文档库 最新最全的文档下载
当前位置:文档库 › 化工原理实验大纲

化工原理实验大纲

化工原理实验大纲
化工原理实验大纲

《化工原理》实验教学大纲

实验名称:化工原理

学时:32学时

学分:2

适用专业:化学工程与工艺、应用化学、环境工程、高分子材料与工程、生物工程、过程装备与控制专业等。

执笔人:傅家新,王任芳

审订人:吴洪特

一、实验目的与任务

化工原理实验课是化工原理课程教学中的一个重要教学环节,其基本任务是巩固和加深对化工原理课程中基本理论知识的理解,培养学生应用理论知识组织工程实验的能力及分析和解决工程问题的能力,并在实验中学会一些操作技能。

二、教学基本要求

化工原理实验由基础型实验、综合型试验、设计型实验和仿真型实验几部分组成。学生在进实验室之前应做好实验预习,了解实验装置流程及实验操作,掌握实验数据处理中的一些技巧,为能顺利完成实验做好准备。

三、实验项目与类型

注:本实验装置都可以开验证型实验,同时可以开设综合、设计和研究型实验。各专业可根据专业需要和实验学时进行选择和组合。

四、实验教学内容及学时分配

实验一离心泵性能测定(1验证)(4学时)

1.目的要求

了解离心泵的操作;掌握离心泵性能曲线的测定方法;了解气缚现象;掌握离心泵的操作方法。

2.方法原理

依据机械能衡算式对离心泵作机械能衡算可得H~Q线,利用马达-天平测功器可测得N~Q线,利用有效功与轴功的关系可得η~Q线。

3.主要实验仪器及材料

离心泵性能曲线测定装置一套。 4.掌握要点

注意离心泵的气缚与气蚀现象。 5.实验内容:

测定离心泵在恒定转速下的性能曲线。

实验一离心泵性能测定—汽蚀现象测定(2演示) (2学时)

1. 目的要求

通过对离心泵汽蚀特性曲线的测定,以便在离心泵的安装过程中正确掌握其安装高度。 2.方法原理

离心泵汽蚀特性结合机械能衡算式。 3.主要实验仪器及材料

离心泵汽蚀现象测定装置一套。 4.掌握要点 5.实验内容

实验二 流体流动阻力测定(1验证) (4学时)

1. 目的要求

掌握因次分析方法,学会用实验数据关联摩擦因数与雷诺数的关系。 2.方法原理

由范宁公式知,管路阻力损失可表示成)2/)(/(2g u d l p f λ?=,在一连续、稳定、均一、且水平的恒截面直管段内,p p f ??-=。只要测定出两截面处的压强之差和管内流体的流速,即可关联

出Re ~λ关系。

3.主要实验仪器及材料 阻力测定装置一套。

4.掌握要点

5.实验内容 实验二 流体流动阻力测定(2综合) (6学时)

2. 目的要求

掌握因次分析方法,学会用实验数据关联摩擦因数与雷诺数的关系,测定阀门及突然扩大的局部阻力。

2.方法原理

由范宁公式知,管路阻力损失可表示成)2/)(/(2g u d l p f λ?=,在一连续、稳定、均一、且水平的恒截面直管段内,p p f ??-=。只要测定出两截面处的压强之差和管内流体的流速,即可关联出Re ~λ关系。

管路局部阻力损失可表示)2/(h 2

g u f ζ=,只要测定出阀门两端的压强之差和管内流体的流速,即可关联出Re ~ζ关系。

3.主要实验仪器及材料 阻力测定装置一套。

4.掌握要点

5.实验内容

实验三板框过滤实验(1验证)(4

学时)

1.目的要求

通过实验获取过滤常数K和虚拟滤液通量q e。

2.方法原理

恒压过滤方程。

3.主要实验仪器及材料

板框过滤机一套。

4.掌握要点

5.实验内容

实验三板框过滤实验(2设计)

(6学时)

2.目的要求

①通过实验获取过滤常数K和虚拟滤液通量qe。②测定动态过滤情况下,不同固含率、流速、操作压力等对过滤速率的影响。

2.方法原理

恒压过滤方程。

3.主要实验仪器及材料

板框过滤机一套。

4.掌握要点

5.实验内容

实验四传热实验(1验证)

(4学时)

1.目的要求

关联空气在圆形直管中作强制湍流的对流给热系数的经验关联式。

2.方法原理

热量衡算式、传热速率方程式和总传热系数关联式。

3.主要实验仪器及材料

锅炉、换热器等传热实验装置一套。

4.掌握要点

5.实验内容

实验四传热实验(2综合) (6学时)

