文档库 最新最全的文档下载
当前位置:文档库 › 异常下限确定方法

异常下限确定方法

异常下限确定方法
异常下限确定方法

名人堂:众名人带你感受他们的驱动人生马云任志强李嘉诚柳传志史玉柱

4、马氏距离法:(在计算时已考虑野值)

针对样本,实际为建立在多元素正态分布基础之上—多重样本的正态分布,超出椭球体时—异常样(如P3点)。

相似于因子得分的计算,最后为一个剔除异常样本时的计算值,实际计算出综合异常边界线。

当令m=1时,

上式化解为Xa=Xo±KS,这是我们较为熟悉的单元素(一维)计算异常下限常用公式。该方法计算较为复杂:下面给出一个实例:

马氏距离(黑色虚线)圈定异常基本为两种以上元素异常的重合的部分。

上图中Hy-44与Hy-45综合异常中,由于As元素相连,传统方法无法分割。用该方法可分解为两个异常,后来实际查证中也证明:左边Hy-44为Au、Cu、Co的成矿,右边Hy-45为Au、Cu的成矿。

解决手工的随意性。

5、单元素计算法:(必须剔除野值)

Xa=Xo±KS

(Xa—异常下限,Xo—背景值,K—取值系数,S—标准离差)从标准正态累积频率密度函数公式:

推断出当K=1.65、2、3时,密度函数分别为95%,97.7%,99.8% 一般为计算方便,通常取K=2,这就是Xa=Xo±2S的来源。

dk

k

tt

2

221

通常应用时,用Xa=Xo±3S无限循环剔除,直到无剔除数据时,对于地球化学通常几百—上千的数据,基本保证数据为正态分布。则此时Xa=Xo+2S定为异常下限

为保证数据为正态分布,实际计算时先将数据转换为对数,此时由于数据离差变小,在剔除野值后,基本都能保证为正态分布。为进行下步计算处理有了理论保障。 6、数据排序法:(不考虑野值)

比较简单、实用所有数据从小到大,按含量排序

做图(含量—纵坐标,1,2……n含量顺序序列----横坐标)

异常有明显的一斜率但数据太多时不适合

7、累积频率法:(不考虑野值,在使用时为网格化数据)

目前较为普遍

元素含量高低分级,采用累频分级方式,分19级,分级频率:

0.5-1.2-2-3-4.5-8-15-25-40-60-75-85-92

-95.5-97-98-98.8-99.5-100(%)异常85-90-95-100(%)和<15%

8、实际使用异常下限值的确定:

实际上各方法确定的异常下限都是可行的,关健是确定的这个值合不合理是值得商榷的。在1:20万区域化探中,由于一般取水系沉积物,样品经过了充分的均一化,方差较小,数据基本为正态分布,剔除不了几个野值,此时计算下限与实际使用值变化不是很大(当然1:20万或1:25万由于区域较大,各分区中元素背景不一,异常下限是不同的,应该适当考虑分区,分别确定异常下限)。

1:5万相对样点较密,部分可能涉及矿区,数据变化较大,此时必须考虑剔除野值,保证数据为正态分布。

1:1万等数据以土壤或岩石原生晕为主,此时主要在矿区工作,数据高的达矿体边界品位,低得很低,在剔除野值,保证数据为正态分布后,剩余数据计算的异常下限明显偏低,有时导致2/3区域都为异常,如我曾经有个工作区,1:1万岩石测量,经计算Au异常下限为30PPb,最后使用值为80PPb。矿区化探异常下限的确定需根据实际情况。

实际上述只是给出了一个计算确定异常下限的方法,实际上上面计算的异常下限值在使用时只是一种参考,使用值是根据该计算值在地球化学图面上最终的确定的,确定依据:

1、异常占总体地球化学图面的15%左右

2、保证异常的连续性(不出现较多的星点状异常)

在异常下限确定后,后面的异常分带就简单多了,一般以异常下限有0、2、4倍划分为外、中、内带,它是推断是否矿致异常的基础,一般矿致异常都有明显分带,而地层引起的异常一般只出现高背景,也即无分带现象。三、地球化学各参数意义

均值(原始数据直接计算)—平均含量大小

高差(原始数据直接计算)—相对平均值的离散程度(反映成矿的可能)

