊行列式及行列式计算方法总结.

线性代数---特殊行列式及行列式计算方法总结.

线性代数---特殊行列式及行列式计算方法总结.
线性代数---特殊行列式及行列式计算方法总结.

特殊行列式及行列式计算方法总结

一、 几类特殊行列式

1. 上(下)三角行列式、对角行列式(教材P7例5、例6)

2. 以副对角线为标准的行列式

111121

12,1

221222,11,21,1

1,1

12

,1

(1)2

12,1

1

000000000000000

(1)

n n n n n

n n n n n n nn

n n n n n nn

n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------==

=- 3. 分块行列式(教材P14例10)

一般化结果:

00n n m n n m n m m n m m n

m

A C A A

B B

C B ????=

=?

0(1)0n m n n m n

mn n m m

m n

m

m n

A C A A

B B

C B ????=

=-?

4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!

以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算

二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】

1) 利用行列式定义直接计算特殊行列式;

2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;

3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算

——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

【常见的化简行列式的方法】

1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题)

0001000200019990002000000

002001

D

=

分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法

(1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-=

解法二:行列式性质法

利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。

2001(20011)

20011

20011

2

000020010

001000200(1)

(1)

(1)2001!2001!019990002000

00

D ?---=-

=-

-

=

解法三:分块法

0001000200019990002000000

002001

D =

利用分块行列式的结果可以得到

2000(2000-1)

2

00010

20

=2001

=2001(-1)2000!=2001

01999

0020000

00

D ?

?!

解法四:降阶定理展开

按照每一行分别逐次展开,此处不再详细计算。

2. 利用行列式的性质将高阶行列式化成已知结果的特殊行列式 例2

1111

1111

11111111a a D b b

+-=

+- 分析:该行列式的特点是1很多,可以通过12r r -和34r r -来将行列式中的很多1化成0. 解:

2141

43

220

0110011001111

1111

011

00001100111

1

111

1

110

111100011

001

1

00r r r r r r a a a a a D ab

ab

b b b

b

b

a ab

a b b

------=

==----==-

例3

3

223

111

11132232

22

222

322

333333332234

44

44

4

a a

b a b b a a b a b b D a a b a b b a

a b

a b

b

=

,(0)i a ≠

分析:该类行列式特点是每行a 的次数递减,b 的次数增加。特点与范德蒙行列式相似,因此可以利用行列式的性质将D 化成范德蒙行列式。 解:

2311111123

2222223333

123423

33333323

44444

4

3333

3124

12341234

3333

1234

141()

()()1(

)()()1()()()1(

)()()(

,,,)()

j

i j i i

j b b

b a a a b b b a a a D a a a a b b b a a a b b b a a a b b b b a a a a V a a a a b b a a a a a a ≤<≤=?

=?=?-∏

练习:(11-12年 IT 专业期末考试题)

若实数z y x ,,各不相等,则矩阵????

?

? ?

?=22

2111

z y x z y x M 的行列式=M __________ 3. 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 例4

00000

000

n a b a

b

D a

b b

a

=

分析:该行列式特点是a 处于主对角线,b 在a 后的一个位置,最后一行中b 是第一个元素,a 是最后一个元素。 解:按第一列展开:

11

111110000

00

(1)(1)0000

(1)(1)n n n n n n n n

a b b a b a

b

D a b a

b a b

a

a a

b b a b ++-+-+=?-+-?=?+-?=+-

练习:(11-12年期中考试题)

x

y

y x x y x y x D n 0

0000000000000

=

4. 行(列)和相等的行列式 例5

n a b b b a b D

b b

a

=

分析:该行列式的特点是主对角线上元素为a ,其余位置上都是b 。可将第2,3,…,n 列加到第1列上。(类似题型:教材P12例8,P27 8(2)) 解:

1

11

110

[(1)][(1)]11

[(1)]()n n b

b b

b a b a b D a n b a n b b

a

a b

a

n b a

b -

-=+-?

