文档库 最新最全的文档下载
当前位置:文档库 › 通信原理课程设计——DSB调制解调系统设计与仿真通信原理

通信原理课程设计——DSB调制解调系统设计与仿真通信原理

通信原理课程设计——DSB调制解调系统设计与仿真通信原理
通信原理课程设计——DSB调制解调系统设计与仿真通信原理

通信原理课程设计

设计题目:DSB调制解调系统设计与仿真通信原理班级:

学生姓名:

学生学号:

指导老师:

目录

引言 (3)

1、课程设计目的 (3)

2、课程设计要求 (3)

一、DSB调制解调模型的建立 (4)

1、DSB信号的模型 (4)

2、DSB信号调制过程分析 (4)

3、高斯白噪声信道特性分析 (6)

4、DSB解调过程分析 (9)

5、DSB调制解调系统抗噪声性能分析 (10)

二、仿真过程 (13)

三、心得体会 (15)

四、参考文献 (15)

引言

本课程设计用于实现DSB信号的调制解调过程。信号的调制与解调在通信系统中具有重要的作用。调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。解调是调制的逆过程,即是将已调制的信号还原成原始基带信号的过程。信号的接收端就是通过解调来还原已调制信号从而读取发送端发送的信息。因此信号的解调对系统的传输有效性和传输可靠性有着很大的影响。调制与解调方式往往决定了一个通信系统的性能。双边带DSB信号的解调采用相干解调法,这种方式被广泛应用在载波通信和短波无线电话通信中。

1、课程设计目的

本课程设计是实现DSB的调制解调。在此次课程设计中,我们将通过多方搜集资料与分析,来理解DSB调制解调的具体过程和它在MATLAB中的实现方法。预期通过这个阶段的研习,更清晰地认识DSB的调制解调原理,同时加深对MATLAB这款通信仿真软件操作的熟练度,并在使用中去感受MATLAB的应用方式与特色。利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我们今后的自主学习研究提供具有实用性的经验。

2、课程设计要求

(1)熟悉MATLAB中M文件的使用方法,掌握DSB信号的调制解调原理,以此为基础用M文件编程实现DSB信号的调制解调。

(2)绘制出SSB信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB信号调制解调原理的理解。

(3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,由所得结果来分析噪声对信号解调造成的影响。

(4)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

一、DSB 调制解调模型的建立

1、DSB 信号的模型

在AM 信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流

0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。 DSB 调制器模型如图1所示。

图1 DSB 调制器模型

其中,设正弦载波为

0()cos()c c t A t ω?=+

式中,A 为载波幅度;c ω为载波角频率;0?为初始相位(假定0?为0)。

调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。

双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。相干解调的原理框图如图2所示:

图2 相干解调器的数学模型

信号传输信道为高斯白噪声信道,其功率为2

σ。

2、DSB 信号调制过程分析

假定调制信号()m t 的平均值为0,与载波相乘,即可形成DSB 信号,其时域表达式为

()cos DSB c s m t t ω=

式中,()m t 的平均值为0。DSB 的频谱为

()1

[()()]2

DSB c c s M M ωωωωω=++-

DSB 信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信

号, 需采用相干解调(同步检波)。另外,在调制信号()m t 的过零点处,高频载波相位有180°的突变。

除了不再含有载频分量离散谱外,DSB 信号的频谱与AM 信号的频谱完全相同,仍由上下对称的两个边带组成。所以DSB 信号的带宽与AM 信号的带宽相同,也为基带信号带宽的两倍, 即

2DSB AM H B B f ==

式中,H f 为调制信号的最高频率。 调制信号产生的代码及波形为

clf; %清除窗口中的图形 ts=0.01; %定义变量区间步长 t0=2; %定义变量区间终止值 t=-t0+0.0001:ts:t0; %定义变量区间 fc=10; %给出相干载波的频率 A=1; %定义输入信号幅度 fa=1; %定义调制信号频率 mt=A*cos(2*pi*fa.*t); %输入调制信号表达式 ct=cos(2*pi*fc.*t); %输入调制信号表达式 psnt=mt.*cos(2*pi*fc.*t); %输出调制信号表达式 subplot(3,1,1); %划分画图区间 plot(t,mt,'g'); %画出输入信号波形

title('输入信号波形'); xlabel('Variable t'); ylabel('Variable mt'); subplot(3,1,2);

plot(t,ct,'b'); %画出输入信号波形 title('输入载波波形'); xlabel('Variable t'); ylabel('Variable ct'); subplot(3,1,3);

plot(1:length(psnt),psnt,'r');

%length 用于长度匹配 title('已调信号波形'); %画出已调信号波形 xlabel('Variable t'); ylabel('Variable psnt'); 运行结果:

-2

-1.5

-1

-0.5

00.5

1

1.5

2

-1-0.500.51

输入信号波形

Variable t V a r i a b l e m t

-2

-1.5

-1

-0.5

00.5

1

1.5

2

-1-0.500.51

输入载波波形

Variable t V a r i a b l e c t

50

100

150

200250

300

350

400

-2-1012

已调信号波形

Variable t

V a r i a b l e p s n t

图3 调制信号、载波、已调信号波形

3、高斯白噪声信道特性分析

在实际信号传输过程中,通信系统不可避免的会遇到噪声,例如自然界中的各种电磁波噪声和设备本身产生的热噪声、散粒噪声等,它们很难被预测。而且大部分噪声为随机的高斯白噪声,所以在设计时引入噪声,才能够真正模拟实际中信号传输所遇到的问题,进而思考怎样才能在接受端更好地恢复基带信号。信道加性噪声主要取决于起伏噪声,而起伏噪声又可视为高斯白噪声,因此我在此环节将对双边带信号添加高斯白噪声来观察噪声对解调的影响情况。

为了具体而全面地了解噪声的影响问题,我们将分别引入大噪声(信噪比为20dB )与小噪声(信噪比为2dB )作用于双边带信号,再分别对它们进行解调,观察解调后的信号受到了怎样的影响。

在此过程中,我用函数randn 来添加噪声,此函数功能为向信号中添加噪声功率为其方差的高斯白噪声。

正弦波通过加性高斯白噪声信道后的信号为

()cos()()c r t A t n t ωθ=++

故其有用信号功率为

2

2

A S =

噪声功率为

2N σ=

信噪比S

N

满足公式

1010log ()S

B N

=

则可得到公式

22

10

210

B A σ=

?