背景值(剔除所有野值后计算,一般此时为正态分布,符合概率统计概念)----真实背景大小

背景离差(剔除所有野值后计算)—计算异常下限需要变异系数—离差/平均值,越大更易成矿,一般用大于1判别,如大于5肯定可成矿。

衬值—原数据/(背景值、异常下限、同类岩石…)--比较值异常强度—最大值/异常下限

面金属量—平均值*面积,成矿规模大小 NAP值—衬值*面积,不同异常间相加或比较

外、中、内带—异常下限的2n(n=0、1、2或其它等),平面分带性

相关系数—相关程度,用临界相关系数判别

合成标准不确定度的计算修订稿

合成标准不确定度的计 算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

第七讲合成标准不确定度的计算 减小字体增大字体作者:李慎安?来源:发布时间:2007-05-08 10:19:04 计量培训:测量不确定度表述讲座 国家质量技术监督局 李慎安 合成标准不确定u c的定义如何理解? 合成标准不确定度无例外地用标准偏差给出,其符号u以小写正体c作为下角标;如给出的为相对标准不确定度,则应另加正体小写下角标rel,成为u crel。按《JJF1001》定义为:当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度。如各量彼此独立,则协方差为零;如不为零(相关情况下),则必须加进去。 上述定义可以理解为:当测量结果的标准不确定度由若干标准不确定度分量构成时,按方和根(必要时加协方差)得到的标准不确定度。有时它可以指某一台测量仪器,也可以指一套测量系统或测量设备所复现的量值。在某个量的不确定度只以一个分量为主,其他分量可忽略不计的情况下,显然就无所谓合成标准不确定度了。 什么是输入量、输出量 在间接测量中,被测量Y不能直接测量,而是通过若干个别的可以直接测量的量或是可以通过资料查出其值的量,按一定的函数关系得出: Y=f(X1,X2,…,X n) 其中X i为输入量,而把Y称之为输出量。 例如:被测量为一个立方体的体积V,通过其长l、宽b和高h三个量的测量结果,按函数关系 V=l·b·h计算,则l,b,h为输入量,V为输出量。 什么叫作线性合成 例如在测量误差的合成计算中,其各个误差分量,不论是随机误差分量还是系统误差分量,当合成为测量误差时,所有这些分量按代数和相加。这种合成的方法称为线性合成。 不确定度的各个分量如彼此独立,则恒用方和根的方式合成。但如果其中某两个分量彼此强相关,且相关系数r=+1,则合成时是代数相加,即线性合成而非方和根合成。 什么叫灵敏系数 当输出量Y的估计值y与输入量X i的估计值x1,x2,…x n之间有

实验三实验方法测定物体的重心

实验三实验方法测定物体的重心 一、实验目的: 1、通过实验加深对合力概念的理解; 2、用悬挂法测取不规则物体的重心位 置; 3、用称重法测取重力摆(两个圆盘和 一跟直杆可自由组合成不同的摆)的 重心位置并用力学方法计算重量。 二、实验设备和仪器 1、ZME—1理论力学多功能实验装置; 2、不规则物体(各种型钢组合体); 3、重力摆模型; 4、弹簧秤。 三、实验原理 物体的重心的位置是固定不变的。再利用柔软细绳的受力特点和两力平衡原理,我们可以用悬挂的方法决定重心的位置;又利用平面一般力系的平衡条件,可以测取杆件的重心位置和物体的重量。

四、实验方法和步骤 悬挂法 1.从柜子里取出求重心用的组合型钢试件,用将把它描绘在一张白纸上; 2.用细索将其挂吊在上顶板前面的螺钉上(平面铅垂),使之保持静止状态; 3.用先前描好的白纸置于该模型后面,使描在白纸上的图形与实物重叠。再用笔在沿悬线在白纸上画两个点,两点成一线,便可以决定此状态的重力作用线; 4.变更悬挂点,重复上述步骤2-3,可画出另一条重力作用线; 5.两条垂线相交点即为重心。 称重法 1.取出实验用平衡摆。按图将摆通过线 绳悬挂于实验装置的前面顶板上,其中的一端挂于钩秤上,并使摆杆保持水平。 2.读取钩秤的读数,并记录; 3.将钩秤置换到另一端,并使摆杆保持 水平;

4.重复步骤2; 五、数据记录与处理 悬挂法(请同学另附图) 称重法 六、注意事项 1、实验时应保持重力摆水平; 2、弹簧称在使用前应调零。 七、思考题 1、实验时重力摆不能保持水平, 对实验精度有何影响 2、试分析可能引起误差的原因。