2.目的要求

①关联空气在圆形直管中作强制湍流的对流给热系数的经验关联式;②观察蒸汽冷凝状态;

③进行强化传热实验。

2.方法原理

热量衡算式、传热速率方程式和总传热系数关联式。

3.主要实验仪器及材料

锅炉、换热器等传热实验装置一套。

4.掌握要点

实验五吸收实验(1验证吸收传质系数测定) (4学时)

1. 目的要求

测定用水吸收空气中少量氨的吸收传质系数。

2.方法原理

物料衡算式、传质速率方程式和填料层高度表达式的具体应用。

3.主要实验仪器及材料

吸收实验装置一套。

4.掌握要点

5.实验内容

实验五吸收实验(2验证填料塔流体力学性能测定)(4学时)

1.目的要求

研究和了解填料吸收塔的水力学特性。

2.方法原理

以鲍尔环作填料,利用水测试填料塔流体力学性能。

3.主要实验仪器及材料

填料塔流体力学性能测定装置一套。

4.掌握要点

5.实验内容

实验五吸收实验(3综合)(6学时)

2.目的要求

①测定传质系数;②塔内气液接触及液泛现象演示;③测定干湿填料层压降。

2.方法原理

以鲍尔环作填料,测试填料塔性能。

3.主要实验仪器及材料

填料塔流体力学性能测定装置一套。

4.掌握要点

5.实验内容

实验六精馏实验(1验证)(4学时)

1.目的要求

掌握精馏分离技术与操作

2.方法原理

利用混合液中各组分间相对挥发度的差异分离均相液体混合物。

3.主要实验仪器及材料

液体精馏装置一套。

4.掌握要点

5.实验内容

实验六精馏实验(2综合)(6学时)

①测定全回流条件下的全塔效率及单板效率;②测定部分回流条件下的全塔效率;③测定全

塔的浓度(或温度)分布曲线;④观察塔板上气液状态;⑤测定再沸器内沸腾给热系数;⑥测定塔的

操作弹性。(前5项必做,第6项可选做)

2.方法原理

利用混合液中各组分间相对挥发度的差异分离均相液体混合物。

3.主要实验仪器及材料

液体精馏装置一套。

4.掌握要点

5.实验内容

实验七干燥实验(1验证) (4学时)

1. 目的要求

掌握固体干燥技术与操作

2.方法原理

利用空气的吸湿特性干燥固体湿物料。

3.主要实验仪器及材料

干燥装置一套。

4.掌握要点

5.实验内容

实验七干燥实验(2设计)

(6学时)

1.目的要求

①测定u~△p流化曲线;②测定干燥速率曲线;③测定干燥系统压降分布;④测定加热器的对流

传热膜系数。

2.方法原理

利用空气的吸湿特性干燥固体湿物料。

3.主要实验仪器及材料

干燥装置一套。

4.掌握要点

5.实验内容

实验八液-液萃取实验(1验证)

(4学时)

1.目的要求

通过对萃取液和萃余液组成的分析,完成三元体系相图,并作出此单元操作的物料衡算。

2.方法原理

热量衡算式和传热速率方程式。

3.主要实验仪器及材料

电加热器、换热器等传热实验装置一套。

4.掌握要点

5.实验内容

实验八液-液萃取实验(2综合)

(6学时)

1.目的要求

①以水为萃取剂,萃取煤油中的苯甲酸;②测定不同轻、重相流率和组成、不同搅拌转数对传质系数的影响。

2.方法原理

热量衡算式和传热速率方程式。

3.主要实验仪器及材料

电加热器、换热器等传热实验装置一套。

4.掌握要点

5.实验内容

实验九膜蒸馏(研究)(8学时)

