文档库 最新最全的文档下载
当前位置:文档库 › 聚合物在水泥砂浆和混凝土中的应用

聚合物在水泥砂浆和混凝土中的应用

聚合物在水泥砂浆和混凝土中的应用
聚合物在水泥砂浆和混凝土中的应用

公路工程水泥及水泥混凝土试验规程

公路工程水泥及水泥混凝土试验规程 T0501—2005 水泥取样方法 1目的、适用范围和引用标准 本方法规定了水泥取样的工具、部位、数量及步骤等。 本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰硅酸盐水泥、复合硅酸盐水泥、道路硅酸盐水泥及指定采用本方法的其它品种水泥。 引用标准: GB 175-1999《硅酸盐水泥、普通硅酸盐水泥》 GB 1344—1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》 GB 12958—1999《复合硅酸盐水泥》 GB 13693—1992《道路硅酸盐水泥》 2仪器设备 ⑴袋装水泥取样器。 ⑵散装水泥取样器。 3取样步骤 3.1取样数量应符合各相应水泥标准的规定。 3.2分割样 3.2.1袋装水泥:毎1/10编号从一袋中取至少6kg。 3.2.2散装水泥:每1/10编号在5min内取至少6kg。 3.3袋装水泥取样器:随机选择20个以上不同的部位,将取样管插入水泥适当深度,用大拇指按住气孔,小心抽出取样管。将所取样品放入洁净、干燥、不易受污染的容器中。 3.4散装水泥取样器:通过转动取样内管控制开关,在适当位置插

入水泥—定深度,关闭后小心抽出。将所取样品放入洁净、干燥、不易受污染的容器中。 4样品制备 4.1样品缩分 样品缩分可采用二分器,一次或多次将样品缩分到标准要求的规定量。 4.2试验样及封存样 将每一编号所取水泥混合样通过0.9mm方孔筛,均分为试验样和封存样。 4.3 分割样 每一编号所取10个分割样应分别通过0.9mm方孔筛,不得混杂。5样品的包装与贮存 5.1样品取得后应存放在密封的金属容器中,加封条。容器应洁净、干燥、防潮、密闭、不易破损、不与水泥发生反应。 5.2封存样应密封保管3个月。试验样与分割样亦应妥善保管。5.3在交货与验收时,水泥厂和用户共同取实物试样,封存样由买卖双方共同签封。以抽取实物试样的检验结果为验收依据时,水泥厂封存样保存期为40d;以同编号水泥的检验报告为验收依据时,水泥厂封存样保存期为3个月。 5.4存放样品的容器应至少在一处加盖清晰、不易擦掉的标有编号、取样时间、地点、人员的密封印,如只在一处标志应在器壁上。 5.5封存样应贮存于干燥、通风的环境中。 6取样单 样品取得后,均应由负责取样操作人员填写取样单. T0504—2005 水泥比表面积测定方法(勃氏法) 1目的、适用范围和引用标准 本方法规定采用勃氏法进行水泥比表面积测定。

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

聚合物改性混凝土研究进展

聚合物改性混凝土研究进展 摘要:介绍了聚合物改性混凝土的种类、改性机理和研究现状,并对其应用前景作了展望。和普通混凝土相比,聚合物改性混凝土有良好的性能:高的抗折、抗拉强度、好的柔韧性,高的密实度和抗渗性等,当前聚合物改性混凝土主要有 3 种, 即: 聚合物浸渍混凝土, 聚合物混凝土, 聚合物改性混凝土。聚合物改性混凝土学科的发展前景广阔。 关键词:聚合物改性混凝土;种类;改性机理;研究现状;前景 0 引言 聚合物改性混凝土是指一类聚合物与混凝土复合的材料,是用有机高分子材料来代替或改善水泥胶凝材料所得到的高强、高质混凝土。聚合物改性混凝土的发展已有多年历史,并得到了越来越广泛的应用。目前,聚合物改性混凝土的性能已经得到广泛认可。普通混凝土虽然抗压强度高,但也存在着较多缺点,比如抗拉和抗折强度较低,干燥收缩大,脆性大。在水泥混凝土中加入少量有机高分子聚合物,可以使混凝土获得高密实度,改变混凝土的脆性,拓宽了混凝土的使用领域,能带来较大的社会效益及经济效益[1]。 1 聚合物改性混凝土的分类 聚合物改性混凝土按照制备方式,可分为聚合物浸渍水泥混凝土(PIC),聚合物胶结混凝土(PC)和聚合物水泥混凝土(PCC)三种。 1.1 聚合物浸渍混凝土 聚合物浸渍混凝土(PIC)是将已经水化的混凝土用聚合物单体浸渍, 随后单体在混凝土内部进行聚合生成的复合材料。聚合物浸渍混凝土有良好的力学性能、耐久性及侵蚀能力。用于浸渍混凝土的聚合物单体主要有丙烯酸或甲基丙烯酸酯、苯乙烯、环氧树脂、不饱和聚酯树脂、丙烯腈等。这种混凝土适用于要求高强度、高耐久性的特殊构件,特别适用于输运液体的有筋管、无筋管、坑道等。聚合物浸渍混凝土因其实际操作和催化复杂,目前多用于重要工程。国外已用于耐高压的容器,如原子反应堆、液化天然气贮罐等。 1.2 聚合物胶结混凝土 聚合物胶结混凝土(PC)是以聚合物为唯一胶结材料的混凝土,又称之为树脂混凝土。大部分情况下是把聚合物单体与骨料拌和,把骨料结合在一起,形成整体。聚合物混凝土所用的聚合物主要有环氧树脂、甲基丙烯酸酯树脂、不饱和聚酯树脂、呋喃树脂、沥青等,混凝土的胶结完全靠聚合物,聚合物的用量约占混凝土重量的8%左右,这种混凝土具有高强、耐腐蚀等优点,但目前成本较高,工艺复杂, 经济适用性和工程实用性均很差[2],只能用于特殊工程(如耐腐蚀工程)。 1.3 聚合物水泥混凝土 聚合物水泥混凝土(PCC)是将水泥和骨料混合后,与分散在水中或者可以在水中分散的有机聚合物材料结合所生成的复合材料。制备的方式主要有两种:一是先将聚合物用水分散后,以乳液或聚合物水溶液的形式加入,聚合物胶乳在混凝土水化过程中影响混凝土水化过程及混凝土的结构,从而对水泥砂浆或混凝土的性能起到改善作用。另一种是先将聚合物与水泥或其他分散介质进行预分散,以干拌砂浆的形式使用。混合料与水拌和时,聚合物遇水变为乳液,在混凝土凝结硬化过程中,乳液脱水,形成聚合物固体结构[3]。此外,聚合物还可以纤维或者纤维增强塑料的形式,或者起外加剂的作用在混凝土中获得了应用。聚合物水泥混凝土由于操作简单,改性效果明显,成本较低(相当其他两种聚合物混凝土成本的1/10),因而在实际应用中得到了广泛的应用。 2 聚合物对水泥混凝土的改性机理 国内外用于水泥混凝土改性的聚合物品种繁多,但基本上是三种类型:即乳液(乳胶、分散体)、液体树脂和水溶性聚合物。其中乳胶是使用最广的,主要分为三类: 1)橡胶乳液类。主要有天然乳胶(NR)、丁苯乳胶(SBR)和氯丁乳胶(CR) 甲基丙烯酸甲脂