确定型决策、不确定型决策、风险型决策的比较分析

确定型决策、不确定型决策、风险型决策的比较分析 叶伟 内容摘要:决策按照状态空间分类,可分为确定型决策、不确定型决策和风险型决策三类。 本文就这三种决策的基本概念、使用原则、适用范围和优缺点等几个方面进行了综合的比较 分析。 关键词:确定型决策不确定型决策风险型决策 Abstract:According to the state space, the decision-making may be divided into decision making under certainty , decision making under uncertainty and decision making under risk. This article has carried on the comparative analysis of their basic concept, their use principle, their applicable scope and their good and bad points and so on. Keywords:Decision-making under certainty Decision-making under uncertainty Decision-making under risk 1.引言 决策是理性人普遍从事的一种活动,也是极为重要的制胜手段。它的核心是,对未来活 动的多个目标及用途做出合理的选择,以寻求最满意的行动方案。决策具有以下特点:①面 对新问题和新任务做出科学决定,属于创造性的管理活动;②必须对实际行为有直接的指导 作用;③具有多因素、多目标、不要确定性与方案的多样性,以及决策影响的时效性和一次 性。 现代决策理论的主要特点在于,以概率和数理统计为基础,以统计判定理论和高等数 学为工具,广泛地收集和处理信号,考虑人的心理和外在环境、市场等应变因素,知道人们 把各类工程技术因素与经济效益统一起来做定量分析,并以电子计算机为辅助手段,研究决 策的性质和规律、模型与方法,以寻求整体的最优解或满意解。因此,决策具有目的性、信 息性、经济性和实践性四大基本水泥感。而应变性是最高层次的属性。 关于决策系统的目标、准则和属性的概念,国内外学者有大量的论述,又不尽相同。 下表给出了三者的对比。 目标、准则和属性概念 非程序化决策;从所涉及和影响的范围看,它分为战略、战役和战术决策;从问题描述的性 质看,它分为定量决策和定性决策;从目标数量和属性的多少看,它分为单目标、多目标决 策和单属性、多属性决策;从决策问题的考虑方式看,它分为动态决策和静态决策;从参与 决策人数多少看,它分为群决策和单一决策;本问研究的是从状态空间分类的确定型、不确

人体二维重心测量(完整版)资料

测量点 名称 坐标 测量点名称 坐标 X Y X Y 头 右肩 左肩 右肘 左肘 右腕 左腕 右手 左手 右髋 左髋 右膝 左膝 右踝 左踝 右趾尖 左趾尖 右足跟 左足跟 躯干上测量点 躯干下测量点 分析法计算人体重心 学院: 学号: 姓名: 成绩: 0 10 30 20 40 50 60 70 80 90 1000 110 10 30 20 40 50 60 70 80 90 1000 110

测量点 名称 坐标 测量点名称 坐标 X Y X Y 头 右肩 左肩 右肘 左肘 右腕 左腕 右手 左手 右髋 左髋 右膝 左膝 右踝 左踝 右趾尖 左趾尖 右足跟 左足跟 躯干上测量点 躯干下测量点 分析法计算人体重心 学院: 学号: 姓名: 成绩: 0 10 30 20 40 50 60 70 80 90 100110 10 30 20 40 50 60 70 80 90 1000 110

测量点 名称 坐标 测量点名称 坐标 X Y X Y 头 右肩 左肩 右肘 左肘 右腕 左腕 右手 左手 右髋 左髋 右膝 左膝 右踝 左踝 右趾尖 左趾尖 右足跟 左足跟 躯干上测量点 躯干下测量点 分析法计算人体重心 学院: 学号: 姓名: 成绩: 0 10 30 20 40 50 60 70 80 90 1000 110 10 30 20 40 50 60 70 80 90 1000 110

测量点 名称 坐标 测量点名称 坐标 X Y X Y 头 右肩 左肩 右肘 左肘 右腕 左腕 右手 左手 右髋 左髋 右膝 左膝 右踝 左踝 右趾尖 左趾尖 右足跟 左足跟 躯干上测量点 躯干下测量点 分析法计算人体重心 学院: 学号: 姓名: 成绩: 0 10 30 20 40 50 60 70 80 90 1000 110 10 30 20 40 50 60 70 80 90 1000 110

巧妙、准确测定重心测量装置的方法

巧妙、准确测定重心测量装置的方法 中国计量科学研究院 周祖濂 【摘 要】本文提出了一种可与理论值相比较的、判断称重法重心测量装置准确度的方法。此方法也可用来判断衡器的偏载。 【关键词】 称重法测重心,相对重心位移测量法 用称重法测量重心的装置,是将被测物体放置在由三只或四只称重传感器的承载平台上,通过测量传感器受力的差值来测定物体的重心。测量方法的原理是非常简单、明瞭。特别是使用数字传感器或数字称重系统,可使重心测量精度大大提高。现在的问题时,如何确定重心测量装置的准确度。以往的方法是在一特定的位置上放置已知重量的砝码或重物来确定重心测量装置的准确度,这种方法不仅需要大量的砝码,而且是通过装置本身的测量结果来估算,要发现装置的系统偏差是不太容易,准确度也不可能很高。 我们提出的这种确定重心测量装置方法,称为“相对重心位移测量”法。众所周知,称重法测量物体的重心是建立在力矩平衡原理的基础上,因此,我们只要能够改变已知重量物体的几何位置,并准确测量所改变的相对距离,就可根据力矩平衡理论计算出原来物体总体重心的位置的改变值,同时根据该重心测量系统测出此已知重量改变前后的两个重心位置。将测得两个重心测量值之差与理论计算值作比较,就可方便而准确的确定该重心测量装置的准确度。理论值的精确度由可移动的物体或砝码的精度和移动位置的几何测量的精度确定。 我们用此方法对一台用来测量集装箱重心的系统作了实际运用。在一空集装箱内在如图所示的两个位置,分别放置160kg的砝码,进行所谓的位置变动测量。两组砝码间的中心距离为2117mm。在两个位置测得的中心位置(在y方向)分别为:-42.2mm和48mm。 两组重心测量值之差为: Δ实=48-(-42.2)=90.2mm