1.目的要求

①测定膜组件的对流传热系数;②测定膜组件的温度极化系数;③进行水溶液的浓缩研究,确定跨膜通量随料液浓度变化规律。

2.方法原理

热量衡算式和传质速率方程式。

3.主要实验仪器及材料

膜组件;真空系统及缓冲罐;制冷机;蠕动泵;电子天平;温度、压力传感器及其仪表。

4.掌握要点

5.实验内容

五、考核办法

实验操作60%;实验报告40%。考核成绩以20%计入课程总成绩。

六、实验教学指导书和参考书

教材:杨祖荣编,《化工原理实验》。

参考书:长江大学化学与环境工程学院化工系编,《化工原理实验》。

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验大纲

《化工原理》实验教学大纲 实验名称:化工原理 学时:32学时 学分:2 适用专业:化学工程与工艺、应用化学、环境工程、高分子材料与工程、生物工程、过程装备与控制专业等。 执笔人:傅家新,王任芳 审订人:吴洪特 一、实验目的与任务 化工原理实验课是化工原理课程教学中的一个重要教学环节,其基本任务是巩固和加深对化工原理课程中基本理论知识的理解,培养学生应用理论知识组织工程实验的能力及分析和解决工程问题的能力,并在实验中学会一些操作技能。 二、教学基本要求 化工原理实验由基础型实验、综合型试验、设计型实验和仿真型实验几部分组成。学生在进实验室之前应做好实验预习,了解实验装置流程及实验操作,掌握实验数据处理中的一些技巧,为能顺利完成实验做好准备。 三、实验项目与类型 注:本实验装置都可以开验证型实验,同时可以开设综合、设计和研究型实验。各专业可根据专业需要和实验学时进行选择和组合。 四、实验教学内容及学时分配 实验一离心泵性能测定(1验证)(4学时)1.目的要求 了解离心泵的操作;掌握离心泵性能曲线的测定方法;了解气缚现象;掌握离心泵的操作方法。 2.方法原理 依据机械能衡算式对离心泵作机械能衡算可得H~Q线,利用马达-天平测功器可测得N~Q线,利用有效功与轴功的关系可得η~Q线。 3.主要实验仪器及材料

离心泵性能曲线测定装置一套。 4.掌握要点 注意离心泵的气缚与气蚀现象。 5.实验内容: 测定离心泵在恒定转速下的性能曲线。 实验一离心泵性能测定—汽蚀现象测定(2演示) (2学时) 1. 目的要求 通过对离心泵汽蚀特性曲线的测定,以便在离心泵的安装过程中正确掌握其安装高度。 2.方法原理 离心泵汽蚀特性结合机械能衡算式。 3.主要实验仪器及材料 离心泵汽蚀现象测定装置一套。 4.掌握要点 5.实验内容 实验二 流体流动阻力测定(1验证) (4学时) 1. 目的要求 掌握因次分析方法,学会用实验数据关联摩擦因数与雷诺数的关系。 2.方法原理 由范宁公式知,管路阻力损失可表示成)2/)(/(2g u d l p f λ?=,在一连续、稳定、均一、且水平的恒截面直管段内,p p f ??-=。只要测定出两截面处的压强之差和管内流体的流速,即可关联出Re ~λ关系。 3.主要实验仪器及材料 阻力测定装置一套。 4.掌握要点 5.实验内容 实验二 流体流动阻力测定(2综合) (6学时) 2. 目的要求 掌握因次分析方法,学会用实验数据关联摩擦因数与雷诺数的关系,测定阀门及突然扩大的局部阻力。 2.方法原理 由范宁公式知,管路阻力损失可表示成)2/)(/(2g u d l p f λ?=,在一连续、稳定、均一、且水平的恒截面直管段内,p p f ??-=。只要测定出两截面处的压强之差和管内流体的流速,即可关联出Re ~λ关系。 管路局部阻力损失可表示)2/(h 2 g u f ζ=,只要测定出阀门两端的压强之差和管内流体的流速,即可关联出Re ~ζ关系。 3.主要实验仪器及材料 阻力测定装置一套。 4.掌握要点 5.实验内容 实验三 板框过滤实验(1验证) (4学时)

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理大纲

一、课程的性质 本课程是化工及相关专业的一门专业基础课。通过本课程的教学使学生掌握流体流动、传热和传质基础理论及主要单元操作的典型设备的构造、操作原理;工艺设计、设备计算、选型及实验研究方法;培养学生运用基础理论分析和解决化工单元操作中的各种工程实际问题的能力。并通过实验教学,使学生能巩固加深对课堂教学内容的理解,强调理论与实际结合,综合分析问题、解决问题的能力。 二、课程的基本要求和内容 绪论 本课程的性质、任务、研究对象和研究方法,本课程与其他有关课程的关系。 Δ物理量的因次、单位与单位换算:单位制与因次的概念。几种主要单位制 (SI.CGS制.MKS工程单位制)及我国的法定计量单位。单位换算的基本方式。 第一章流体流动 流体的性质:连续介质的假定、密度、重度、比重、比容、牛顿粘性定律与粘度。 牛顿型与非牛顿型流体。 流体静力学:静压强及其特性;压强的单位及其换算;压强的表达方式;重力场中静止流体内压强的变化规律及其应用;离心力场中压强的变化规律。 流体流动现象:流体的流速和流量;稳定流动与不稳定流动;流体的流动型态;雷诺准数;当量直径与水力半径;滞流时流体在圆管中的速度分布;湍流时的时均速度与脉动速度;湍流时圆管中时均速度的分布;边界层的形成、发展及分离。 流体流动的基本方程:Δ 物料衡算——连续性方程及其应用;Δ能量衡算方程;柏势利方程;Δ能量衡算方程和柏势利方程的应用。 流体阻力:Δ阻力损失的物理概念;边界层对流动阻力的影响;粘性阻力与惯性阻力;湍流粘度系数;Δ沿程阻力的计算;滞流时圆管直管中沿程阻力计算;滞流时的摩擦系数;湍流时的摩擦系数;因次分析法:用因次分析法找出表示摩擦阻力关系中的数群;粗糙度对摩擦系数的影响;Δ局部阻力的计算。