=+-?

-=+--

5. 箭头形(爪行)行列式 例6

01111

2001

0301

D n

= 分析:该类行列式特点是第一行、第一列及主对角上元素不为0,其余位置都为0.解此类行列式方法,是将行列式化成上三角行列式。

解:分别从第2,3,…,n 列提出因子2,3,…,n ,然后将第2,3,…,n 列分别乘以-1,再加到第1列上。

22

11111110232311000

1

00

1

!

!

!()101000101

1

1

n

i n

i i n n D n n n i -=-===-∑

注:

爪形行列式非常重要,很多看似复杂的行列式通过简单变化以后都可以化成爪形行列式进行计算! 练习:

1) 教材习题P28: 8(6) 2) (11-12年期末考试题)

23(1)2000300010000

n a n n a a A n a n

a

-----=

-

3) (11-12年IT 期末考试题)

n

x

n x x x

a a a a x D n n n 0

010000200001121

1

-=

-+

例7

1231

231

231

2

3

n n n n

x a a a a x a a D a a x a a a a x = 分析:该类行列式特点是每一行只有主对角线上的元素与第一个元素不同。 解:

12311

22

11

33

11

31211

22

33

11222122

112200000

1100()()()

1010

10

011(

)()

()

0100

1

(n n n n n n

n n n

i n i i i

n n

n n i i x a a a a x x a D a x x a a x x a a a x a x a x a x a x a x a x a x a a a a x a x a x a x a x a x a x a =--=---------=-?----+---=-?--=-∑

1

1

)[1]n n

i

i i i i

a x a ==+-∑

6. 递推法或数学归纳法

该方法用于行列式结构具有一定的对称性,教材P15例11就是递推法的经典例题。利用同样的方法可以计算教材P27 8(4)。 7. 升阶法

通常计算行列式都采用降阶的方法,是行列式从高阶降到低阶,但是对于某些行列式,可以通过加上一行或一列使得行列式变成特殊行列式,再进行计算。 例8 (教材P28 8(6))

1

21+1111+1=

1

1

1+n n

a a D a , (0)i a ≠

分析:该题有很多解法,这里重点介绍升阶法。因为行列式中有很多1,因此可以增加一行1,使得行列式变成比较特殊或者好处理的行列式。注意:行列式是方形的,因此在增加一行以后还要增加一列,以保持行列式的形状。为了使行列式的值不改变,因此增加的列为1,0,0, 0

1

11

-

3

221

2=1

111100

11111+11-100

1=11+1=-100=...(1+)1

1

1+-10

i n

r r n n i i

n

n

a a D a a a a a a a a ∑

定理 例9 (教材P27 6(4))

2

2224444

1111=a b c d D a b c d a b c d 分析:此行列式可以应用性质6将行列式化为上三角行列式,也可以对比范德蒙行列式的形式,通过添加一行和一列把行列式变成范德蒙行列式以后再进行计算。 解法一:

243

3221

2131

22222222222222222111100

()

()()0()()()

111=()()()

()()()

100()()()

()()()()(r a r r ar r ar c c c c b a c a d a D b b a c c a d d a b b a c c a d d a b a c a d a b c

d

b b a

c c a

d d a b a c a d a b

c b

d b

b b a

c c a b b a

d d a b --------=

---------+++=-----++-++-按第一列展开

2222)()()()

()()()()

()()()()()()()b a c b

d b b a c a d a c c a b b a d d a b b a a b a c a d b c b d c d a b c d +--=---+-++-+=------+++按第一行展开

解法二:

2532

2224

4

4

4

33334

1111()()()()()()()()()()

1a b c d D a b c d a b c d x a x b x c x d b a c a d a c x x a b c d d x b x b d c ==----------

3x 的系数是D -,因此D 等于3x 的系数的相反数,由此可计算得到结果。

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 004003002001 000. 解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321=τ,所以此项取正号.故 004003002001000=() () 241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该