背景值及异常下限

求区域背景值的方法 就用黎彤的克拉克值就可以。。。 设:T=黎彤的克拉克值 E=光谱分析的测试值 E=2的(n-1)次方*T 求出的n值就是改元素的丰度值。n的大小就能反映他的富集程度。 新方法哦。。。。。 异常下限(threshold of anomaly)是根据背景值和标准离差按一定置信度所确定的异常起始值。它是分辨地球化学背景与异常的一个量值界限。从这个数值起,所有的高含量都可认为是地球化学异常,低于这个数值的所有含量则属于地球化学背景范围。异常下限多用统计学方法求得,通常用背景平均值加上两倍或三倍标准差作为异常下限。[1 异常下限(threshold of anomaly)是根据背景值和标准离差按一定置信度所确定的异常起始值。它是分辨地球化学背景与异常的一个量值界限。从这个数值起,所有的高含量都可认为是地球化学异常,低于这个数值的所有含量则属于地球化学背景范围。 通常异常下限求得,即采用“迭代法”来求得,具体操作为: 1、先计算背景平均值,及标准差。 2、背景平均值加上三倍标准差作为一个参照数,寻找分析数据中是否有大于这个参照数。有的话,删除。 3、删除后的数据,又进行计算背景平均值,及标准差。按背景平均值加上三倍标准差方法得出新的参照数,寻找分析数据中的大于这个参照数,有的话,删除。 4、循环执行第3步,直至数据不存在大于背景平均值加上三倍标准差的数时,才取这时的背景平均值加上三倍标准差的值为异常下限。 有时候可以用1.5,2 3倍标准差计算异常下限) 也可通过LOG10()函数将原数据转为对,用上述方法进行计算。 近年来,随着分形理论的深入,采取分形技术也可求取一个拐点值,采取其中一个合适的值作为异常下限,从而圈定异常! 楼主这个算法是通常的生产中的经验,一般的都这么算。但楼主忽略了一个东西,那就是算出来的是理论异常下限,生产中的异常下限,我们通常都要进行校正。校正主要是考虑该区域所处的大背景。 在excel中的计算方法 1选择数据,进行升序排列 在EXCEL中的公式中有计算标准离差的公式 平均值:X=average

三米直尺法检测平整度作业指导书

三米直尺法检测平整度作 业指导书 This manuscript was revised by the office on December 10, 2020.

T0931-2008三米直尺法检测平整度作业指导书 一目的和适用范围及标准 本方法规定用三米直尺测定路表面的平整度。定义三米直尺基准面距离路表面的最大间隙表示路基路面的平整度,以mm计。 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 二仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)最大间隙测量器具: 楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于或等于0.2mm,也可使用其他类型的量尺。 深度尺:金属制的深度测量尺,有手柄。深度尺测量杆端头直径不小于10mm,刻度精度小于或等于。 (3)其它:皮尺或钢尺、粉笔等。 三方法与步骤 准备工作 (1)按有关规范规定选择测试路段。

(2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上做好标记。 (3)清扫路面测定位置处的污物。 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3rn直尺底面与路面之间的间隙情况,确定间隙最大的位置。 (3)用有高度标线的塞尺塞进间隙处,量测其最大间隙的高度(mm);或者用深度尺在最大间隙位置量测直尺上顶面距地面的深度,该深度减去尺高即为测试点的最大间隙的高度,精确至。 四计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10次时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 五报告