什么是聚合物水泥混凝土

聚合物水泥混凝土介绍 早在1920年,国外曾以天然橡胶胶乳配制水泥砂浆,后逐步又用合成橡胶、合成树脂的各种乳液作为外加剂,对水泥砂浆及混凝土进行改性。1974年第六届国际水泥化学会议首次讨论了关于聚合物水泥的化学作用过程。1981年在日本召开的第三届聚合物水泥的国际会议上将聚合物水泥列为独立研究方向。 我国采用聚合物研制化学注浆材料始于20世纪50年代,当时开发的品种有甲凝、丙凝、酚醛树脂、环氧树脂,以及不饱和聚酯等,并于60年代在水电、交通、煤炭、建筑等方面进行工程实践,取得了成功。70年代我国开发聚合物水泥材料无论从品种上、还是数量上均有大幅度提高,相继有聚乙烯醇缩甲醛(107胶)、聚醋酸乙烯乳液(白乳胶)、氯丁橡胶、丙烯酸醋等问世。随着我国高分子化学工业的发展,80年代末期至90年代初期,我国在聚合物水泥方面的研究和实践有更大发展,聚合物混凝土及聚合物水泥砂浆在建筑工程中被大量采用,并获得优异效果。 聚合物加入混凝土或砂浆中,其形成的弹性网膜将混凝土、砂浆中的孔隙结构填塞,并经化学作用加大了聚合物同水泥水化产物的粘结强度,从而有效地对混凝土和砂浆进行改性。不仅增加了混凝土和砂浆的抗压强度,还使抗拉强度和抗弯强度获得较大提高,增强混凝土和砂浆的密实度,减少了裂缝,因而使抗渗性获显著提高,且增加了适应变形的能力,适用于地下建(构)筑物防水,以及游泳池、水泥库、化粪池等防水工程。如直接接触饮用水,例如贮水池,应选用符合要求的聚合物。从发展前景以及提高防水工程质量的角度来看,其潜能和作用不可低估。 1.材料要求 (1)水泥 按本章17-1-1-2节的要求选用水泥。 (2)聚合物 用于水泥材料的聚合物分为三类: 1)水溶性聚合物分散体,包括:橡胶胶乳——天然橡胶胶乳、合成橡胶胶乳;树脂乳液——热塑性及热固性树脂乳液、沥青质乳液;混合分散体——混合橡胶、混合乳胶。

聚合物在混凝土中的应用现状及机理分析

第9卷第3期 徐州建筑职业技术学院学报 Vol.9№.32009年9月 JOURNAL OF XUZHOU INSTITU TE OF ARCHITECTURAL TECHNOLO GY Sep.2009 聚合物在混凝土中的应用现状及机理分析 程丽,曹洪吉 (徐州建筑职业技术学院土木工程学院,江苏徐州221116) 摘 要:基于聚合物改性混凝土的应用现状,讨论了用于改性混凝土的聚合物种类、聚合物改性混凝土的机理、聚合物改性混凝土的性能,指出目前主要的研究方向为聚合物改性的机理、聚合物与水泥水化结构、聚合物改性混凝土的性能与工艺参数的关系.关键词:聚合物;混凝土;应用现状中图分类号:TU 528.41文献标识码:A 文章编号:100928992(2009)0320023203 Application Status and Mech anism A nalysis of Polym er in C oncrete C H EN G L i ,CA O Hon g 2j i (School of Civil Engi neeri ng ,Xuzhou I nstit ute of A rchitect ural Tec h nology , Xuzhou ,J ia ngsu 221116,China ) Abstract :Based on t he current application stat us of polymer modified concrete ,t his paper dis 2cusses t he varieties of polymers and it s mechanism and performance ,and demonst rates t hat t he p resent primary research t rends are t he mechanism of polymer modification ,t he polymer 2cement hydration st ruct ure and t he relationship between t he performances and technological parameters of polymer modified concrete. K ey w ords :polymer ;concrete ;application stat us. 收稿日期:2009205223 作者简介:程丽(1974-),女,宁夏石嘴山人,讲师,硕士. 聚合物改性水泥砂浆和混凝土已得到了有效的发展,广泛应用于工程建设中,如做地面和路面材料、自防水材料和防水薄膜、做胶粘剂、装饰涂层、修补材料等[1].由于聚合物的大分子链结构以及分子中的链节或链段的自旋转性,使其具有与无机非金属材料不同的性质———弹性和塑性[2],所以在水泥混凝土中加入少量有机高分子聚合物,可以改善混凝土或水泥砂浆的性能,提高混凝土或水泥砂浆的粘结、抗裂、抗渗、防腐蚀、抗冻融等性能,进一步拓宽了混凝土的使用领域[324].本文拟就聚合物在混凝土和砂浆的种类、机理和性能等方面进行一些相关的阐述. 1 聚合物在混凝土中应用的种类 混凝土中水泥与聚合物有效结合,形成的聚合 物混凝土(PMC ),以其特有的性能为混凝土应用领域所关注.聚合物材料的种类、混凝土与聚合物之间的结合方式等因素对聚合物混凝土的特性有很大的影响[5].目前,应用在混凝土中的聚合物材料主要有三类.1.1 聚合物乳液研究和应用比较广泛的乳液有苯乙烯2丁二烯橡胶(SBR )、聚丙烯酸酯(PAE )、苯丙乳液、纯丙乳液、乙丙乳液、硅丙乳液、醋酸乙烯2V AE 乳液、水性环氧和橡胶沥青[6],其中V AE 类产品使用量最大[7].聚合物乳液应用于水泥砂浆或混凝土中主要是利用乳液的成膜性能,改善混凝土内部的孔隙.

