文档库 最新最全的文档下载
当前位置:文档库 › 鲁教版五年级公式总结

鲁教版五年级公式总结

鲁教版五年级公式总结
鲁教版五年级公式总结

平面图形周长和面积

一、三角形

三角形的周长等于三条边的和

三角形的面积=底×高÷2

S=ah÷2

三角形的底=面积×2÷高

三角形的高=面积×2÷底

二、平行四边形

平行四边形的面积=底×高

S=ah

底=面积÷高

高=面积÷底

三、梯形

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2

高=面积×2÷(上底+下底)

上底=面积×2÷高-下底

下底=面积×2÷高-上底

四、长方形

长方形的周长=(长+宽)×2

C=(a+b)×2

长=周长÷2-宽

宽=周长÷2-长

长方形的面积=长×宽

S=ab

长=面积÷宽

宽=面积÷长

五、正方形

正方形的周长=边长×4

C=4a

边长=周长÷4

正方形的面积=边长×边长

S=a2

六、圆形

直径=半径×2 d=2r

半径=直径÷2 r=

2

1

d=d÷2

圆的周长=圆周率×直径C=πd

周长=圆周率×半径×2 C=2πr

直径=周长÷圆周率d=C÷π

半径=周长÷圆周率÷2 r=C÷π÷2

圆的面积=圆周率×半径2S=πr2

(要求圆的面积,必须先知道圆的半径r)

①已知半径,求面积,用S=π

r2

②已知直径,求面积,先用r=d÷2求出半径,再

用S=π

r2求面积

③已知周长,求面积,先用r=c÷π÷2求出半径,

再用S=π

r2求面积。

七、环形的面积=外圆面积-内圆面积

(要求环形的面积必须先知道外圆半径R和

内圆半径r)

S环形=2R

π-πr2

S环形=2

2

(r

R-

π)

八、半圆的周长和面积

半圆的周长=圆周长的一半+直径

C半圆=πr+d或πr+2r

半圆的面积=圆的面积的一半

S半圆=π

r2÷2

立体图形的公式计算

长方体和正方体公式

长方体的棱长总和=(长+宽+高)×4 长+宽+高=长方体的棱长总和÷4

长=棱长和÷4-(宽+高)

宽=棱长和÷4-(长+高)

高=棱长和÷4-(长+宽)

正方体的棱长总和=棱长×12

正方体的棱长=棱长总和÷12

长方体的表面积=

(长×宽+ 长×高+ 宽×高)×2 正方体的表面积=棱长×棱长×6

=底面积×6

用字母表示:S=6a2

正方体的底面积=表面积÷6

长方体的体积=长×宽×高

V = abh

长方体的长=体积÷宽÷高

长方体的宽=体积÷长÷高

长方体的高=体积÷长÷宽正方体的体积=棱长×棱长×棱长

V= a3

长方体(或正方体)体积=底面积×高

V=Sh

=侧面积×长

长方体(或正方体)的高=体积÷底面积

长方体(或正方体)底面积=体积÷高

长方体的底面积=长×宽

正方体的底面积=棱长×棱长

注:四周只有四个面、无盖只有五个面、

占地面积指的是底面面积

无盖的盒子的表面积

=长×宽+(长×高+ 宽×高)×2 (只算一

个底面)

例如:教室粉刷墙面,求总面积,应用以上公式

计算。

测量不规则物体的体积用排水法:

容器底面积×水面上升的高度= 物体的体积

圆柱和圆锥公式计算

圆的周长=圆柱和圆锥的底面周长

圆的周长=2×圆周率×半径C=2πr

半径=圆的周长÷圆周率÷2

r=C÷π÷2

圆的周长=圆周率×直径C=πd

直径=圆的周长÷圆周率d= C÷π

圆的面积=圆柱和圆锥的底面积

圆的面积=圆周率×半径的平方s底=πr2

圆柱侧面积

圆柱侧面积=底面周长×高

S侧=C×h 因为C=2πr C=πd 所以圆柱侧

面积还可以写出:

S侧=2πr h 或S侧=πd h

底面周长=圆柱侧面积÷高

C=S侧÷h

底面直径=圆柱侧面积÷圆柱的高÷圆周率

d=S侧÷h÷π

底面半径=圆柱侧面积÷圆柱的高÷圆周率÷2

r=S侧÷h÷π÷2

圆柱的表面积

圆柱的表面积=底面周长×高+底面积×2

S表=C×h+ πr2×2

典型情况:做一个油桶需要多少平方米的铁皮。

(需要计算一个侧面积+二个底面面积)特殊情况:

一、(1)做无盖的水桶需要多少平方米的铁皮。

2)圆柱形的游泳池或水池在四周和底部抹

水泥或贴瓷砖。

(只要计算一个侧面积+一个底面积)

二、(1) 做通风管、落水管、烟囱需要多少铁皮。

(2)压路机前轮压过的路面面积。

(只要计算一个侧面积)

圆柱的体积

圆柱的体积=底面积×高

V柱=s底×h

圆柱底面积=体积÷高

S底=V÷h

圆柱的高=体积÷底面积

h= V÷S底

圆锥的体积

圆锥的体积=底面积×高×

3

1

V锥=s底×h×

3

1

圆锥的底面积=体积×3÷高

S底=V×3÷h

圆锥的高=圆锥的体积×3÷底面积

h=V×3÷S底

圆柱和圆锥面积和体积计算时的注意事项

1、看清楚题目中的单位一不一样,最好在所有

单位下面画出横线。

(例:一个圆柱底面积是31.4平方厘米,高是

3分米)

2、看清楚求面积还是求体积,一般可以从单位

看出来。(例:做一个水桶需要多少平方米铁

皮-----肯定是求面积的。)

(例:这个水桶可以盛水多少立方分米-----肯定

是求体积的)

(例:平均每平方米用油漆0.3千克,至少要

有油漆多少千克,---要求面积的)

(例:每立方米稻谷重0.85吨,这堆稻谷重多少

吨?-----肯定要求体积的)

等底等高的圆柱和圆锥的体积的关系

等底等高,等底包括四种情况(底面周长、直径

和半径相等)

1、等底等高,圆柱的体积是圆锥的3倍,圆锥的

体积是圆柱的

1

3

。等底等高的圆柱的体积比圆锥

体积多2倍,等底等高的圆柱的体积比圆锥体积

多200%,等底等高圆锥的体积比圆柱体积少

2

3

等底等高圆锥的体积比圆柱体积少66.7%。

2、体积和底面积相等,圆柱的高是圆锥的高的

1

3

,圆锥的高是圆柱的3倍。

3、体积和高相等,圆柱的底面积是圆锥的底面积

1

3

,圆锥的底面积是圆柱的底面积的3倍。

[实用参考]大学数学公式总结大全

导数公式: 基本积分表: 三角函数的有理式积分:

一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式: ·和差角公式:·和差化积公式: 2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβ αβα-+=--+=+-+=--+=+α ββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin(

·倍角公式: ·半角公式: ·正弦定理:·余弦定理: ·反三角函数性质: 高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用: 方向导数与梯度: 多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:

斯托克斯公式——曲线积分与曲面积分的关系:常数项级数: 级数审敛法: 绝对收敛与条件收敛: 幂级数: 函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数: 周期为的周期函数的傅立叶级数: 微分方程的相关概念: 阳光怡茗工作室https://www.wendangku.net/doc/b413299225.html, 一阶线性微分方程: 全微分方程: 二阶微分方程: 二阶常系数齐次线性微分方程及其解法:

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

n a n a n ? (1)根式的概念 高一必修一函数知识点(12.1) 〖1.1〗指数函数 ① 叫做根式,这里 n 叫做根指数, a 叫做被开方数. ②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 . ?a (a ≥ 0) ③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ?-a . (a < 0) (2) 分数指数幂的概念 m ①正数的正分数指数幂的意义是: a n = (a > 0, m , n ∈ N + , 且 n > 1) .0 的正分数指数幂等于 0. a - m = ( )1 m ( ) 1(a > 0, m , n ∈ N , n > 1) ②正数的负分数指数幂的意义是: n n = n m + 且 .0 的负分数指数幂没有意 a a 义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r ? a s = a r +s (a > 0, r , s ∈ R ) ② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R ) (4) 指数函数 函数名称 指数函数 定义 函数 y = a (a > 0 且 a ≠ 1)叫做指数函数 a > 1 0 < a < 1 图象 y 1 y O y a x (0,1) x y a x y 1 O y (0,1) x 定义域 R 值域 (0,+∞) 过定点 图象过定点(0,1),即当 x=0 时,y=1. 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的变化情况 y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0) a 变化对 图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴. 例:比较 n a n n a m

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

(整理)基本初等函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

大学高等数学所有公式大全.

大学高等数学公式 ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·平方关系: sin^2(α+cos^2(α=1 tan^2(α+1=sec^2(α cot^2(α+1=csc^2(α ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边

正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β=cosα·cosβ-sinα·sinβ cos(α-β=cosα·cosβ+sinα·sinβ sin(α±β=sinα·cosβ±cosα·sinβ tan(α+β=(tanα+tanβ/(1-tanα·tanβ tan(α-β=(tanα-tanβ/(1+tanα·tanβ ·三角和的三角函数: sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sin γ-sinα·sinβ·sinγ cos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ- sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ- tanβ·tanγ-tanγ·tanα ·辅助角公式:

Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中 sint=B/(A^2+B^2^(1/2 cost=A/(A^2+B^2^(1/2 tant=B/A Asinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B ·倍角公式: sin(2α=2sinα·cosα=2/(tanα+cotα cos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(α tan(2α=2tanα/[1-tan^2(α] ·三倍角公式: sin(3α=3sinα-4sin^3(α cos(3α=4cos^3(α-3cosα ·半角公式: sin(α/2=±√((1-cosα/2 cos(α/2=±√((1+cosα/2 tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα ·降幂公式

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

(完整版)基本初等函数的导数公式随堂练习

1.2.2 基本初等函数的导数公式 1.下列结论不正确的是( ) A .若y =e 3 ,则y ′=0 B .若y = 1 x ,则y ′=-1 2x C .若y =-x ,则y ′=-1 2x D .若y =3x ,则y ′=3 2.下列结论:①(cos x )′=sin x ;②? ????sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D .1 2 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .??????0,π4∪??????3π4,π B .[0,π) C .??????π4,3π4 D .??????0,π4∪??????π2,3π4 5.曲线y =e x 在点(2,e 2 )处的切线与坐标轴所围成的三角形的面积为( ) A.12e 2 B.94 e 2 C .2e 2 D .e 2 6.设曲线y =x n +1(n ∈N * )在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( ) A .1n B .1n +1 C .n n +1 D .1 课后探究 1.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为 2.已知直线y =kx 是y =ln x 的切线,则k 的值为

一、选择题 2.已知函数f (x )=x 3 的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 4.y =x α 在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 5.f (x )= 1x 3 x 2 ,则f ′(-1)=( ) A .52 B .-52 C .53 D .-53 6.函数y =e x 在点(2,e 2 )处的切线与坐标轴围成三角形的面积为( ) A .94e 2 B .2e 2 C .e 2 D .e 2 2 二、填空题 7.曲线y =x n 在x =2处的导数为12,则n 等于________. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于________. 9.在曲线y =4 x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________. 三、解答题 10.求证双曲线y =1 x 上任意一点P 处的切线与两坐标轴围成的三角形面积为定值. 一、选择题 11.(2014·北京东城区联考)曲线y =13x 3 在x =1处切线的倾斜角为( ) A .1 B .-π4 C .π4 D .5π4

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1. 三、指数函数的图象和性质

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 n是奇数时a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11≠- (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y =N(1+p)指数型函数: y=ka3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b <0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数 (2)log a a=1, log a 1=0 特别地, l g10=1, lg1=0 , lne=1, l n1=0