第五节 平整度试验检测方法

第五节平整度试验检测方法 一、概述 平整度是路面施工质量与服务水平的重要指标之一。它是指以规定的标准量规,间断地或连续地量测路表面的凹凸情况,即不平整度的指标。路面的平整度与路面各结构层次的平整状况有着一定的联系,即各层次的平整效果将累积反映到路面表面上,路面面层由于直接与车辆及大气接触,不平整的表面将会增大行车阻力,并使车辆产生附加振动作用。这种振动作用会造成行车颠簸,影响行车的速度和安全及驾驶的平稳和乘客的舒适,同时,振动作用还会对路面施加冲击力,从而加剧路面和汽车机件损坏和轮胎的磨损,并增大油耗。而且,不平整的路面会积滞雨水,加速路面的破坏。因此;平整度的检测与评定是公路施工与养护的一个非常重要的环节。 平整度的测试设备分为断面类及反应类两大类。断面类实际上是测定路面表面凹凸情况的,如最常用的3m直尺及连续式平整度仪,还可用精确测定高程得到;反应类测定路面凹凸引起车辆振动的颠簸情况。反应类指标是司机和乘客直接感受到的平整度指标,因此它实际上是舒适性能指标,最常用的测试设备是车载式颠簸累积仪。现已有更新型的自动化测试役备,如纵断面分析仪,路面平整度数据采集系统测定车等。国际上通用国际平整度指数IRI衡量路面行驶舒适性或路面行驶质量,可通过标定试验得出IRI与标准差ó或单向累计值VBI之间的关系。 二、平整度测试方法 (一)3m直尺法 3m直尺测定法有单尺测定最大间隙及等距离( 1.5m)连续测定两种。两种方法测定的路面平整度有较好的相关关系。前者常用于施工质量控制与检查验收,单尺测定时要计算出测定段的合格率;等距离连续测试也可用于施工质量检查验收,要算出标准差,用标准差来表示平整程度。 1.试验目的和适用范围

不确定度的计算方法(可编辑修改word版)

(U u )2 + (U w )2 u w = = = = 测量结果的正确表达 被测量 X 的测量结果应表达为: X = X ± U (仪仪 ) 表 1 常用函数不确定度合成公式 其中 X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为 cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 2 N = X αY β Z γ U N = N 直接测量不确定度的计算方法 U = 1. 在函数关系是乘除法时,先计算相对不确定度( U N )比较方便.例如表中第二行 N 的公式. 2. 不确定度合成公式可以联合使用. 其中: S = 为标准差; sin θ u 例如: 若 τ ,令u sin θ , w 3φ 则 τ . 3φ w ?仪 是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 根据表中第二行公式,有: U τ = ; τ 间接测量 N = f (x , y , z ,??仪 的平均值公式为: N = f (x , y , z ,??仪 ; 根据表中第一行公式,有: U w = = 3U φ ; 不确定度合成公式为:U N = 根据表中第三行公式,有: 。 U u = cos θ ?U θ . 也可根据表 1 中的公式计算间接测量的不确定度。 所以, U τ = τ ? = τ S 2 + ? 2 仪 ∑ ( X - X ) 2 i n -1 ( ) ?U + ( ) ?U + ( ) ?U + ? N 2 2 ? N 2 2 ? N 2 2 ?X X ?Y Y ?Z Z α 2 (U X ) 2 + β 2 (U Y ) 2 + γ 2 (U Z ) 2 X Y Z 32U 2 φ

决策与决策方法习题及答案

决策与决策方法习题及答案作者:@钟方源 一、填充题 1、决策被定义为管理者(识别并解决问题)的过程,或者管理者(利用机会)的过程。 2、决策的主体是(管理者)。 3、管理者既可以单独做出决策,这样的决策被称为(个体决策);也可以和其他管理者一道共同做出决策,这样的决策被称为(群体决策)。 4、决策的目的是(解决问题)或(? 利用机会)。 5、决策遵循的是(满意)原则,而不是(最优)原则。 6、(适量的信息)是决策的依据。 7、古典决策理论是基于(? 经济人)假设提出的。 8、西蒙在《管理行为》一书中提出(有限理性)标准和(满意度)原则。 9、行为决策理论认为人的理性介于(完全理性)和(非理性)之间。 10、决策过程的第一步是(诊断问题)或(识别机会)。 11、执行方案的过程中,管理者要明白,方案的有效执行需要足够数量和种类的(资源)作保障。 12、在环境比较复杂的情况下,决策一般由组织的(中低层管理者)进行;而在环境剧烈变化的情况下,决策一般由组织的(高层管理者)进行。 13、垄断程度高容易使组织形成以(生产)为导向的经营思想。 14、激烈的竞争容易使组织形成以(市场)为导向的经营思想。 15、在卖方市场条件下,组织所做的各种决策的出发点是(组织自身的生产条件与生产能力)。 16、在买方市场条件下,组织所做的各种决策的出发点是(市场需求情况)。 17、信息化程度对决策的影响主要体现在其对(决策效率)的影响上。 18、如果决策涉及的问题对组织来说非常紧迫,则这样的决策被称为(时间敏感型 )决策。 19、如果决策涉及的问题对组织来说不紧迫,组织有足够的时间从容应对,则这样的决策可被称为(知识敏感型)决策。