聚合物水泥混凝土

聚合物水泥混凝土 引言:聚合物水泥混凝土,是在普通水泥混凝土拌和物中,再加入一种聚合物,以聚合物与水泥共同作胶结料黏结骨料配制而成。由于聚合物混凝土配制工艺比较简单,利用现有普通混凝土的生产设备即能生产,因而成本较低,实际应用较广。 将聚合物搅拌在混凝土中,聚合物在混凝土内形成膜状体,填充水泥水化产物和骨料之间的空隙,与水泥水化产物结成一体,起到增强同骨料黏结的作用。聚合物混凝土与普通混凝土相比具有无与伦比的特点:不但提高了普通混凝土的密实度和强度,而且显著地增加抗拉、抗弯强度,不同程度地改善了耐化学腐蚀性能和减少收缩变形等。 配制聚合物水泥混凝土时,可使用与普通水泥混凝土一样的设备。聚合物水泥混凝土应在拌和后1h内进行施工与使用。养护时,应先湿养护,待水泥水化后,再进行干养护,以使聚合物成膜。 1.原材料组成 聚合物水泥混凝土主要由胶凝材料、骨料和水及助剂等组成。 (1)胶凝材料 ①水泥。对水泥的要求同普通水泥混凝土。除普通硅酸盐水泥外,尚可使用各种硅酸盐水泥、高铝水泥(矾土水泥)、快硬水泥等。 ②聚合物。与水泥掺和使用的聚合物可分为以下三类: a.分散体乳胶类,如橡胶乳胶、树脂乳液和混合分散体; b.水溶性聚合物,如甲基纤维素(Mc)、聚乙烯醇、聚丙烯酸盐——聚丙烯酸钙和糠醇;

c.液体聚合物,如不饱和聚酯和环氧树脂等。 必须选用与水泥水化适应性好的有机高分子材料。因此,聚合物必须具备下列要求:①对水泥凝结硬化和胶结性能无不良影响; ②在水泥碱性介质中,不被水解或破坏;③对钢筋无锈蚀作用。 (2)骨料使用与普通水泥混凝土相同的粗骨料和细骨料,有时也可使用轻骨料。当用于防腐目的时,应使用硅质碎石和碎砂。 (3)拌和水与普通水泥混凝土用水相同。 (4)主要助剂 ①稳定剂。加入稳定剂是为了保证聚合物与水泥混合均匀,并能有效地结合起来。常用的稳定剂有OP型乳化剂、均染剂102、农乳600 等。 ②消泡剂。将胶乳与水泥拌和时,由于浮液中的乳化剂和稳定剂等表面活性剂的影响,通常会产生许多小泡,如不把这些小泡消除,势必会增加混凝土的孔隙率,使强度明显下降。因此,必须添加适量的消泡剂。常用的消泡剂有:a.醇类,有异丁烯醇、3辛醇等;b.磷酸酯类,有磷酸三丁酯等;c.有机硅类,有二烷基聚硅氧烷等。 2.聚合物水泥混凝土的应用 聚合物水泥混凝土在基组织结构内具有耐化学侵蚀性的聚 合物连续薄膜,一般抵抗各种化合物侵蚀的能力比普通水泥混凝土要强。一般主要用于以下诸方面。 (1)路面材料用于地面、路面、桥面等,具有较好的耐腐蚀性能,强度高,不易产生弯曲变形。

高聚物概述

聚合物生产技术绪论 高聚物的概念:高聚物指由许多相同的、简单的结构单元通过共价键重复连接而成的高分子量(通常可达10^4~10^6)化合物。例如聚氯乙烯分子是由许多氯乙烯分子结构单元—CH2CHCl—重复连接而成,因此—CH2CHCl—又称为结构单元或链节。由能够形成结构单元的小分子所组成的化合物称为单体,是合成聚合物的原料。 高聚物的基本特点:相对分子质量大,分子链长(一般在~m),同时相对分子质量具有多分散性。高弹形变和黏弹性是聚合物特有的力学性能。这些特性均与大分子的多层次结构的大分子链的特殊运动方式以及聚合物的加工有密切的关系。聚合物的强度、硬度、耐磨性、耐热性、耐腐蚀性、耐溶剂性以及电绝缘性、透光性、气密性等都是使用性能的重要指标。 高聚物的分类:高分子化合物的分类众多,按其元素组成可分无机高分子化合物(如石棉,云母等)和有机高分子化合物(如橡胶,蛋白质);按其来源可分为天然高分子化合物(如淀粉,天然橡胶,蛋白质,石棉,云母)和合成高分子化合物(如合成塑料,橡胶,纤维)合成高分子化合物;又可按生成反应类型分加聚物(聚乙烯,聚氯乙烯)和缩聚物(聚酰胺,聚酯,酚醛树脂):按链的结构可分线型高分子(合成纤维)和体型高分子(酚醛树脂)。高分子化合物中的各种官能团,都能正常反应,如羰基加成,脱碳,酯和酚胺水解等。由于分子量大,结构特殊,他们各自有其独特的物理性质,作为高分子材料证实利用了这些性质。 结构:对聚合物链的重复单元的化学组成一般研究得比较清楚,它取决于制备聚合物时使用的单体,这种结构是影响聚合物的稳定性、分子间作用力、链柔顺性的重要因素。键接方式是指结构单元在高聚物中的联结方式。在缩聚和开环聚合中,结构单元的键接方式一般是明确的,但在加聚过程中,单体的键接方式可以有所不同,例如单烯类单体(CH2=CHR)在聚合过程中可能有头—头、头—尾、尾—尾三种方式:对于大多数烯烃类聚合物以头-尾相接为主,结构单元的不同键接方式对聚合物材料的性能会产生较大的影响,如聚氯乙烯链结构单元主要是头-尾相接,如含有少量的头-头键接,则会导致热稳定性下降。