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

《化工原理》课程教学大纲

《化工原理》课程教学大纲 一、课程基本信息 课程代码:260353 课程名称:《化工原理》 英文名称:Principles of Chemical Engineering 课程类别:专业基础课 学时:90学时,化工原理(上册)40,化工原理(下册)40,实验10 学分:4个 适用对象:环境工程专业 考核方式:期末考试成绩(占70%)加平时成绩(占30%),其中期末考试为闭卷考试,平时成绩包括考勤,作业、实验和平时测验等。 先修课程:数学、物理、化学、物理化学 二、课程简介 中文简介:化工原理课程属化学工程技术科学学科,是理论性和实践性都很强的学科,是环境工程专业必修的一门专业基础课程。本课程的总学时为90学时,其中80学时为课堂教学,而10个学时为实践教学。其中课堂教学章节和实验教学内容都是按环境工程专业的专业特点而设定的,而与环境工程专业关系不为紧密的则建议自学。 英文简介:Chemical engineering is a technology of chemical engineering subdiscipline. This course specialize in strong theory, practice and is a compulsory courses to environmental engineering specialty. The total period is 90, including 80 period classroom teaaching and 10 period practice teaching. The content of this course is arranged according to the characteristics of environmental engineering. It is suggested that those content that has little relation with environmental engineering should be self-studied. 三、课程性质与教学目的 (一)课程性质 《化工原理》是环境工程专业一门重要的专业基础课,它的内容是讲述化工单元操作的基本原理、典型设备的结构原理、操作性能和设计计算。化工单元操作是组成各种化工生产过程、完成一定加工目的的基本过程,其特点是化工生产过程中以物理为主的操作过程,包括流体流动过程、传热过程和传质过程。 (二)教学目的 化工原理课程的目的是使学生获得常见化工单元操作过程及设备的基础知识、基

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

化工原理教学大纲

《化工原理》教学大纲 课程名称 :化工原理/Principles of Chemical Engineering 课程总学时:144 实验学时:24 先修课程 :数学、物理、化学、物理化学 适用专业 :应用化工技术 1、 课程性质与教学目的 1.课程性质: 《化工原理》是化工及其 相关专业学生必修的一门基础技术课程,它在 基础课与专业课之间,起着承上启下的作用,是自然科学 领域的基础课向工程科学的专业课过渡的入门 课程。其主要任务是介绍流体流动、传热和传质的基本原 理及主要单元操作的典型设备构造、操作原理 、过程计算、设备选型及实验研究方法等。这些都密切联系生产实际,以培养学生应用基本原理分析和解决化工单元操作中各种工程实际问题的能力,为专业课 学习和今后的工作打下坚实的基础。 2.教学目的: 《化工原理》属于工科课程,用自然科学的原理考察、解释和处理工程实际问题;研究方法主要是理论解析和理论指导下的实验研究。本课程强调工程观点、定量运算、实际技能和设计能力的训练。通过该课程的学习不仅要掌握以理论到实践所涉及的问题的研究方法,还注重培养学生综合运用所学知识分析问题、解决问题的能力。 二、课程的教学内容与基本要求 (一)教学内容: 1.绪论 化工过程与单元操作 ,单位与单位换算,物料衡算,能量衡算 2.流体流动与输送设备