第八讲 扩展不确定度的计算

第八讲扩展不确定度的计算 减小字体增大字体作者:李慎安来源:https://www.wendangku.net/doc/bb7874484.html, 发布时间:2007-05-08 10:33:45 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 8.1 什么叫扩展不确定度? 按《JJF1001》扩展不确定度定义为:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。也称展伸不确定度或范围不确定度。符号为大写斜体U,U P。当除以被测量之值后,称为相对扩展不确定度,符号为U rel,U prel。符号中的p为置信概率,一般取95%,99%,这时其符号成为U95,U99,U95rel或U99rel。定义中所指大部分,最常用的是95%和99%。 扩展不确定度过去曾称总不确定度(overall uncertainty),这一名称已为《导则》所禁止使用,因其从含义上易与合成不确定度混淆。 扩展不确定度是比合成标准不确定度大的一个参数,它等于合成标准不确定度乘以包含因子k后的值,对于合成标准不确定度而言,它是成倍地被扩大了的一个值。 8.2 扩展不确定度分成几种? 扩展不确定度根据所乘的包含因子k的不同,分成两大类。当包含因子k之值取2或3时,扩展不确定度U只是合成标准不确定度u C的k倍。在给出U时,必须指明k的取值。实际上,这时的U所包含的信息与u C一样,并未因乘以k后,其信息有所增多。此外,还有一种包含因子k p,它是为了使扩展不确定度所给出的区间内能有概率为p的合理赋予被测量之值含于其中所必须有的因子。所得到的扩展不确定度为U p。一般,只在被测量Y可能值y的分布类型可估计为正态时才给出U P。这时的k p之值,按u c(y)的有效自由度υeff,通过本讲座6.6中的表得出,即t p值,k p=t p(υ)。随υ的增大,k有所降低,随p的增大,k p有所增加。 与上述类似,相对扩展不确定度亦有两种。 8.3 什么情况下使用U,什么情况下使用U p来说明测量结果的不确定度? (1)根据有关测量仪器校准的技术规范。例如,以下技术规范规定取k=3,JJF2002,2003,2004,2018,2019,2025,2026,2030,2032~2041,2045,2446等,不一一例举。而以下技术规范规定取k=2,JJF2049,2050,2072,2089等。也有一些技术规范规定用U95,如JJF2006,2061,等。规定采用U99的如JJF2020,2056,146等。 (2)可以估计被测量Y估计值y之分布接近正态时,可给出U p,否则只能给出U。 8.4 什么情况下可用包含因子k95=2及k99=3? 如果y的分布是比较理想的正态分布,那么,当合成标准不确定度u C(y)的有效自由度充分大时,即可做出这样较简单的处理,例如,在p=95%时,自由度为12,这时,按本讲座6.6,k p=2.18,如取k p=2,其值小了不到十分之一,应该说就无足轻重了。当p=99%时,υeff无穷大的k p=2.58≈2.6,整化为k99=3,已较保守;而当υeff=20时,k99之值为2.85,它比2.6大约大十分之一,因此,这时如不用2.85而用2.6,所得U99也只小十分之一左右,应可忽略。因此,在《JJF1059》中所要求的有效自由度应充分大,拿十分之一作为可忽略的标准,则对于p=95%时,υeff应大于12,对于p=99%,应大于20。 8.5 什么情况下,虽未计算合成标准不确定度u c(y)的有效自由度,取包含因子k=2给出的扩展不确定度U可以估计是置信区间在p=95%的半宽,可否在检定证书中给出其值为U95? 虽未算出υeff,但其值估计不太小,例如,大于12,而且,可以估计Y的估计值的分布接近正态,这时,一般可以认为U=2u c(y)的置信概率p大约为95%。但是不能在证书上给出其值为U95之值。

确定型决策方法及应用

确定型决策法 实训目标: 1.了解确定型决策的特点。 2.理解环境分析的内涵。 3.能用SWOT分析对目前所处位置进行定位。 4.重点掌握量本利分析方法。 实训要求: 1.事先分组,每4名同学分为一组,每组选出1名组长,相互协作,充分交流, 共同完成任务,最后提交4份作业。 2.在实训前,学生应查询领本来分析的资料。 3.学生需将决策的思路及步骤能用语言表达出来。 【训练过程】 下达任务书 青岛某A公司自成立至今有十年时间,主要经营快速消费品和小型耐用消费品(电风扇、电饭煲、电暖器、熨斗)等配送业务。A公司经营范围以青岛为中心涵盖山东大部分地级城市,业务主要以自营为主,拥有各类车辆50辆,配送中心3个,供货较为及时,在业内口碑较好,客户稳定。但是,近两年来,利润增长乏力。这引起领导层的高度关注,中基层管理者对提高业绩欲望较高。经调查发现,利润下降的主要原因是由于车辆老化,使得变动成本上升所致。而本公司的竞争对手已于去年进行了部分设备更新。已知该公司平均运价为6000元/千吨公里,固定成本1000万元,单位变动成本5000元/千吨公里。