方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下: nn n n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a K Λ M O M M M K K K 22113 2133323122211100 0000=. 例2 计算行列式n n n n b a a a a a b a a a a ++= +K M O M M M K K 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

(完整word)行列式的计算技巧与方法总结,推荐文档

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 23222113 1211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 01504 321 - 解 =-6 015043 21601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ2211222112110 0= 下三角形行列式 nn n n a a a a a a Λ ΛΛΛΛΛΛ2122 21 110 00.2211nn a a a Λ= 对角行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ221121 222111000= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

,21 2222111211nn n n n n a a a a a a a a a D Λ Λ ΛΛΛΛΛ= 则 nn n n n n T a a a a a a a a a D Λ ΛΛΛΛΛΛ 212 22 12 12111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号. 推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即 .21 21 112112 1 21 112111kD a a a a a a a a a k a a a ka ka ka a a a D nn n n in i i n nn n n in i i n ===Λ ΛΛ Λ ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛΛΛ 第i 行(列)乘以k ,记为k i ?γ(或k C i ?). 推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如, nn n n in in i i i i n a a a c b c b c b a a a D Λ ΛΛΛΛΛ ΛΛΛΛΛ2 1 221111211+++=. 则 2121 21 11211212111211D D a a a c c c a a a a a a b b b a a a D nn n n in i i n nn n n in i i n +=+=Λ ΛΛ Λ ΛΛΛ ΛΛΛΛΛ ΛΛΛΛΛ ΛΛ Λ Λ Λ. 性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变. 注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +. 2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

行列式的计算技巧与方法总结

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式 构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

行列式化简计算技巧实题

行列式化简计算技巧和实题操练 ——Zachary 一.技巧: 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

1112111 12112112212121 21 2 n n s s sn s t s t sn tn t t tn t t tn n n nn n n nn a a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++= 技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积 111111111111111111 11000 m m n m mm m n m mm n nn n nm n nn a a a a b b a a c c b b a a b b c c b b = 技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和 1 1 (1,2,,)(1,2,,)n n ik ik kj kj k k D a A i n a A j n ======∑∑ 二.解题方法: 方法1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算 1112 112212212122 a a a a a a a a =-, 111213 21222311223312233113213211233212213313223131 32 33 a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

求行列式的方法

浅谈求行列式的方法 【摘要】 行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。本文归纳行列式的各种计算方法,通过这一方法可以提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。 【关键词】 行列式,范德蒙行列式,数学归纳法,递推法。 引言 行列式起源于1757年马拉普斯研究解含两个和三个未知量的线性方程组而创建的,然而它的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具。本文主要探讨行列式的计算方法以及它的简单应用。而行列式的计算方法并不是唯一的,本文主要针对行列式的特点,应用行列式的性质,给出了计算行列式的常用方法。 1.定义法: 根据行列式的定义,直接求其值。 例: 计算D= h g f e d c b a 000000 分析:根据定义,D 是一个4!=24项的代数和,而每一项是取自不同的行不同的列。因而,在这个行列式里,除了acfh ,adeh ,bdeg ,bcfg ,与上面四项对应的排列依次是1234,1324,4321,4231。其中第一个和第三个是偶排列,第二个是奇排列。因此D=acfh-adeh+bdeg-bcfg 。 注意:在应用定义法求非零元素的乘积项时,不一定从第一行开始,哪行非零元素最少就从哪行开始。 2.性质法: 例:已知1998,2196,2394,1800均能被18整除,证明:四阶行列式D= 0814******** 991能被18整除。 分析:根据行列式的性质(行列式的某行(列)的倍数相应的加到另一行(列),行列式不 变,因此,D 可变形为 1800 081239493221969121998 991 即:D=18 100 081133932122912111 991 其中(根据一个行列 式中某一行(列)所有元素的公因子可以提到行列式符号的外边。 因而,D 能被18整除。 3.三角化法: 化三角形法是将原行列式化为上(下)三角行列式。这是计算行列式的基本方法之一。