PBM聚合物砂浆或混凝土

PBM聚合物砂浆或混凝土 PBM系互穿网络高分子材料,拥有不同高分子的互补和协同效应,体现出高分子合金的性能。由它制备的聚合物砂浆或混凝土具有优越的性能,可用于混凝土结构的快速修复和制备特种性能的混凝土预制构件,也可用于水下混凝土的补强加固。 特点: ·快速固化,早期强度高 ·收缩率小,粘结力强 ·优良的抗冲耐磨和耐腐蚀性能 ·可在水下或潮湿环境下施工 主要性能指标: 项目指标 固化时间几分钟至几十分钟 容重 1.9-2.2g/立方米 抗渗性能>S10 固化条件干燥面水下 PBM种类PBM-5PBM-3 令期4hr1d30d1d3d30d 抗折强度(MPa)8-915-1620-2112-1315-1619-20抗压强度(MPa)28-3063-6597-9837-3847-4876-78适用范围: 高速公路、机场、桥梁等工程的快速修复,修补后2-4小时即可投入运行。 水工建筑的抗冲耐磨护面材料。 水下混凝土如坝面、隧道、桥墩、码头等水下部位的快速补强处理。 大型机器的底座,具有优越的抗震、抗裂、阻尼效果。 制作高分子混凝土预制构件,如精密车床、磨床的机器座身。 防腐蚀设备及排污管道。 施工工艺: 1、PBM树脂由PBM-A、PBM-B、引发剂和促进剂组成,不同用途的PBM有不同的推荐配比。 2、引发剂和促进剂的用量根据固化时间的要求进行调节。如果在冬天施工,因气温低,则用量要 酌情增加。 3、骨料要求干燥,含水率小于1%,不含妨碍树脂固化的杂质。细骨料采用粗砂或中粗砂。干燥条 件拌制的粉料可用粉煤灰、碳酸钙、火山灰等,水下拌制的粉料要采用水泥。 4、PBM聚合物混凝土或砂浆拌制工艺(以PBM-5为例)

聚合物水泥混凝土介绍

聚合物水泥混凝土 早在1920年,国外曾以天然橡胶胶乳配制水泥砂浆,后逐步又用合成橡胶、合成树脂的各种乳液作为外加剂,对水泥砂浆及混凝土进行改性。1974年第六届国际水泥化学会议首次讨论了关于聚合物水泥的化学作用过程。1981年在日本召开的第三届聚合物水泥的国际会议上将聚合物水泥列为独立研究方向。 我国采用聚合物研制化学注浆材料始于20世纪50年代,当时开发的品种有甲凝、丙凝、酚醛树脂、环氧树脂,以及不饱和聚酯等,并于60年代在水电、交通、煤炭、建筑等方面进行工程实践,取得了成功。70年代我国开发聚合物水泥材料无论从品种上、还是数量上均有大幅度提高,相继有聚乙烯醇缩甲醛(107胶)、聚醋酸乙烯乳液(白乳胶)、氯丁橡胶、丙烯酸醋等问世。随着我国高分子化学工业的发展,80年代末期至90年代初期,我国在聚合物水泥方面的研究和实践有更大发展,聚合物混凝土及聚合物水泥砂浆在建筑工程中被大量采用,并获得优异效果。 聚合物加入混凝土或砂浆中,其形成的弹性网膜将混凝土、砂浆中的孔隙结构填塞,并经化学作用加大了聚合物同水泥水化产物的粘结强度,从而有效地对混凝土和砂浆进行改性。不仅增加了混凝土和砂浆的抗压强度,还使抗拉强度和抗弯强度获得较大提高,增强混凝土和砂浆的密实度,减少了裂缝,因而使抗渗性获显著提高,且增加了适应变形的能力,适用于地下建(构)筑物防水,以及游泳池、水泥库、化粪池等防水工程。如直接接触饮用水,例如贮水池,应选用符合要求的聚合物。从发展前景以及提高防水工程质量的角度来看,其潜能和作用不可低估。 1.材料要求 (1)水泥 按本章17-1-1-2节的要求选用水泥。 (2)聚合物 用于水泥材料的聚合物分为三类: 1)水溶性聚合物分散体,包括:橡胶胶乳——天然橡胶胶乳、合成橡胶胶乳;树脂乳液——热塑性及热固性树脂乳液、沥青质乳液;混合分散体——混合橡胶、混合乳胶。

(整理)聚合物的表征概述

精品文档 目录1 前言 0 2 表征方法 (1) 2.1 红外光谱法(IR) (1) 2.2 核磁共振法(NMR) (3) 2.3 热分析法 (3) 2.4 扫描电镜法 (5) 2.5 X-射线衍射法 (5) 2.6 原子力显微镜法 (6) 2.7 透射电镜法 (7) 3 聚合物表征的相关研究 (8) 4 结论 (8) 参考文献 (9)

精品文档 聚合物表征方法概述 摘要:介绍了常规的聚合物的表征方法,具体叙述了红外光谱(IR)、X射线衍射(XRD)、透射电镜(TEM)、核磁共振(NMR)等的原理、方法、特点、局限性及改进方法并展望了聚合物表征方法的发展趋势。 关键词: 聚合物表征方法 Summary of polymer characterization methods Abstrac t:The conventional polymer characterization methods were introduced in this paper. The principle, method, characteristics infrared spectra (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and the nuclear magnetic resonance (NMR) have been described, the limitations, the improved method and the predicts the development trend of those polymer characterization methods have been summarized. Keyword:polymer characterization method 1 前言 功能高分子是指具有某些特定功能的高分子材料[1]。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。功能高分子材料从20世纪50年代才初露端倪,到70年代方成为高分子学科的一个分支,目前正处于成长时期。它是在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能而制得的一类高分子[2]。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要[3]。