如果你作为该公司战略部门主管,如何进行决策?(案例中背景资料不足的,可以进行合理推断) 相关背景知识 1.确定型决定特点 在确定型决策中,决策者对未来可能出现何种自然状态,以及在该状态下,能产生多大收益或损失能够确定。这是种理想状况,但在某些情况下,可以按照这种特点进行决策。比如,将货币资金存入银行,所能获得的利息收益,就可以认为是确定的。确定型决策要经过内外部环境分析、目前所处位置定位、明确目标、制定方案、评价和选择方案等步骤。 2.环境分析 需要对企业所处的内、外部环境进行分析。 (1)外部环境分析 外部环境包括宏观环境和行业环境(中观环境)两部分。 ①宏观环境分析。是企业经营所共同面对的环境,主要包括政治与法律环境、经济环境、技术环境、文化环境和自然环境。企业必须要在宏观环境的框架下制定发展目标及方案,因此,管理者在制定计划时,要研究和顺应宏观环境,不能与之相抵触。 ②行业环境分析。行业环境是企业开展经营活动所直接面临的环境,主要包括供应商、客户、现有竞争对手、潜在进入者和替代品厂商。行业环境分析主要运用迈克尔.波特教授的五力模型对各种力量进行博弈分析。 通过外部环境分析,目的是要找出企业发展的机会与面临的威胁。企业必须把握住能为其经营带来运作空间与发展潜力的商业机会,并须及早发现和千方百

3m直尺测定平整度试验方法

3m直尺测定平整度试验方法 1 目的和适用范围 1.1 本方法规定用3m直尺测定距离路表面的最大间隙表示路基路面的平整度,以mm计。 1.2 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 2 仪具与材料 本试验需要下列仪具与材料: (1) 3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于0.2mm,也可使用其他类型的量尺。 (3)其它:皮尺或钢尺、粉笔等。 3 方法与步骤 3.1 准备工作 (1) 按有关规范规定选择测试路段。 (2) 在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程

质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上作好标记。 (3) 清扫路面测定位置处的污物。 3.2 测试步骤 (1) 在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的 位置。 (3)用有高度标线的塞尺塞进间隙处,量记其最大间隙的高度(mm),准确至0.2mm。 (4) 施工结束后检测时,按现行《公路工程质量检验评定标准》(JTJ071-94)的规定,每1处连续检测10尺,按上述(1)~(3)的步骤测记10个最大间隙。 4 计算 4.1 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10尺时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。

电子式人体重心测量仪的设计及应用

电子式人体重心测量仪的设计及应用 于岱峰 (山东体育学院,山东济南260063) 摘要:根据运动生物力学关于人体重心测试原理,设计出一种高精度的人体重心测量仪器。该仪器采用传感器和单片机技术,采集、处理、显示数据,使测试人体重心的方法更简便,结果更精确。关键词:人体重心;测试仪;传感器;单片机 中图分类号:G 804.2-39 文献标识码:B 文章编号:1006-2076(2000)02-0092-03 收稿日期:2000-01-04 修回日期:2000-06-02 作者简介:于岱峰,男,1955年生,实验师。 人体重心是运动生物力学分析和研究人体环节参数的一个重要数据。由于人体是一个组合物体,它是由头、躯干、上臂、前臂、手、大腿、小腿和足等系列环节组成,而这些环节的每一部分,由于受到地心吸引力的作用,使人体的各个环节都有重心。我们把全部环节( 即整个人体)所受重力的合力作用点称做人体重心或人体总重心。 由于每个人体的结构不同,人体的重心不像物体那样恒定在一个点上。目前,国内运动生物力学在测量活体静态一维人体重心位置时,主要使用平衡板、体重称测力的方法。此种方法主要存在以下不足: 1)测量速度慢 在测量人体重心的过程中,需要反复拨动体重称的砝码,直至体重称砝码完全稳定后,才能读出数据。对大量运动员和学生进行测试时,获取数据慢,测试时间长。 2)测量误差大,精度低 目前国内使用的体重称最小分辨率仅为0.1kg 。再加上体重称内部机械磨损,弹簧疲劳以及气温等因素的影响,大大降低了体重称的灵敏度。因此,使用体重称测力的方法不能满足体育学院的本科生、专业研究生对实验精度的要求。 3)测试功能单一,仅能测得一项测力数据。 4)测试过程繁琐,受试者要在不同的仪器上测试体重、身高、重力等数据后,通过手工计算才能求出重心结果。 为了解决以上问题,我们根据普通物理学的力学原理,设计了一种电子式重心测量仪,即采用传感器转换人体的压力,使用微型计算机监控传感器信号,将数据采集、运算处理、数字显示合为一体的测量仪器。 1 利用平衡板测量静态人体重心原理及方法 1.1 一维静态人体重心测试原理利用平衡板测量人体重心,是根据普通物理学中的物体平衡原理,即当物体处于静止平衡状态时,作用于物体上的合力为零,合力矩也均为零。由力矩平衡方程可知: ∑M ? =0 (1.1) 我们特制一定长度的均质木版,两端分别安装刀刃槽并在下方放置高精度的压力传感器。见图1? 29?第16卷总第46期 山东体育学院学报 V ol.16T otal N o.46 2000年第2期 Journal of Shandong Physical Education Institute N o.22000