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

10基本初等函数知识点总结

基本初等函数知识点总结 一、指数函数的概念 (1)、指数函数的定义 一般地,函数x y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。 (2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。 (3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。 2、指数:自变量x 。 3、系数:1。 二、指数函数的图象与性质 一般地,指数函数x y a =(0a >,且1a ≠)的图象与性质如下表: 三、幂的大小比较方法 比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法: 要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。 四、底数对指数函数图象的影响 (1)、对函数值变化快慢的影响 1、当底数1a >时,指数函数x y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。 2、当底数01a <<时,指数函数x y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。 (2)、对函数图象变化的影响

指数函数x y a =与x y b =的图象的特点: 1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当 0x >时,总有1x x a b >>。 2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当 0x >时,总有01x x a b <<<。 五、对数的概念 (1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。 (2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。 (3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数, 为了简便,N 的自然对数log e N 简记为ln N 。 六、对数的基本性质 根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =; 4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N a N =。 七、对数运算性质 如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a a a M M N N =-; (3)、log log n a a M n M =(n R ∈)。 八、换底公式

基本初等函数的导数公式表

基本初等函数的导数公 式表 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、=n n x nx -1'() (n 为正整数) 3、ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1 '() 5、ln =x x 1 '() 6、sin cos =x x '() 7、cos sin =-x x '() 8、=-x x 21 1 '() 知识点二:导数的四则运算法则 1、v =u v u ''' ±±() 2、=u v uv v u '''+() 3、(=Cu Cu '') 4、u -v =u v u v v 2'' '() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b 内,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b 内,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调 减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15=

(2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23=0 ( (6)y x 5= (7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 14= ,x =16 (2)sin y x = , x π=2 (3)cos y x = ,x π=2 (4)sin y x x = , x π=4 (5)3y x = ,1128(,)

高一数学必修一基本初等函数知识点总结

〖 2.1〗指数函数 根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)分数指数幂的运算性质① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数 〖2.2〗对数函数 负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. 几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. 常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 换底公式的推论: (5)对数函数 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数 y x α=叫做幂函数,其中x 为自变量,α 是常数.

材料力学知识点总结.doc

一、基本变形 轴向拉压材料力学总结 扭转弯曲 外外力合力作用线沿杆轴 力线 内轴力: N 规定: 力拉为“ +” 压为“-” 几 变形现象: 何 平面假设: 应 方应变规律: 面 d l 常数 dx 力 应 力 N 公 A 式 力偶作用在垂直于轴 的平面内 扭转: T 规定: 矩矢离开截面为“ +” 反之为“ - ” 变形现象: 平面假设: 应变规律: d dx T T I P max W t 外力作用线垂直杆轴,或外力偶作用 在杆轴平面 剪力: Q 规定:左上右下为“ +” 弯矩: M 规定:左顺右逆为“ +” 微分关系: dQ ; dM q Q dx dx 弯曲正应力 变形现象: 平面假设:弯曲剪应力 应变规律: y My QS*z I Z I z b M QS max max max W Z I z b

应 力 分 布 应 等直杆 用 外力合力作用条 线沿杆轴线 件 应力-应 E 变 (单向应力状态)关系 强N max 度 A max u 条 n 件塑材:u s 脆材:u b 圆轴平面弯曲 应力在比例极限内应力在比例极限内 G (纯剪应力状态) 弯曲正应力 T 1.t c max 弯曲剪应力W t max max 2. t c Q max S max max I z b t max t cmac c 轴向拉压扭转弯曲刚 度T 180 0 y max y max GI P 条注意:单位统一max 件 d l N ; L NL d T 1 M ( x) EA 变dx EA dx GI Z ( x) EI TL y '' M (x) GI P EI EA—抗拉压刚度GI p—抗扭刚度EI —抗弯刚度

基本初等函数知识点总结 (1)

基本初等函数知识点总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根, 其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1.

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或 )]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 b a = N ?log a N = b 底数 指数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =.

相关文档
相关文档 最新文档