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

行列式计算7种技巧

行列式计算7种技巧7种手段 编者:Castelu 韩【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a

技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 1112111121111211122121 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变 1112111 12112112212121 21 2 n n s s sn s t s t sn tn t t tn t t tn n n nn n n nn a a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++= 技巧6:分块行列式的值等于其主对角线上两个子块行列式的值

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

行列式的几种求法

行列式的求法有多种,以下简单进行总结。 一、逆序定义法 行列式的逆序法定义如下: 1212121112121222(,,......,)12,,......,1 2(1)......n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里,12,,......,n j j j 为1,2,...,n 的任一排列,12(,,......,)n j j j τ为该排列的逆序数,求和是对所有的排列求的,因此,该和式一共有!n 项,每项都是n 个数相乘,并得计算逆序数,计算量巨大。因此,一般而言,逆序法定义具有理论上研究的意义,而比较少用于求行列式。但是,如果行列式的项中有大量的0,那么用逆序法计算可能会很简单。以下举例如下: 例1:求 11 22 nn a a a 。 解答: 12121211 22 (,,......,)12,,......,(1)......n n n j j j j j nj j j j nn a a a a a a τ= -∑ 只当11j =,22j =,……,n j n =,其项才可能非零。因此, 11 22 (1,2,......,)01,12,2,1,12,2,1,12,2,(1)......(1)............n n n n n n n nn a a a a a a a a a a a a τ=-=-= 例2、求 1 2 n d d d 。 解答: 1212121 2 (,,......,)12,,......,(1)......n n n j j j j j nj j j j n d d a a a d τ= -∑ 只当1j n =,21j n =-,……,1n j =,其项才可能非零。因此,

行列式的计算方法总结 毕业论文

1 行列式的概念及性质 1.1 行列式的概念 n 级行列式 nn n n n n a a a a a a a a a 21 2222111211 等于所有取自不同行不同列的个元素的乘积n nj j j a a a 2121的代数和,这里的n j j j 21是1,2,…,n 的一个排列,每一项都按下列规则带有符号:当n j j j 21是偶排列时,带有正号;当n j j j 21是奇排列时,带有负号。这一定义可写成 , 这里 ∑ n j j j 21表示对所有n 级排列的求和。 1.2 行列式的性质[1] 性质1 行列互换,行列式值不变,即 =nn n n n n a a a a a a a a a 2 1 2222111211nn n n n n a a a a a a a a a 212 22121 2111 性质2 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外, 即 =nn n n in i i n a a a ka ka ka a a a 2 1 2111211nn n n in i i n a a a a a a a a a k 21 21 11211 这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个 n n n nj j j j j j r j j j nn n n n n a a a a a a a a a a a a 21212121) (2 1 2222111211) 1(∑-=

数乘以此行列式。 事实上, nn n n in i i n a a a ka ka ka a a a 212111211=11i i A ka +22i i A ka +in in A ka + =21(i i A a k +22i i A a +)in in A a + nn n n in i i n a a a a a a a a a k 2121 11211= , 令k =0,如果行列式中任一行为零,那么行列式值为零。 性质3 如果行列式中某列(或行)中各元素均为两项之和,即 ),,2,1(n i c b a ij ij ij =+=,则这个行列式等于另两个行列式之和。 即 nn nj n n j n j nn nj n n j n j nn nj nj n n j j n j j a c a a c a a c a a b a a b a a b a a c b a a c b a a c b a 12221111112221111112222111111+ =+++ 这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而 这两个行列式除这一行以外全与原来行列式的对应的行一样。 性质4 如果行列式中有两行(列)相同,则行列式等于零。所谓的两行相同就是 说两行的对应元素都相等。 性质5 如果行列式中两行(列)成比例,则行列式等于零。 性质6 如果行列式中的某一行(列)的各元素同乘数k 后加到另一行(列)的对 应元素上去,则行列式不变。 性质7 对换行列式中两行(列)的位置,行列式反号。 2 行列式的计算方法 行列式的计算灵活多变,需要有较强的技巧。当然,任何一个n 阶行列式都可以由它的定义去计算其值。但由定义可知,n 阶行列式的展开式有n !项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。值的注意的是:在应