流体静力学基本方程式:流体的物理性 质,静止流体的 压力,流体静力学基本方程式,流体静力学基本方程式的应用流体流动的基本方程:流 量、流速、稳态流动、非稳态流动的概念,连续性方程,柏努利方程,柏努利方程的应用流体流动现象 :流体流动类型,蕾诺数,管内流体速度分布,边界层的概念流体在管内的流动阻力:直管阻力,局部 阻力,总能量损失管路计算:简单管路计算,复杂管路计算流量测量:测速管,孔板流量计,文 丘里 流量计,转子流量计. 离心泵:工作原理,主要部件,离心泵的基本方程式 , 主要性能参数,特性曲线,允许安装高度,工 作点,流量调节,选型与使用其它类型液体输送机械:往复泵,旋转泵,旋涡泵,各类泵性能比较。气体输送和压缩机械:离心通风机、鼓风机、压缩机,旋转 鼓风机、压缩机,往复压缩机,真空泵 3.非均相物系的分离 颗粒及颗粒床层的特性:颗粒及 颗粒床层的特性,颗粒床层的特性,流体 通过床层的压降 沉降分离:重力沉降,离心沉降 过 滤:过滤基本方程式,恒压过滤,恒 速过滤,过滤常数的测定,过滤设备,过滤机的生产能力 4. 传热 概述:传热的基本方式,冷热 流体热交换方式,传热速率、热通量、稳态传热、非稳态传热的 概念,载热体及其选择 热传导:傅立叶定律,导热系数,通过平壁的稳态热传导,通过圆筒壁的稳 态热传导 对流传热概述:对流传热 速率方程,对流传热系数,对流传热机理,保温层的临界直径 传热过程计算:热量衡算,总传热速 率微分方程,总传热系数,平均温度差,总传热速率方程,总传热速率方程的应用,传热单元数法对流传热系数关联式:影响对流传热系数的因素,对流传热过程的 量

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理教学大纲

《化工原理》课程教学大纲 上册102 学时,下册60 学时 一、课程性质、目的和任务 《化工原理》课程是化工类及相近专业的一门主要技术基础课,它是综合运用数学、物理、化学等基础知识,分析和解决化工类型生产中各种物理过程(或单元操作)问题的工程学科,本课程担负着由理论到工程、由基础到专业的桥梁作用。该课程教学水平的高低,对化工类及相近专业学生的业务素质和工程能力的培养起着至关重要的作用。 本课程属工科科学,用自然科学的原理(主要为动量、热量与质量传递理论)考察、解释和处理工程实际问题,研究方法主要是理论解析和在理论指导下的实验研究,本课程强调工程观点、定量运算和设计能力的训练、强调理论与实际相结合,提高分析问题、解决问题的能力。学生通过本课程学习,应能够解决流体流动、流体输送、沉降分离、过滤分离、过程传热、蒸发、蒸馏、吸收、萃取和干燥等单元操作过程的计算及设备选择等问题,并为后续专业课程的学习奠定基础。 二、教学基本要求 《化工原理》课程在第五、六学期(四年制)开设。教材内容分为课堂讲授、学生自学和学生选读三部分,其中课堂讲授部分由教师在教学计划学时内进行课堂教学,作为基本要求内容;学生自学部分由学生在教师的指导下,利用课外时间进行自学,作为一般要求内容;学生选读部分由学生根据自己的兴趣及能力,进行课外选读,不作要求。 本课程教学计划总学时112学时,其中上册102学时(课堂讲授80学时,习题课18学时、课堂讨论2学时,机动2学时);下册60学时(课堂讲授56学时,课堂讨论2学时,机动2学时)。 本课程课件依照学时安排制作,每次课一个文件,内容包括每次课讲授内容,思考题及课后作业。每次课后留2~3个作业题,由学生独立完成,教师可根据情况布置综合练习题和安排习题讨论课。本课程每周安排课外答疑一次(3小时)。 三、教学内容 本课程主要内容包括: 1.流体流动。流体的重要性质;流体静力学;能量衡算方程及其应用;流体的流动现象;流动在管内的流动阻力;管路计算;流量测量。 2.流体输送机械。离心泵的工作原理、性能参数与特性曲线、流量调节以及安装;其他液体输送机械简介;气体输送机械简介。 3.机械分离与固体流态化。颗粒与颗粒床特性;重力沉降与离心沉降的原理和操作;过滤分离原理与设备。 4.液体搅拌。搅拌器的性能和混合机理;搅拌功率简介。 5.传热。传热概述;热传导;对流传热概述;传热过程计算;对流传热系数关联式;辐射传热简介;换热器简介。 6.蒸发。蒸发设备、流程与操作特点;单效蒸发计算;多效蒸发简介。 7.传质与分离过程概论。质量传递的方式;传质设备简介。 8.气体吸收。吸收过程的平衡关系;吸收过程的速率关系;低组成气体吸收的计算(包

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

相关文档