我们可以通过这个公式方便的设置高斯白噪声的方差。

为了便于比较,我们显示了双边带信号加入两种噪声后的时频波形图。实现代码和波形如图4: clf; %清除窗口中的图形 ts=0.01; %定义变量区间步长 t0=2; %定义变量区间终止值 t=-t0+0.0001:ts:t0; %定义变量区间 fc=10; %给出相干载波的频率 A=1; %定义输入信号幅度 fa=1; %定义调制信号频率 mt=A*cos(2*pi*fa.*t);

%输入调制信号表达式

xzb=2; %输入小信躁比(dB) snr=10.^(xzb/10);

[h,l]=size(mt); %求调制信号的维数 fangcha=A*A./(2*snr); %由信躁比求方差 nit=sqrt(fangcha).*randn(h,l);

%产生小信噪比高斯白躁声

psmt=mt.*cos(2*pi*fc.*t); %输出调制信号表达式 psnt=psmt+nit;

%输出叠加小信噪比已调信号波形

xzb=20; %输入大信躁比(dB) snr1=10.^(xzb/10);

[h,l]=size(mt); %求调制信号的维数 fangcha1=A*A./(2*snr1); %由信躁比求方差 nit1=sqrt(fangcha1).*randn(h,l); %产生大信噪比高斯白躁声 psnt1=psmt+nit1; %输出已调信号波形 subplot(2,2,1); %划分画图区间 plot(t,nit,'g'); %画出输入信号波形

title('小信噪比高斯白躁声'); xlabel('Variable t'); ylabel('Variable nit');

subplot(2,2,2);

plot(t,psnt,'b');

title('叠加小信噪比已调信号波形');

xlabel('Variable t');

ylabel('Variable psnt');

subplot(2,2,3);

plot(t,nit1,'r'); %length用于长度匹配

title('大信噪比高斯白躁声'); %画出输入信号与噪声叠加波形xlabel('Variable t');

ylabel('Variable nit');

subplot(2,2,4);

plot(t,psnt1,'k');

title('叠加大信噪比已调信号波形'); %画出输出信号波形

xlabel('Variable t');

ylabel('Variable

psmt');

-2-1.5-1-0.500.51 1.52

-2

-1.5

-1

-0.5

0.5

1

1.5

2

小信噪比高斯白躁声

Variable t

V

a

r

i

a

b

l

e

n

i

t

-2-1.5-1-0.500.51 1.52

-3

-2

-1

1

2

3

叠加小信噪比已调信号波形

Variable t

V

a

r

i

a

b

l

e

p

s

n

t

-2-1.5-1-0.500.51 1.52

-0.03

-0.02

-0.01

0.01

0.02

0.03

大信噪比高斯白躁声

Variable t

V

a

r

i

a

b

l

e

n

i

t

-2-1.5-1-0.500.51 1.52

-1.5

-1

-0.5

0.5

1

1.5

叠加大信噪比已调信号波形

Variable t

V

a

r

i

a

b

l

e

p

s

m

t

图4 不同信噪比的噪声及含噪声的已调波形

可以清晰地看出,加大噪声后,解调信号的波形杂乱无章,起伏远大于加小噪声时的波形。

造成此现象的原因是当信噪比较小时,噪声的功率在解调信号中所占比重较大,所以会造成杂波较多的情况;而信噪比很大时,噪声的功率在解调信号中所占比重就很小了,噪声部分造成的杂乱波形相对就不是很明显,甚至可以忽略。

综上所述,叠加噪声会造成解调信号的失真,信噪比越小,失真程度越大。所以当信噪比低于

一定大小时,会给解调信号带来严重的失真,导致接收端无法正确地接收有用信号。所以在解调的实际应用中,应该尽量减少噪声的产生。

4、DSB 解调过程分析

所谓相干解调是为了从接收的已调信号中,不失真地恢复原调制信号,要求本地载波和接收信号的载波保证同频同相。相干解调的一般数学模型如图所示。

图5 DSB 相干解调模型

设图四的输入为DSB 信号

0()()()cos()m DSB c S t S t m t t ω?==+

乘法器输出为

000()()()cos()cos()

1

()[cos()cos(2)]2

DSB c c c t S t m t t t m t t ρω?ω???ω??==++=

-+++

通过低通滤波器后

001

()()cos()2

m t m t ??=

- 当0??==常数时,解调输出信号为

01

()()2

m t m t =

大小不同信噪比的解调波形,如图6:

200

250300

350400450500550600

-500

50

大信噪比解调信号波形

Variable t

V a r i a b l e j t

200

250300350

400450500550600

-500

50

小信噪比解调信号波形

Variable t

V a r i a b l e j t 1

图6 不同信噪比解调波形

5、DSB 调制解调系统抗噪声性能分析

由于加性噪声只对已调信号的接收产生影响,因而调制系统的抗噪声性能主要用解调器的抗噪声性能来衡量。为了对不同调制方式下各种解调器性能进行度量,通常采用信噪比增益G (又称调制制度增益)来表示解调器的抗噪声性能。

有加性噪声时解调器的数学模型如图7所示。

图7 有加性噪声时解调器的数学模型

图7中()m t S 为已调信号,()n t 为加性高斯白噪声。 ()m t S 和()n t 首先经过带通滤波器,滤出有用信号,滤除带外的噪声。经过带通滤波器后到达解调器输入端的信号为()m t S 、噪声为高斯窄带噪声()i n t ,显然解调器输入端的噪声带宽与已调信号的带宽是相同的。最后经解调器解调输出的有用信号为()o m t ,噪声为()o n t 。

图8 有加性噪声时解调器的数学模型

设解调器输入信号为

()()cos m c s t m t t ω=

与相干载波cos c t ω相乘后,得

211

()cos ()()cos 222

c c m t t m t m t t ωω=

+ 经低通滤波器后,输出信号为

1

()()2o m t m t =

因此,解调器输出端的有用信号功率为

2

2

1()()4

o o S m t m t ==

解调DSB 信号时,接收机中的带通滤波器的中心频率o ω与调制载频c ω相同,因此解调器输出端的窄带噪声()i n t 可表示为

()()cos ()sin i c c s c n t n t t n t t ωω=-

它与相干载波相乘后,得

()cos [()cos ()sin ]