单组分再生地聚合物水泥混凝土的制作方法

本技术属于混凝土技术领域,具体涉及一种单组分再生地聚合物水泥混凝土。其原料包括再生地聚合物水泥、水、天然细骨料、再生砂/粉混合物、粗骨料、外加剂;本技术采用火山灰性矿物掺合料(如粉煤灰、矿渣)、再生砂/粉混合物与固体碱激发剂混合后进行球磨制成单组分地聚物再生水泥。利用球磨过程中的机械化学作用激活再生砂/粉混合物、火山灰性矿物掺合料(如粉煤灰、矿渣和偏高岭土)的活性生产地聚物再生水泥,并采用再生砂/粉混合物取代部分细骨料,生产再生地聚物水泥混凝土,可有效提高了再生砂/粉混合物的资源化价值和资源化率。 技术要求 1.一种单组分再生地聚合物水泥混凝土,其特征在于:其原料包括再生地聚合物水泥、水、天然细骨料、再生砂/粉混合物、粗骨料、外加剂。 2.根据权利要求1所述的一种单组分再生地聚合物水泥混凝土,其特征在于:所述原料按照质量比为:再生地聚合物水泥:水:天然细骨料:再生砂/粉混合物:粗骨料:外加剂=1:0.3-0.45:1-3:0-1.5:0-3:0-0.04。 3.根据权利要求2所述的一种单组分再生地聚合物水泥混凝土,其特征在于:其中再生地聚合物水泥原料包括:再生砂/粉混合物、火山灰性矿物掺合料、碱激发剂。 4.根据权利要求3所述的一种单组分再生地聚合物水泥混凝土,其特征在于:其中再生砂/粉混合物:火山灰性矿物掺合料:碱激发剂的质量比为:0-0.3:0.7-1:0.05-0.20。 5.根据权利要求3所述的一种单组分再生地聚合物水泥混凝土,其特征在于:火山灰性矿物掺合料包括粉煤灰、矿渣、偏高岭土中的任意一种或多种组合。 6.根据权利要求3所述的一种单组分再生地聚合物水泥混凝土,其特征在于:碱激发剂种类为Na2SiO3、NaOH、Na2CO3、CaO、Na2SO4和K2CO3中任意一种或多种组合。 7.根据权利要求1所述的一种单组分再生地聚合物水泥混凝土,其特征在于:再生砂/粉混合物的粒径小于5mm。 8.根据权利要求1所述的一种单组分再生地聚合物水泥混凝土,其特征在于:细骨料的粒径小于5mm。

聚合物混凝土

聚合物混凝土 颗粒型有机-无机复合材料的统称。这类材料在近30年来有显著的发展。按其组成和制作工艺,可分为:聚合物浸渍混凝土;聚合物水泥混凝土,也称聚合物改性混凝土(polymer modified concrete,PMC);聚合物胶结混凝土(polymer concrete, PC),又称树脂混凝土(resin concrete,RC)。以上所称混凝土也都包括砂浆在内。聚合物混凝土与普通水泥混凝土相比,具有高强、耐蚀、耐磨、粘结力强等优点。上述三种聚合物混凝土的主要物理力学性能见表聚合物混凝土和普通混凝土的物理力学性能比较 英语翻译 juhewu hunningtu 聚合物混凝土 concrete-polymer material 经济效益 从经济效益讲,如按每单位体积材料作比较,聚合物混凝土的价格高于普通水泥混凝土,但如按单位强度和使用年限作比较,则前者常比后者的价格为低。 聚合物浸渍混凝土(PIC) 以已硬化的水泥混凝土为基材,将聚合物填 充其孔隙而成的一种混凝土-聚合物复合材料,其中聚合物含量为复合体重量的5~15%。其工艺为先将基材作不同程度的干燥处理,然后在不同压力下浸泡在以苯乙烯或甲基丙烯酸甲酯等有机单体为主的浸渍液中,使之渗 入基材孔隙,最后用加热、辐射或化学等方法,使浸渍液在其中聚合固化。在浸渍过程中,浸渍液深入基材内部并遍及全体者,称完全浸渍工艺。一般应用于工厂预制构件,各道工序在专门设备中进行。浸渍液仅渗入基材表面层者,称表面浸渍工艺,一般应用于路面、桥面等现场施工。 由于聚合物填充了水泥混凝土中的孔隙和微裂缝,可提高它的密实度,增强水泥石与集料间的粘结力,并缓和裂缝尖端的应力集中,改变普通水泥混凝土的原有性能,使之具有高强度、抗渗、抗冻、抗冲、耐磨、耐化学腐蚀、抗射线等显著优点。可作为高效能结构材料应用于特种工程,例如腐蚀介质中的管、桩、柱、地面砖、海洋构筑物和路面、桥面板,以及水利工程中对抗冲、耐磨、抗冻要求高的部位。也可应用于现场修补构筑物的表面和缺陷,以提高其使用性能。