行列式的计算技巧与方法汇总

行列式的计算技巧与方法汇总

————————————————————————————————作者:————————————————————————————————日期:

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 232221131211a a a a a a a a a = .332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 015043 21- 解 =-6 015043 21 601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ2211222112110 0= 下三角形行列式 nn n n a a a a a a Λ ΛΛΛΛΛΛ2122 21 110 00.2211nn a a a Λ= 对角行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ221121 222111000= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

几种特殊类型行列式及其计算

1行列式的定义及性质 1.1定义[3] n级行列式 a 11 a12 (1) a 21 I-a22… a a 2n a a n1 a n2…a nn n元素的乘积的屜…a% (1)的代数和,这里jj…j n是1,2/ ,n的一个排列,每一项(1)都按下列规则带有符号:当jj…j n是偶排列时,⑴带正号,当j l j2…j n 是奇排列时,(1)带有负号.这一定义可写成 an a12 a1n a 21 a22 (2) I-a=无(-1F 山压)?…a nj j1 j2…j n a n1 a n2 a nn 这里V 表示对所有n级排列求和. j1 j2 ■ j n 1.2性质[4] 性质1.2.1行列互换,行列式的值不变. 性质1.2.2某行(列)的公因子可以提到行列式的符号外. 性质1.2.3如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4两行(列)对应元素相同,行列式的值为零. 性质1.2.5两行(列)对应元素成比例,行列式的值为零. 性质1.2.6某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7交换两行(列)的位置,行列式的值变号. 等于所有取自不同行不同列的个

2行列式的分类及其计算方法 2.1箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均 为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算?即利用对 角元素或次对角元素将一条边消为零. 例1计算n 阶行列式 a 1 1 ■ ■ .L 1 1 a 2 0 0 D n = 1 0 a 3… 0 (&2&3…a n 式0) 1 0 … a n 2.2两三角型行列式 这类行列式的特征是对角线上方的元素都是 c,对角线下方的元素都是b 的行列式,初看, 这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b 二 c 时可以化为上面列举的爪形来计算,当 b = c 时则用拆行例)法 [9] 来计算. 例2计算行列式 将第一列减去第二列的 丄倍,第三列的丄倍…第n 列的 a 2 a 3 倍,得 1 a i - a 2 1 1 a 2 0 a 3 0 0 a n n =''a i i =2 n *1 ' ■- i=2 丄 a i 丿

行列式计算方法归纳总结

数学与统计学学院 中期报告 学院: 专业: 年级: 题目: 学生姓名: 学号: 指导教师姓名职称: 年月日

目录 1 引言 (1) 2行列式性质 (2) 3行列式计算方法 (6) 3.1定义法 (6) 3.2递推法 (9) 3.3化三角法 (9) 3.4拆元法 (11) 3 .4加边法 (12) 3.6数学归结法 (13) 3.7降价法 (15) 3.8利用普拉斯定理 (16) 3.9利用范德蒙行列式 参考文献....................................................................................................... 错误!未定义书签。8

行列式的概念及应用 摘要: 本文先列举行列式计算相关性质,然后归纳总结出行列式的方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理,利用范德蒙行列式。 关键词:行列式;线性方程组;范德蒙行列式 The concept and application of determinant Summary: This article lists calculated properties of determinants, and then sum up the determinant method, including: Definition, triangulation, recursive method, remove method, bordered by, mathematical resolution method, cut method, using Laplace theorem, using the vandermonde determinant. Keywords: determinant;Linear equations;;Vandermonde determinant 1 引言 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。日本数学家关孝和提出来的,他在1683年写了一部名为解伏题之法的著作,意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国数学家,微积分学奠基人之一莱布尼茨。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。

相关文档
相关文档 最新文档