11

()[()cos 2()sin 2]22

i c c c s c c c c s c n t t n t t n t t n t n t t n t t ωωωωω=-=+- 经低通滤波器后,解调器最终的输出噪声为

1

()()2

o c n t n t =

故输出噪声功率为

2211

()()44

o o c o N n t n t n B ==

= 这里,2H B f =,为DSB 信号的带通滤波器的带宽。 解调器输入信号平均功率为

2

22

1()[()cos ]()2

i c m S s t m t t m t ω===

可得解调器的输入信噪比

21()2

i i o m t S N n B

=

同时可得解调器的输出信噪比

2

21()()414

o o o i m t S m t N n B N ==

因此制度增益为

2o

o DSB i i

S N G S N =

= 由此可见,DSB 调制系统的制度增益为2。也就是说DSB 信号的解调器使信噪比改善了一倍。这是因为采用相干解调,使输入噪声中的正交分量()s n t 被消除的缘故。

二、仿真过程

源程序:

clf; %清除窗口中的图形

ts=0.01; %定义变量区间步长

t0=2; %定义变量区间终止值

t=-t0+0.0001:ts:t0; %定义变量区间

fc=10; %给出相干载波的频率

A=1; %定义输入信号幅度

fa=1; %定义调制信号频率

mt=A*cos(2*pi*fa.*t); %输入调制信号表达式

xzb=20; %输入信噪比(dB)

snr=10.^(xzb/10);

[h,l]=size(mt); %求调制信号的维数fangcha=A*A./(2*snr); %由信躁比求方差

nit=sqrt(fangcha).*randn(h,l); %产生高斯白噪声

snit=mt+nit; %调制信号与噪声叠加psmt=mt.*cos(2*pi*fc.*t); %输出调制信号表达式pnit=nit.*cos(2*pi*fc.*t); %输出噪声表达式

psnt=psmt+pnit; %输出已调信号波形

jic=psnt.*cos(2*pi*fc.*t); %调制信号乘以相干载波ht=(2*pi*fc.*sin(2*pi*fc.*t)./(2*pi*fc.*t))./pi; %低通滤波器的时域表达式htw=abs(fft(ht)); %低通滤波器的频域表达式jt=conv(ht,jic); %解调信号的时域表达式subplot(3,3,1); %划分画图区间

plot(t,mt,'g'); %画出输入信号波形

title('输入信号波形');

xlabel('Variable t');

ylabel('Variable mt');

subplot(3,3,2);

plot(t,nit,'b');

title('输入噪声波形');

xlabel('Variable t');

ylabel('Variable nit');

subplot(3,3,3);

plot(1:length(snit),snit,'r'); %length用于长度匹配

title('输入信号与噪声叠加波形'); %画出输入信号与噪声叠加波形xlabel('Variable t');

ylabel('Variable snit');

subplot(3,3,4);

plot(t,psmt,'k');

title('输出信号波形'); %画出输出信号波形

xlabel('Variable t');

ylabel('Variable psmt');

subplot(3,3,5);

plot(t,pnit,'k');

title('输出噪声波形'); %画出输出噪声波形

xlabel('Variable t');

ylabel('Variable pnit');

subplot(3,3,6);

plot(t,psnt,'k');

title('输出信号与输出噪声叠加波形'); %画出输出信号与输出噪声叠加波形xlabel('Variable t');

ylabel('Variable psnt');

subplot(3,3,7);

plot(1:length(htw),htw,'k');

title('低通滤波器频域波形'); %画出低通滤波器频域波形

xlabel('Variable w');

ylabel('Variable htw');

axis([0 60 0 150]);

subplot(3,3,8);

plot(1:length(ht),ht,'k');

title('低通滤波器时域波形'); %画出低通滤波器时域波形

xlabel('Variable t');

ylabel('Variable psnt');

axis([150 250 -20 25]); %给出坐标轴范围

subplot(3,3,9);

plot(1:length(jt),jt,'k');

title('输出信号与输出噪声叠加波形'); %画出输出信号与输出噪声叠加波形xlabel('Variable t');

ylabel('Variable jt');

axis([200 600 -50 50]);

仿真结果

-2

-1

012

-1-0.500.51

输入信号波形

Variable t V a r i a b l e m t

-2

-1

012

-0.2-0.100.10.2

输入噪声波形

Variable t V a r i a b l e n i t

100

200300400-2-1012

输入信号与噪声叠加波形

Variable t

V a r i a b l e s n i t

-2

-1

012

-1-0.500.51输出信号波形

Variable t

V a r i a b l e p s m t

-2

-1

012

-0.2-0.100.10.2输出噪声波形

Variable t

V a r i a b l e p n i t

-2

-1

012-2-1012

输出信号与输出噪声叠加波形

Variable t

V a r i a b l e p s n

t

204060

50

100150

低通滤波器频域波形Variable w

V a r i a b l e h t

w

150

200250

-20-1001020

低通滤波器时域波形Variable t

V a r i a b l e p s n

t

200

300

400500600

-500

50

输出信号与输出噪声叠加波形

Variable t

V a r i a b l e j t

图9 仿真结果

三、心得体会

通过这次的课程设计,我们觉得最大的收获就是既了解了噪声对信号传输的影响,又回顾了MATLAB的相关知识。在代码的编制过程中,我分了三步走。第一步,给出一个确定的噪声信号,并观察其对有用信号的影响;第二步,对信号进行调制,采用的方法是将信号乘以一个相干载波;第三步,对调制信号进行解调,其中涉及到一个低通滤波器的设计。虽然有函数可以直接实现这个功能,但我们都没有用,而是自己动手设计。我们的基本思路是由低通滤波器的频域特性,通过傅里叶逆变换,得到低通滤波器的时域表达式,进而通过频域和时域的对称性,得到解调信号,通过仿真可直观的看出解调信号和原信号的波形。

其次,在这次课程设计中,我们第一次明白了零点的重要性。尤其是在一个自变量作为分母时,必须加上任意一个无穷小数,使其跨过零点。而且,也正是由于这次课程设计,我们学会了如何在WORD里面书写一些数学表达式,比如说平均值之类的表示方法。