聚合物水泥混凝土

聚合物水泥混凝土 聚合物水泥混凝土,亦称聚合物改性混凝土,是在普通混凝土的拌合物中加入聚合物而制成的性能明显改善的复合材料。聚合物的使用方法与混凝土外加剂一样,可将它们与水泥、骨料、水一起进行搅拌。采用现有普通混凝土的设备,即能生产聚合物水泥混凝土。 一,聚合物水泥混凝土的原材料: 1.聚合物: 1.1聚合物水泥混凝土所用的聚合物总体可分三类: 1.1.1聚合物水分散体,即乳胶,是应用最广泛的一种。 1.1.2水溶性聚合物,如纤维素衍生物、聚丙烯酸盐、糠醇等。 1.1.3液体聚合物,如不饱和聚酯、环氧树脂等。 1.2在水泥中掺加的聚合物与水泥具有良好的适应性,应满足: 1.2.1水泥的凝结硬化和胶结性能无不良影响; 1.2.2在水泥的碱性介质中不被水解或破坏; 1.2.3对钢筋无锈蚀作用。 2.助剂: 2.1稳定剂: 水泥溶出的多价离子(指Ca"、AF+)等因素,往往使聚合物乳液产生破乳,出现凝聚现象,使聚合物乳液不能在水泥中均匀分散。通常需加入适量稳定剂, 如0P型乳化剂、均染剂102、农乳600等。 2.2消泡剂: 聚合物乳液和水泥拌合时,由于乳液中的乳化剂和稳定剂等表面活性剂的影响,通常在搅拌过程中产生许多小泡,凝结后混凝土的孔隙率增加,强度明显下降。因此,必须添加适量的消泡剂。消泡剂的选择应注意: ①化学稳定性良好; ②表面张力较消泡介质低; ③不溶于被消泡介质中。此外,消泡剂还应具有良好的分散性、破泡性、抑泡性及碱性。 常用的消泡剂有: ①醇类消泡剂,如异丁烯醇、3-辛醇等; ②脂肪酸酯类消泡剂,如甘油(三)硬脂酸异戊酯等; ③磷酸酯类消泡剂,如磷酸三丁酯等; ④有机硅类消泡剂,如二烷基聚硅氧烷等。消泡剂的针对性非常强,必须认真试验选择。工程实践证明,通常多种消泡剂复合使用,可达到较好的效果。 2.3抗水剂: 对于耐水性较差的聚合物,如乳胶树脂及其乳化剂、稳定剂,使用时尚需加抗水剂。 2.4促凝剂: 乳胶树脂等聚合物掺量较大时,会延缓聚合物水泥混凝土的凝结,可加入促凝剂促进水泥的凝结。

水泥混凝土表观密度试验作业指导书

水泥混凝土表观密度试验作业指导书 1.依据标准:《公路工程水泥及水泥混凝土试验规程》JTG E30-2005; 2.试验目的及适用范围: 2.1目的:测定水泥混凝土拌合物表观密度。 2.2适用范围:测定水泥混凝土拌合物捣实后的密度,以备修正、核实水泥混凝土配合比计算中的材料用量。当已知所用原材料密度时,还可以算出拌合物近似含气量。 3.试验环境: 进入试验室内检查温湿度仪,在试验记录中注明试验时室内温湿度。 4.试验准备: 4.1试验仪器 4.1试样准备:满足试验要求的混凝土拌合物。

5.试验步骤: 具体试验步骤依据《公路工程水泥及水泥混凝土试验规程JTG E30-2005》T0525-2005方法进行试验。 6.试验结果整理: 6.1混凝土表观密度计算式: ρh=(m2-m1)/Vⅹ1000 ρh—拌合物表观密度(kg/m3); m1—试样筒质量(kg); m2—捣实或振实后混凝土和试样筒总质量(kg); V—试样筒容积(L)。 6.2以两次试验结果的算术平均值作为测定值,精确到10kg/m3,试样不得重复。 7.试验报告: 试验报告应包括内容:○1.要求检测的项目名称、执行标准;○2.原材料的品种、规格和产地;○3.仪器设备名称、型号及编号;○4试验日期及时间○5.环境温度和湿度;○6表观密度;○7.搅拌方式○8其他试验项目及信息。 8.试验注意事项: 8.1对于集料公称最大粒径不大于31.5mm的拌合物采用5L 的试样筒,对于集料公称最大粒径大于31.5mm的混凝土拌合物采用的试样筒,其内径与高度均应大于集料公称最大粒径的4倍。

8.2 试验前用湿布将集料筒内外擦拭干净。 8.3对坍落度不小于70mm混凝土,宜采用人工捣实,对于5L的试样筒,分两层装入,每层插捣25次,对于大于5L 的试样筒,每层装入的混凝土高度不大于100mm,插捣次数不小于12次/10000mm2。 8.4 对坍落度小于70mm混凝土,宜采用振动台振实。振动至水泥混凝土拌合物表面出现水泥浆且无气泡出现为止。

聚合物水泥混凝土的介绍

聚合物水泥混凝土介绍 导读:早在1920年,国外曾以天然橡胶胶乳配制水泥砂浆,后逐步又用合成橡胶、合成树脂的各种乳液作为外加剂,对水泥砂浆及混凝土进行改性。1974年第六届国际水泥化学会… 早在1920年,国外曾以天然橡胶胶乳配制水泥砂浆,后逐步又用合成橡胶、合成树脂的各种乳液作为外加剂,对水泥砂浆及混凝土进行改性。1974年第六届国际水泥化学会议首次讨论了关于聚合物水泥的化学作用过程。1981年在日本召开的第三届聚合物水泥的国际会议上将聚合物水泥列为独立研究方向。 我用聚合物研制化学注浆材料始于20世纪50年代,当时开发的品种有甲凝、丙凝、酚醛树脂、环氧树脂,以及不饱和聚酯等,并于60年代在水电、交通、煤炭、建筑等方面进行工程实践,取得了成功。70年代我国开发聚合物水泥材料无论从品种上、还是数量上均有大幅度提高,相继有聚乙烯醇缩甲醛(107胶)、聚醋酸乙烯乳液(白乳胶)、氯丁橡胶、丙烯酸醋等问世。随着我国高分子化学工业的发展,80年代末期至90年代初期,我国在聚合物水泥方面的研究和实践有更大发展,聚合物混凝土及聚合物水泥砂浆在建筑工程中被大量采用,并获得优异效果。 聚合物加入混凝土或砂浆中,其形成的弹性网膜将混凝土、砂浆中的孔隙结构填塞,并经化学作用加大了聚合物同水泥水化产物的粘结强度,从而有效地对混凝土和砂浆进行改性。不仅增加了混凝土和砂浆的抗压强度,还使抗拉强度和抗弯强度获得较大提高,增强混凝土和砂浆的密实度,减少了裂缝,因而使抗渗性获显著提高,且增加了适应变形的能力,适用于地下建(构)筑物防水,以及游泳池、水泥库、化粪池等防水工程。如直接接触饮用水,例如贮水池,应选用符合要求的聚合物。从发展前景以及提高防水工程质量的角度来看,其潜能和作用不可低估。