一周的设计,在时间上来说是很短的,可是它恰好可以让我们更明白,其实知识是要适应社会发展,我们要学会的不仅是现在的知识,更重要的是以后我们在短时间内如何获得我们所要的知识。每次课程设计我们都会用到新软件,平时从未听说过,更不用说是学过了、用过了,可是经过几次课程设计我们更适应应急学习应用软件了,也许时间会让我们忘记我们现在所学的知识,可是我们不会忘记这种学习方法和思想。

但是,当我刚拿到课题的时候,确实不知道如何下手,觉得什么都知道,可是又不能将其具体化,但是我坚信,老师既然布置了这项任务,就说明我们一定可以实现它,所以我也非常努力的去做,整整花了个上午的时间去调试代码,终于还是功夫不负有心人。世上很多事情,不是因为难以做到,我们才失去信心;相反,是因为我们失去了信心,事情才显得难以做到。是的,我们得承认,我们还很多很多的东西不知道,但我们可以努力,努力可能得到我们想要的,但是不努力一定得不到;优秀的人到处是,努力的人也随时可以看到,我们可以通过努力使自己变得更优秀。努力是希望的代价,希望是努力的动力。

在整整一个星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

四、参考文献

1、樊昌信,曹丽娜。通信原理(第六版)。国防工业出版社。

2、孙祥,徐流美,吴清。MATLAB 6.5基础教程。北京:清华大学出版社。

3、唐向宏,岳恒立,邓雪峰。MATLAB 及在电子信息类课程中的应用。电子工业出版社。

通信原理课程设计报告书

通信原理课程设计 题目:脉冲编码调制(PCM)系统设计与仿真 院(系):电气与信息工程学院 班级:电信04-6班 姓名:朱明录 学号: 0402020608 指导教师:赵金宪 教师职称:教授

摘要 : SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制(PCM )是现 代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进行分析。 关键词: PCM 编译码 1、引言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView 具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。 SystemView 具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 本文主要阐述了如何利用SystemView 实现脉冲编码调制(PCM )。系统的实现通过模块分层实现,模块主要由PCM 编码模块、PCM 译码模块、及逻辑时钟控制信号构成。通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。 2、系统介绍 PCM 即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM 的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT 的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,我国采用了A 律方式,由于A 律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。 图1 PCM 原理框图 下面将介绍PCM 编码中抽样、量化及编码的原理: (a) 抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (b) 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电

数字通信课程设计

吉林工程技术师范学院 信息工程学院 《数字通信系统》 课程设计报告 题目:基于MATLAB数字基带调制 专业:电子信息工程 班级:电子信息1041班 姓名:唐欢 学号: 25 号 指导教师:范珩王冬梅 时间: 2013/11/25----2013/12/13

目录 第一章绪论 (1) 1.1通信的发展史简介 (1) 1.2设计的目的及意义 (2) 第二章数字基带信号 (3) 2.1数字基带调制原理 (3) 2.2单极性不归零波形 (4) 2.3双极性不归零波形 (4) 2.4单极性归零波形 (5) 2.5双极性归零波形 (6) 第三章载波调制的数字传输 (7) 3.1载波调制的原理 (7) 3.2 二进制2ASK的调制与解调仿真 (8) 3.3二进制2FSK的调制与解调仿真 (15) 3.4二进制2PSK的调制与解调仿真 (20) 第四章总结 (25) 参考文献.............................................. I 附录:................................................ I

第一章绪论 1.1通信的发展史简介 随着数字通信技术和计算机技术的快速发展以及通信网与计算机网络的相互融合,信息科学技术已成为21世纪和世界的新的强大推动力。信息是一种资源,只有通过广泛的传播与交流,才能产生利用价值,而欣喜的传播与交流,是依靠各种通信方式与技术来实现的。学习和掌握现代通信原理与技术是信息社会每一位成员,尤其是未来通信工作者的迫切需求。 通信就是从一地向另一地传递消息。通信的目的是传递消息中所包含的信息。人们可以用语言、文字、数据、图片或活动图像等不同形式的消息来表达信息。信息是消息的内涵,即消息中所包含的人们原来不知而待知的内容于传输含有信息的消息,否则,就失去了通信的意义。实现通信的方式很多,如手势、语言、旌旗、消息树、烽火台、金鼓和译码传令,以及现代社会的电报、电话、广播、电视、遥控、遥测、因特网、数据和计算机通信等,这些都是消息传递方式和信息交流的手段。随着社会的进步和科学技术的发展,目前使用最广泛的通信方式是电通信。由于电通信迅速、准确、可靠且不受时间、地点、距离的限制,自然科学领域凡是涉及“通信”这一术语时,一般均值“电通信”。 通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1-1所示。

GFSK的调制解调原理

G F S K的调制和解调原理 高斯频移键控GFSK(GaussfrequencyShiftKeying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency-shiftkeying)。但FSK带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz频段的带宽较窄,因此在低数据速率应用中,GFSK调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调频。由于通常调制信号都是加在PLL频率合成器的VCO上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK调制特 另一部分则加在PLL的主分频器一端(基于PLL技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO进行分频)。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量,不受环路带宽的影响。但是,两点调制增加了GFSK调制指数控制的难度。

通信原理课程设计报告书

通信原理课程设计 ______ 学号_______ 班级_____

目录 一、目录 (2) 二、任务书 (3) 三、具体容及要求 (4) 3.1 题目一 (4) 3.1.1题目容 (4) 3.1.2设计思想或方法 (4) 3.1.3实现的功能或方法 (4) 3.1.4程序流程图 (4) 3.1.5程序代码 (5) 3.1.6仿真框图 (5) 3.1.7模块描述及参数设置 (5) 3.1.8结果运行…………………………………………………………… 10 3.1.9结果分析…………………………………………………………… 11 3.2 题目二………………………………………………………………… 11 3.2.1题目容 (11) 3.2.2设计思想或方法…………………………………………………… 11 3.2.2程序流程图 (12) 3.2.4程序代码…………………………………………………………… 13 3.2.5仿真框图…………………………………………………………… 13 3.2.6模块描述及参数设置………………………………………………… 14 3.2.7结果运行…………………………………………………………… 20 3.2.8结果分析…………………………………………………………… 20

3.3 题目三………………………………………………………………… 20 3.3.1题目容 (20) 3.3.2设计思想或方法 (20) 3.2.3程序流程图 (21) 3.2.4程序代码 (21) 3.2.5结果运行 (23) 3.2.6结果分析 (23) 四、心得与体会 (23) 五、参考文献 (23) 《通信原理课程设计》任务书 一、目的和要求: 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 二、实验环境 PC机、Matlab/Simulink 三、具体容及要求 (1)试用Matlab/Simulink研究BPSK在加性高斯白噪声信道下的误码率性能与信 噪比之间的关系; (2)试用Matlab/Simulink研究BPSK+信道编码(取汉明码)在加性高斯白噪声信 道下的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。 (3)试用Matlab编程实现HDB3码的编解码过程,并画出1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0的原始、编码和解码图形。 四、提交设计报告

通信原理课程设计

通信原理课程设计 --基于FPGA的时分多路数字基带传输系统的设计与开发 指导老师:戴慧洁武卫华 班级:通信111班 组长:徐震震 组员:胡彬、韦景山、谢留香、 徐勇、周晶晶、张秋红 日期:

一、课程设计目的 通信系统课程设计是一门综合设计性实践课程。使大家在综合已学现代通信系统理论知识的基础上,借助可编程逻辑器件及EDA技术的灵活性和可编程性,充分发挥自主创新意识,在规定时间内完成符合实际需求的通信系统电路设计与调试任务。 它不仅能够提高大家对所学理论知识的理解能力,更重要的是能够提高和挖掘大家对所学知识的实际运用能力,为将来进入社会从事相关工作奠定较好的“能力”基础。 二、课程设计内容 时分多路数字电话基带传输系统的设计与开发 三、课程设计要求任务 1、64Kb/S的A律PCM数字话音编译码器的开发设计 2、PCM 30/32一次群时分复接与分接器的开发设计 3、数字基带编码HDB3编译码器的开发设计 4、同步(帧、位、载波同步(可选))电路的开发设计

四、小组分工 小组成员负责项目 徐震震同步(帧同步、位同步) 谢留香PCM 30/32一次群时分复接 韦景山64Kb/S的A律PCM数字话音编码 胡彬PCM 30/32一次群时分分接 徐勇64Kb/S的A律PCM数字话音译码 周晶晶数字基带编码HDB3译码 张秋红数字基带编码HDB3编码 五、时分多路数字电话基带传输系统框图

PCM编码设计 一、设计要求 1、PCM编码器输入信号为: 一个13位逻辑矢量的均匀量化值:D0,D1…D12 其中:D0为极性位,取值范围在-4096~+4096之间; 一个占空比为1/32的8K/S的取样时钟信号; 一个占空比为50%的2.048Mb/S的合路时钟信号; 2、PCM编码器输出信号为: 一个8位逻辑矢量的13折线非均匀量化值:C0,C1…C7 其中:C0为极性位.C0=1为正,C0=0为负; 一个占空比为1/32的8K/S的取样时钟信号; 一个占空比为50%的2.048Mb/S的合路时钟信号; 二、PCM编码分析 脉冲编码调制(PCM)在通信系统中完成将语音信号数字化功能。是一种对模拟信号数字化的取样技术,将模拟信号变换为数字信号的编码方式,特别是对于音频信号。PCM 对信号每秒钟取样8000 次;每次取样为8个位,总共64kbps。PCM的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,本设计采用了A律方式。 在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示

通信原理课程设计(1)

通信原理课程设计报告 题目:基于MATLAB 的M-QAM调 制及相干解调的设计与仿真班级:通信工程1411 姓名:杨仕浩(2014111347) 解博文(2014111321) 介子豪(2014111322) 指导老师:罗倩倩 成绩: 日期:2016 年12 月21 日

基于MATLAB的M-QAM调制及相干解调的设计与仿真 摘要:正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在自适应信道调制技术中得到了较多应用。本次课程设计主要运用MATLAB软件对M =16 进制正交幅度调制系统进行了仿真,从理论上验证16进制正交幅度调制系统工作原理,为实际应用和科学合理地设计正交幅度调制系统,提供了便捷、高效、直观的重要方法。实验及仿真的结果证明,多进制正交幅度调制解调易于实现,且性能良好,是未来通信技术的主要研究方向之一,并有广阔的应用前景。 关键词:正交幅度调制系统;MATLAB;仿真

目录 1引言 (1) 1.1课程设计的目的 (1) 1.2课程设计的基本任务和要求 (1) 1.3仿真平台Matlab (1) 2 QAM系统的介绍 (2) 2.1正交幅度调制技术 (2) 2.2QAM调制解调原理 (5) 2.3QAM的误码率性能 (7) 3 多进制正交幅度(M-QAM)调制及相干解调原理框图 (9) 4 基于MATLAB的多进制正交幅度(M-QAM)调制及相干解调设计与仿真 (10) 4.1系统设计 (10) 4.2随机信号的生成 (10) 4.3星座图映射 (11) 4.4波形成形(平方根升余弦滤波器) (13) 4.5调制 (14) 4.6加入高斯白噪声之后解调 (15) 5 仿真结果及分析 (20) 6 总结与体会 (23) 6.1总结 (23) 6.2心得体会 (24) 【参考文献】 (25) 附录 (26)

《通信原理课程设计》

信息工程学院 2014 / 2015学年第一学期 课程设计报告 课程名称:通信原理课程设计 专业班级:统本电信1201 学生学号:12610304152213 12520527151362 学生姓名:陈钰康 夏涛 指导教师:田亚楠

摘要 8PSK(8 Phase Shift Keying,8移相键控)是八进制相移键控,它是一种相位调制算法。相位调制(调相)是频率调制(调频)的一种演变,载波的相位被调整用于把数字信息的比特编码到每一词相位改变(相移)。 8PSK中的“PSK”表示使用移相键控方式,移相键控是调相的一种形式,用于表达一系列离散的状态,8PSK对应8种状态的PSK。如果是其一半的状态,即4种,则为QPSK,如果是其2倍的状态,则为16PSK。因为8PSK拥有8种状态,所以8PSK每个符号(symbol)可以编码3个比特(bits)。8PSK抗链路恶化的能力(抗噪能力)不如QPSK,但提供了更高的数据吞吐容量。本次课程设计过程中,利用了MATLAB7.1仿真实现了8PSK信号的调制与解调,并仿真8PSK载波调制信号在高斯白噪声信道下的误码率及误比特率性能,并用MATLAB仿真出了调制信号、载波信号及已调信号的波形图和频谱图。并在高斯白噪声下,讨论了8PSK 误码率及误比特率性能。 关键字:8PSK;载波的调制;解调;