聚合物改性水泥混凝土的制备原理及其结构与性能的关系

研究与探讨 聚合物改性水泥混凝土是在水泥混凝土成型过程中掺加一定量的聚合物,从而改善混凝土的性能,提高混凝土的使用品质或使混凝土满足工程的特殊需要。聚合物改性水泥混凝土的改性效果虽不如聚合物浸渍混凝土明显,但由于其工艺简单,使用方便,因而在工程中的应用也越来越广泛。 用于水泥混凝土改性的聚合物基本上分为三种类型,即聚合物乳液、水溶性聚合物和液体树脂。其中最常用,改性效果最好的是聚合物乳液。用聚合物乳液进行改性是在水泥混凝土拌和成型时拌入(大多教情况下是胶乳与水先拌和然后再与集料拌和),聚合物乳液在水泥混凝土凝结硬化过程中脱水,并在混凝土中形成结构,影响水泥的水化过程及水泥混凝土的结构,从而对水泥混凝土的性能起到改善作用,聚合物可是单聚体、双聚体或多聚体。 聚合物乳液的主要组成有聚合物颗粒(尺寸在0.1~1um之间)、乳化剂、稳定与普通水泥混凝土相比有许多特殊89'I生 能,其中聚合物本身的性能虽起到一定 的作用,但最主要的、根本的原因还是因 为聚合物的掺人导致混凝土结构的变化, 从而影响混凝土89'1'tB2。 聚合物掺人使混凝土结构发生变化 主要由于以下几个方面: (1)聚合物本身在混凝土中形成聚 合物网结构,并与硬化水泥浆体形成的 连续结构互相交织缠绕,形成聚合物改 性水泥混凝土的特有结构。 KonletzKo认为,当聚合物乳液在水 泥混凝土搅拌过程中掺人混凝土后,乳 液中的聚合物颗粒均匀分散在水泥混凝 土体系中,随着水泥颗粒的水化,由于体 系中的一部分被水泥水化所结合,因此 悬浮液中的水分被转移,聚合物颗粒开 始堆积,随着水泥水化的进一步进行,堆 积的聚合物颗粒也越来越多,逐渐融化 在一起形成聚合物膜。最终聚合物在水 泥混凝土中形成空间连续的网状结构,并 且硬化水泥浆体也在聚合物网孔中形成连 续结构,两种网结构互相交织缠绕在一 起,并把水泥混凝土中的骨料颗粒包裹在 其中,形成聚合物改性水泥混凝土的特有 结构。这种结构与聚合物的种类及掺量有 关,并非所有的聚合物都能在水泥混凝土 体系中形成上述结构。例如聚苯乙烯在水 泥石中就不能很好地结膜,仅形成聚苯乙 烯颗粒堆积结构,因为聚苯乙烯颗粒之间 的融合能较高,因此聚苯乙烯在水泥石中 只起填充作用,仅能对水泥浆体的流动性 起改善作用,从而可降低水灰比并改善混 凝土89'I,生能。聚合物的掺量也影响上述结 构的形成。如聚苯乙烯一丁二烯乳液 (SBD)在水泥浆体中的掺量为10%时,SBD 在水泥石中没有很好地结膜。虽然聚苯乙 烯一丁二烯在水泥石中形成了空间网状结 构,但由于SBD的掺量较少,聚苯乙烯一 丁二烯颗粒在失去水的过程中,没有很好 聚合物改性水泥混凝±的’制备原理 结构 文/邵新苗吕辉(华南理工大学材料学院510641) 文/林敏夏(广州市住建勘察设计院) 剂、分散剂等及水溶液,并含有少量的气 泡。其中固体成分的含量在40%~70%之 间。聚合物颗粒通过乳化剂的作用均匀地 分散在水溶液中,形成乳液,并由于分散 剂及稳定剂的作用使得乳液能在较长时间 内不产生离析及絮凝,保持乳液的均匀 性,另外为了防止乳液带人的气泡影响混凝 土的质量,一般在乳液中还加入消泡剂。 聚合物改性水泥混凝土中,聚合物部 分取代水泥作为。/bb凝l土中的胶结材,使得 10 万方数据

水泥混凝土立方体抗压强度试验作业指导书

水泥混凝土立方体抗压强度试验作业指导书 1.依据标准:《公路工程水泥及水泥混凝土试验规程》JTG E30-2005; 2.试验目的及适用范围: 2.1目的:测定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。 2.2适用范围:本试验规定了测定混凝土抗压极限强度的方法,以确定混凝土的强度等级,作为评定混凝土品质的主要指标,本试验适用于各类混凝土的立方体试件。 3.试验环境: 进入试验室检查温湿度仪,在试验记录中注明试验时室内温湿度。 4.试验准备: 4.1试验仪器

4.2试样制备 4.2.1混凝土抗压强度试件以边长150mm的正立方体为标准试件,其集料最大粒径为40mm。 4.2.2非标准试件的抗压强度应乘以尺寸换算系数。 5.试验步骤: 具体试验步骤依据《公路工程水泥及水泥混凝土试验规程JTG E30-2005》T0553-2005方 法进行试验。 6.试验结果整理:

6.1 混凝土立方体抗压强度计算公式 f cu= F/A f cu—混凝土立方体抗压强度(MP a) F—极限荷载(N) A—受压面积(mm2) 6.2 当3个试件测值的算术平均值为测定值,计算精确至0.1 MP a。三个测值中的最大值或最小值中如有一个与中间值之差超过中间值的15%,则取中间值为测定值;如最大值和最小值与中间值之差超过中间值的15%,则该组试验结果无效。 6.3 混凝土强度等级小于C60时,非标准试件的抗压强度应乘以尺寸换算系。 抗压强度尺寸换算系数表 6.4 结果计算精确至0.1 MP a。 7. 试验报告: 试验报告应包括内容:○1.要求检测的项目名称、执行标准;○2.原材料的品种、规格和产地;○3.仪器设备名称、型号及编号;○4.环境温度和湿度;○5.水泥混凝土立方体抗压强