目录 一.设计内容及要求(PSK信号的仿真) (1) 二.相关理论知识的论述分析 (1) 2. 1.1、8PSK的概念 (1) 2. 1.2、8PSK的特点 (1) 2.2.1、 PSK的调制 (2) 2.2.2、调制的概念 (2) 2.2.3、调制的种类 (2) 2.2.4、调制的作用 (3) 2.2.5、调制方式 (3) 三.系统原理框图及分析(8PSK的原理) (3) 四.完整的设计仿真过程 (4) 五.仿真结果输出及结论 (6) 六.仿真调试中出现的错误、原因及排除方法 (7) 七.总结本次设计,指出设计的核心及应用价值,提出改进意见和展望 (7) 八.收获、体会 (7) 九.参考文献 (8)

通信原理课设-基于Systemview的通信系统的仿真

目录 第1章绪论 (1) 第2章 SystemView的基本介绍 (2) 第3章二进制振幅键控 2ASK (4) 3.1 2ASK调制系统 (4) 3.2 2ASK调制解调系统 (6) 3.3 2ASK系统仿真结果分析 (9) 第四章二进制频移键控 2FSK (10) 4.1 2FSK调制系统 (10) 4.2 2FSK调制解调系统 (12) 4.3 2FSK仿真结果分析 (17) 第5章二进制移相键控 2PSK (18) 5.1 2PSK调制系统 (18) 5.2 2PSK调制解调系统 (19) 5.3 2PSK仿真结果分析 (23) 第6章二进制差分移相键控 2DPSK (24) 6.1 2DPSK实验原理 (24) 6.2 2DPSK仿真结果分析 (29) 第7章实验总结 (30) 第8章参考文献 (30) 第9章谢辞 (32)

第1章绪论 通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 本次课程设计的目的是在学习以上三种调制的基础上,通过Systemview仿真软件,实现对2ASK,2FSK,2PSK,2DPSK等数字调制系统的仿真,同时对以上系统有深入的了解。 Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。 在此次课程设计之前,先学会熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。

通信原理课程设计

通信原理课程设计 院(系):通信工程系 班级:通信10-1班 姓名: 学号: 1 课程设计要求

产生两路模拟语音信号,经过pcm编码、时分复用、DPSK调制经过同一个信道单向传输到对应的接收端。常用的三个模块;simulink、通信模块、信号处理模块。 2 数字通信系统的组成原理说明 通常,按照信道中传输的是模拟信号还是数字信号,相应的把通信系统分为模拟通信系统和数字通信系统。又因数字通信系统拥有如下特点:⑴抗干扰能力强,无噪声积累。⑵保密性能好。⑶便于组成现代化数字通信网,便于实现多媒体通信。得到了广泛的应用。 实现数字通信,首先必须使发送端发出的模拟信号变为数字信号,这个过程称为“模数转换”。模拟信号数字化最基本的方法有三个过程,第一步是“抽样”,就是对连续的模拟信号进行离散化处理,可以以相等的时间间隔来抽取模拟信号的样值,也可以不等间隔抽取。第二步是“量化”,将模拟信号样值变换到最接近的数字值。因抽样后的样值在时间上虽是离散的,但在幅度上仍是连续的,量化过程就是把幅度上连续的抽样也变为离散的。第三步是“编码”,就是把量化后的样值信号用一组二进制数字代码来表示,最终完成模拟信号的数字化。数字信号送入数字网进行传输。在传输数字信号时候,为了提高传输质量,提高传输的可靠性,通常要进行调制,调制的方式有多种,例如二进制相移键控2PSK,二进制频移键控2FSK,二进制振幅键控2ASK,差分二进制相移键控2DPSK 等等。为了提高传输是新到的利用率,在调制之前,可将多路信号进行复用,包括频分复用,时分复用等等,通常数字通信系统中常用的的是时分复用。在接收端则是一个还原过程,把接收到得信号进行解调制,解复用申城多路数字信号。再把每一路数字信号解码变为模拟信号,即“数模转换”,从而再现原始信号。数字通信系统模型如图所示。 3 PCM基本原理

GFSK的调制解调原理

GFSK 的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK 带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK 调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK 调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调 频。由于通常调制信号都是加在PLL 频率合成器的VCO 上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK 调制特性,提出了一种称为两点调制的直接调频技术。 uc 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL 的VCO 端,另一部分则加在PLL 的主分频器一端(基于PLL 技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO 进行分频 )。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK 信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量, 鉴频器 PD 环路低通滤波器LF 压控振荡器VCO 载波信号 调制信号ui 调频信号uo 主分频器

通信原理课程设计报告2

¥ 课程设计报告? < 课程名称通信原理 设计题目 DSB与2ASK调制与解调 专业通信工程 班级 学号 姓名 完成日期 …

课程设计任务书 设计题目:DSB与2ASK调制与解调 设计内容与要求: 设计内容: 1.根据DSB的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 2. 根据ASK的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 3.在设计过程中分析信号变化的过程和思考仿真过程的设计原理。 ; 设计要求: 1.独立完成DSB与ASK的调制与解调; 2.运用仿真软件设计出DSB与ASK的调制线路 3.分析信号波形和频谱 指导教师:范文 2012年12月16日 课程设计评语 ( 成绩: 指导教师:_______________

年月日

一.调制原理: 调制: 将各种数字基带信号转换成适于信道传输的数字调制信号(已调信号或频带信号); 时域定义:调制就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 频域定义:调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复为基带信号的反过程. 根据所控制的信号参量的不同,调制可分为: 调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。 调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。 调相,利用原始信号控制载波信号的相位。 调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的代通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。