6 一种新型绿色环保无机聚合物混凝土

一种新型绿色环保无机聚合物混凝土 空军第八空防工程处张鲁渝、张建霖、刘财华 空军工程大学航空航天工程学院付亚伟 摘要:在分析无机聚合物混凝土(IPC)性能和机理的基础上,采用矿渣+Na2SiO3和NaOH复合激发剂,制备了坍落度在160mm以上,4h抗折强度在2.5MPa以上的快硬早强自密实IPC,并进行了不同激发剂类型、矿渣掺量及养护温度等对IPC强度的影响规律试验研究,并通过机场道面现场试验,研究了IPC的施工工艺和技术。结果表明,通过严格控制原材料质量,采用合适的工艺技术,可有效保证施工质量,利用IPC快速修复的道面4h抗折强度可达3.03MPa,抗压强度达到26.19MPa,且表面性能优异,满足机场道面抢修要求。 关键词:机场道面;无机聚合物混凝土;激发剂;矿渣;抢修;施工 随着低碳经济时期的来临,节能减排和发展循环经济已成为各国政府工作的重要内容,建筑废弃物及工业副产品材料的循环再利用研究也成为全球可持续发展的重要部分。无机聚合物材料是近年来国际上研究非常活跃的一种新型绿色环保型胶凝材料,它是以富含高岭石或富含铝硅酸盐矿物的废渣,如高岭石矿、煤矸石、矿渣、粉煤灰等工业副产品在化学激发剂的作用下,通过玻璃体结构中的-O-Si-O-Al-O-链的解聚生成[SiO4]4-四面体和[AlO4]5-四面体,进而发生缩聚反应生成新的具有晶态和准晶特征的-O-Si-O-Al-O-三维网络结构凝胶体。它生产工艺简单,煅烧温度仅600~800℃,生产能耗比硅酸盐水泥减少70%以上,且CO2的排放量非常低,制造1t碱激发材料CO2排放量仅是硅酸盐水泥CO2排放量的1/10~1/5,可以说是一种真正的绿色低碳材料。国内外研究表明,无机聚合物混凝土(Inorganic Polymer Concrete,简称IPC)无论从化学成分还是微观结构等方面都迥异于硅酸盐水泥混凝土(Portland Concrete,简称PC),其物理力学性能和耐久性能均较PC有大幅度提高[1~7],且具有优良的快速固化性能,可广泛用于抢修工程。本文在分析IPC性能及机理的基础上,通过室内试验对IPC进行配制和性能研究,结合某机场试验工程,研究无机聚合物快速修复混凝土的施工工艺与技术,为新型绿色高性能混凝土的开发研究和应用推广提供理论基础和技术支持。 1 IPC的性能及机理 IPC的硬化过程是在碱性激发剂作用下的硅氧键和铝氧键的断裂与重组反应过程,不存在硅酸钙的水化反应,其最终产物主要为低Ca/Si比的C-S-H(I)、碱性铝硅酸盐和沸石型矿物等,没有Ca(OH)2和过渡带,以离子键以及共价键为主,范德瓦尔斯键为辅,水化产物结构的密实性和均匀性好,性能类似天然沸石矿物,传统水泥则以范德瓦尔斯键及氢键为主,因此其主要性能优于传统水泥混凝土[1~3]。 1.1高强、早强、快凝 无机聚合物分子完全是由Si、A1、O元素等通过共价键构成的,Si-O四面体与A1-O四面体聚合而成连续三维网络构架,因此具有较高的强度,可与陶瓷、铝、钢等金属材料相媲美[4]。无机聚合物反应过程中,溶胶的形成和脱水反应速度比较快,网络骨架比较容易形成,另外微波、加热、干燥对反应都有促进作用,可得到快硬混凝土和超快硬混凝土,常温下4h抗压强度就可达15-20MPa[4]。 1.2 耐久性好 IPC内部结构致密,不存在过渡区,且毛细孔率较低,凝胶孔孔隙率较高,特别是孔径大于2μm的毛细孔率仅为0.3%,而PC为6.2%,因而其耐久性良好。PC的抗渗等级为S2~S12,而IPC的抗渗等级在S40以上,IPC可承受300~1000次冻融循环[5],且较PC具有优异的抗硫酸盐侵蚀、抗化学侵蚀和抗碳化性能,其28d的碳化深度为0[6,7]。 1.3 经济效益显著 无机聚合物材料生产工艺简单,改传统的“两磨一烧”水泥生产工艺为“一磨”,煤耗降低约70%,电耗降低约50%。建造同规模的无机聚合物胶凝材料厂的基建投资仅为硅酸盐水泥厂的10%~30%。无机聚合物材料原料主要为价格低廉的含“铝硅酸盐”的自然矿物或废渣(如粘土、矿渣、火山灰、粉煤灰、硅灰等),且来源广泛,便于就地取材,从而降低运输费用,降低成本。 同时由于IPC的强度高,可以减小构件尺寸,减少材料用量和运输量。由于快凝、早强,可加速模板周转和施工进度,提高建设效率。由于其耐久性优异,可降低维护费用,延长使用寿命。 1.4 社会效益良好 IPC由于不用烧制水泥熟料,各种工业废渣均可作为其原料,激发剂除了用碱金属化合物外,还可利用含碱工业废料和工业副产品,生产能耗极低,只有正常水泥生产能耗的30%,CO2、SO2、NO和粉尘污染可减少90%以上,材料对环境友好并且可以很好地被回收再利用,是一种可持续发展的“绿色环保材料”。 2 原材料与试验方法 2.1 试验原材料 高炉矿渣微粉为江西萍乡联达高新建材厂生产的冶金高炉矿渣微粉,比表面积410m2/kg,密度2.82 g/cm3;碱激发剂采用Na2SiO3和NaOH复合溶液,根据不同比例配制了Ⅰ、Ⅱ两种类型,密度均为1.35g/cm3;砂子为西安灞河中砂,级配合格,密度2.63g/cm3,堆积密度1541kg/m3,含泥量1.02%;石子为陕西泾阳石灰岩碎石,采用5~20mm和20~40mm二级碎石按4:6的比例配成,级配合格,密度2.77g/cm3,堆积密度

相关文档