2FSK调制解调通信原理课程设计

` 课程设计报告 课程名称:通信系统课程设计 设计名称:2FSK调制解调仿真实现 姓名: 学号: 班级: 指导教师: 起止日期:

课程设计任务书 学生班级:学生姓名:学号: 设计名称:2FSK调制解调仿真实现 起止日期:指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

2FSK 的调制解调仿真实现 一、 设计目的和意义 1、 熟练地掌握matlab 在数字通信工程方面的应用。 2、 了解信号处理系统的设计方法和步骤。 3、 理解2FSK 调制解调的具体实现方法,加深对理论的理解,并实现2FSK 的调制解调,画出各个阶段的波形。 4、 学习信号调制与解调的相关知识。 5、 通过编程、调试掌握matlab 软件的一些应用,掌握2FSK 调制解调的方法,激发学习和研究的兴趣; 二、 设计原理 1.2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ z

FM调制解调原理

频率调制信号的表示式为:()cos[()]t m c S t A t kfm d ωττ-∞ =+ ? 其中,kf 为 调频灵敏度,m(t)为调制信号。从公式出发即可完成频率调制的程序。 调频信号的解调方法通常是采用鉴频法。方框图如图所示 其中鉴频器包括微分电路和包络检波。 在模拟信号的调频程序中,先对输入参量的个数做出判断,少于则运行默认的。然后对信号进行调制,这里采样的调制信号是最简单的正弦信号,当然也可以为其他信号。调制过程中,积分是根据积分的定义编写的一段程序。在对已调信号进行解调前加入了噪声。解调过程中的微分同样的根据定义编写的,当然也可以采用MATLAB 里自带的函数diff 。在经过包络检波后对幅值做出了一定的修正。 下图是调频信号的时域频域波形。经过调频之后的信号频谱不仅发生了频谱搬移还增加了频率分量。

下图绿色的是小信噪比条件下的解调波形,可以发现信噪比对解调的影响。 而在语音信号的调频中,积分采用cumsum来完成,微分采用diff。因为经过调试发现,采用根据定义编写的程序由于循环运行需

要很多时间。另外,在经过微分器后,包络检波和低通这段和幅度调制的非相干解调一样,所以也可以在经过微分后调用AM包络检波的程序。对于调频信号来说,都会存在门限效应,使之在小信噪比情况下无法恢复出原来的调制信号。所以语音信号的调制解调是在很大信噪比情况下。

下面是语音信号调制解调的时域频域图。观看频谱可以看到调制信号的频谱相对于输入信号,发生了频谱搬移,还有在fc处多了一个冲激。 另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。 参考文献: [1]樊昌信,曹丽娜。通信原理。国防工业出版社。 [2] Santosh, the LNM IIT Jaipur (India).陈丽丹。FM调制解调系统设计与仿真

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

通信原理设计报告(7_4)汉明码的编解码设计

目录 前言...............................................................1第1章设计要求.................................................3第2章 QuartusⅡ软件介绍.......................................4第3章汉明码的构造原理........................................6 3.1 (7,4)汉明码的构造原理........................................6 3.2 监督矩阵H与生成矩阵G.........................................7 3.3 校正子(伴随式S)..............................................8第4章(7,4)汉明码编码器的设计............................10 4.1 (7,4)汉明码的编码原理及方法.................................10 4.2 (7,4)汉明码编码程序的设计...................................10 4.3 (7,4)汉明码编码程序的编译及仿真.............................11第5章(7,4)汉明码译码器的设计...........................12 5.1 (7,4)汉明码的译码方法......................................12 5.2 (7,4)汉明码译码程序的设计..................................13 5.3 (7,4)汉明码译码程序的编译及仿真............................15第6章(7,4)汉明码编译码器的设计........................17 6.1 (7,4)汉明码编译码器的设计..................................17参考文献.........................................................18体会与建议.......................................................19附录..............................................................20

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理课程设计心得体会

通信原理课程设计心得体会 、时分解复用原理 为了提高信道利用率,使多路已抽样的信号组合起来沿同一信道传输而互相不干扰,称时分多路复用。时分复用的解调过程称为时分解复用。目前采用较多的是频分多路解复用和时分多路解复用。频分多路解复用用于模拟通信,而时分多路解复用用于数字通信。为了实现TDM传输,要把传输时间分成若干个时隙,在每个时隙内传输一路信号,将若干个原始的脉冲调制信号在时间上进行交错排列,从而形成一个复合脉冲串,该脉冲串扰码后经信道传输到达接收端。时分解复用通信,是把各路信号在同一信道上占有不同时间间隙进行通信分离出原来的模拟信号。由抽样定理可知,将时间上离散的信号变成时间上连续的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。时分解复用是建立在抽样定理的基础上的,因为抽样定理连续的基带信号由可能被在时间上离散出现的抽样脉冲所代替.具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。抽样脉冲占据时间一般较短,在抽样脉冲之间就留出间隙.利用这些空隙便可以传输其他信号的抽样,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽

样值占用的时间越短,能够传输的数据也就越多.时分解复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别互相分开,互不干扰并不失真地还原出原来的模拟信号。 在通信系统中,同步具有相当重要的地位。通信系统能否具有有效、可靠地工作,在很大程度上依赖有无良好的同步系统。同步可分为载波同步、位同步、帧同步和网同步几大类型。他们在通信系统中都具有相当重要的作用。时分解复用通信中的同步技术包括位同步和帧同步,这是数字通信的又一个重要特点。时分解复用的电路原理就是先通过帧同步信号和位同步信号把各路信号数据分开,然后通过移位寄存器构成的并/串转换电路输出串行的数据,把时分复用的调制信号不失真的分离出来。 位同步 位同步的目的是确定数字通信中的个码元的抽样时刻,即把每个码元加以区分,使接受端得到一连串的码元序列,这一连串的码元列代表一定的信息。位同步是最基本的同步,是实现帧同步的前提。位同步的基本含义是收、发两端机的时钟频率必须同频、同相,这样接收端才能正确接收和判决发送端送来的每一个码元。因此,接收端必须提供一个确定抽样判决时刻的定时脉冲序列.

通信原理课程设计

目录 1.引言 1.1用户接口电路简介 (3) 1.2 课程设计的目的 (3) 1.3 课程设计内容 (3) 1.4 课程设计要求 (4) 2.电路工作过程 2.1 用户接口电路功能 (4) 2.2 PBL38710芯片功能及使用 (5) 2.3 PCM编译码器TP3067 (6) 3. 用户线接口电路原理 3.1 用户线接口电路原理 (7) 4.心得体会 (9)

1.引言 1.1. 用户接口电路 用户电路也可称为用户线接口电路。任何交换机都具有用户线接口电路。根据用户电话机的不同类型,用户接口电路分为模拟用户接口电路和数字用户接口电路两种。 模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,基于实现和应用上的考虑,通常将BORSCHT 功能中过压保护由外接元器件完成,编译码器部分另外单成一体,集成为编译码器(CODEC),其余功能由集成模拟SLIC完成。 用户电路的作用是实现各种用户线与交换之间的连接,通常又称为用户线接口电路(SLIC,Subscriber Line Interface Circuit)。根据交换机制式和应用环境的不同,用户电路也有多种类型,对于程控数字交换机来说,目前主要有与模拟话机连接的模拟用户线电路 (ALC)及与数字话机,数据终端(或终端适配器)连接的数字用户线电路(DLC)。 1.2 课程设计目的 1、全面了解用户电路的功能及其实现方法 2、熟悉用户电路接口电路PBL38710和PCM编译码集成电路TP3067的电路组成和使用方法。 3、掌握模拟用户接口电路和PCM编译码器在程控交换机中的作用,进一步加深对用户模块七个功能BORSCHT的理解。 1.3课程设计内容 利用PBL38710和PCM编译码TP3067组成用户接口电路,完成用户电路的七项功能。 1.4课程设计要求

通信原理课程设计

通信原理 课 程 设 计 班级: 姓名: 学号: 任课教师:

用Simulink系统建模实现频分复用 一、设计目的 1 学习频分复用工作原理 2 熟噢练使用Simulink建模仿真 二、设计题目涉及的理论知识 题目:搭建模型模拟三路信号的频分复用,各路均采用SSB调制方法,显示复用前后信号频谱变化。 正弦波模块、零阶保持模块、滤波器中的采样频率有何关系,它们相同和不相同时对输出信号的影响。 滤波器的输出信号出现了延时,如何解决。 SSB调制模块中的希尔伯特滤波器的阶数如何来设置,怎样才合理。 提示: 信号源采用Signal Generator模块产生,滤波器采用模块Digital Filter Design设计,二者之间要采用Zero-Order Hold零阶保持模块进行数字化处理 理论知识:是为了充分利用信道的频带或时间资源,提高信道的利用率。通常方法有,当一条物理信道的传输能力高于一路信号的需求时,该信道就可以被多路信号共享,例如电话系统的干线通常有数千路信号的在一根光纤中传输。复用就是解决如何利用一条信道同时传输多路信号的技术。信号多路复用有两种常用方

法:频分复用(FDM)和时分复用(TDM)。时分复用通常用于数字信号的多路传输。频分复用主要用于模拟信号的多路传输,也可用于数字信号。 频分复用是一种按频率来划分信道的复用方式。在FDM中,信道的带宽被分成多个相互不重叠的频段(子通道),没路信号占据其中一个子通道,并且各路之间必须留有未被使用的频带(防护频带)进行分隔,以防止信号重叠。在接收端,采用适当的带通滤波器将多路信号分开,从而恢复出所需要的信号。 在物理信道的可用带宽超过单个原始信号(如原理图中输入信号1、2、3这3路信号)所需带宽情况下,可将该物理信道的总带宽分割成若干个与传输单个信号带宽相同(或略宽)的子信道;然后在每个子信道上传输一路信号,以实现在同一信道中同时传输多路信号。多路原始信号在频分复用前,先要通过频谱搬移技术将各路信号的频谱搬移到物理信道频谱的不同段上,使各信号的带宽不相互重叠(搬移后的信号如图中的中间3路信号波形);然后用不同的频率调制每一个信号,每个信号都在以它的载波频率为中心,一定带宽的通道上进行传输。为了防止互相干扰,需要使用抗干扰保护措施带来隔离每一个通道。 三、设计思路(流程图)

通信原理课程设计

长沙理工大学 《通信原理》课程设计报告 学院 业通信工程班级号 学生姓名 课程成绩2016年1月1日

课程设计成绩评定 指导教师对学生在课程设计中的评价 指导教师对课程设计的评定意见

课程设计任务书 计算机与通信工程学院通信工程专业

基于MATLAB/simulink的汉明码编码技术 仿真与性能分析 学生姓名:孙琦指导老师:胡双红 摘要本课程设计主要是仿真通信系统中基带传输信道纠错编码技术中的汉明码编码技术。利用MATLAB中SIMULINK通信系统仿真模型库进行汉明码的仿真,并调用通信系统功能函数进行编程,绘制时域波形,频谱及误码率。产生一段随机的二进制非归零码的基带信号,对其进行汉明码编码后再送入二进制对称信道传输,在接收端对其进行汉明解码以恢复原信号,观察还原是否成功,改变二进制对称信道的差错率,计算传输前后的误码率,绘制信道差错率-误码率曲线,并与理论曲线比较进行说明。在此基础上,对汉明码的性能进行分析,得出本次课程设计的成果。 关键词通信原理;汉明码;SIMULINK 1引言 MATLAB:MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,其中,MATLAB通信工具箱是一套用于在通信领域进行理论研究、系统开发、分析设计和仿真的专业化工具软件包。主要包括MATLAB和Simulink 两大部分。 MATLAB通信系统功能函数库由七十多个函数组成,每个函数有多种选择参数、函数功能覆盖了现代通信系统的各个方面。这些函数包括:信号源产生函数、信源编码/解码函数、纠错控制编码/解码函数、调制/解调函数(基带和通带)、滤波器函数、传输信道模型函数(基带和通带)、TDMA、FDMA、CDMA函数、同步函数、工具函数等。以纠错控制编解码函数为例:函数库提供了线性分组码、汉明码、循环码、BCH码、里德一索洛蒙码(REED—SOLOMON)、卷积码等6种纠错控制编码,每种编码又有编码、解码、矢量输入输出、序列输入输出等四种形式的函数表达。 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系

相关文档
相关文档 最新文档