地球化学异常下限确定方法

一、地球化学数据处理基础 数据处理的意义是获得较为准确的平均值(背景)和异常下限。 1、地球化学数据处理归根结底仍属于统计学的范畴,所以要求数据应是正态分布的,不是拿来数据就能应用的,特别是用公式计算时更要注意这一点。 正态(μ=0, δ=1)----(偏态)。 大数定理:又称大数法则、大数率。在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。 所以如果在计算时,数据中包含较多的野值时,实际获得的是一个不具稳定性的算术平均,它实际不能替代背景值。 2、异常是一个相对概念,有不同尺度上的要求,所以不要将其看作一个定值。在悉尼国际化探会议上(1976),对异常下限定义:异常下限是地球化学工作者根据某种分析测试结果对样品所取定的

一个数值,据此可以圈定能够识别出与矿化有关的异常。并对异常下限提出了一个笼统的定义:凡能够划分出异常和非异常数据的数值即为异常下限。 据此,异常下限不能简单的理解为背景上限。 二、异常下限确定方法 具体异常下限确定方法较多:地化剖面法、概率格纸法、直方图法、马氏距离法、单元素计算法、数据排序法、累积频率法…… 下面逐一介绍: 1、地化剖面法:(可以不考虑野值)

在已知区做地化剖面:要求剖面较长,穿过矿化区(含蚀变区)和正常地层(背景),能区分含矿区和非矿区就可确定为下限。 2、概率格纸法:(可以不考虑野值) 以含量和频率作图 15%--负异常 50%--背景值 85%--X+δ(高背景) 98%-- (X+2δ)异常下限 3、直方图法:(可以不考虑 野值) 能分解出后期叠加的 值就为异常下限

高速公路路面平整度检测及其技术措施

高速公路路面平整度检测及其技术措施摘要:路面平整度是反应路面质量的其中一个重要指标,同时路面平整度质量直接反映公路运行使用阶段行车安全等方面,本文通过结合路面平整度检测实践,提出路面平整度检测方法,同时结合实践,提出如何有效地提高高速公路路面平整度,为同类工程提供参考。 关键词:高速公路;路面平整度;激光检测;平整度控制 abstract: the road surface roughness is the quality of the road surface reaction one of the important indexes, and pavement roughness quality directly reflects highway runs using phase driving safety and so on, this article by combining road surface flatness detection practice, it puts forward the road surface flatness detection methods, at the same time, combined with the practice, puts forward how to effectively improve the highway pavement roughness, and provide a reference for similar projects. keywords: highways; and pavement roughness; laser detection; flatness control 中图分类号:u412.36+6 文献标识码:a文章编号: 引言 对高速公路路面平整度检测是指以规定的标准量规,间断地或

不确定度评估基本方法

三、检测和校准实验室不确定度评估的基本方法 1、测量过程描述: 通过对测量过程的描述,找出不确定度的来源。 内容包括:测量内容;测量环境条件;测量标准;被测对象;测量方法;评定结果的使用。 不确定度来源: ● 对被测量的定义不完整; ● 实现被测量的测量方法不理想; ● 抽样的代表性不够,即被测样本不能代表所定义的被测量; ● 对测量过程受环境影响的认识不周全,或对环境的测量与控制不完善; ● 对模拟式仪器的读数存在人为偏移; ● 测量仪器的计量性能(如灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性; ● 测量标准或标准物质的不确定度; ● 引用的数据或其他参量(常量)的不确定度; ● 测量方法和测量程序的近似性和假设性; ● 在相同条件下被测量在重复观测中的变化。 2、建立数学模型: 建立数学模型也称为测量模型化,根据被测量的定义和测量方案,确立被测量与有关量之间的函数关系。 ● 被测量Y 和所有个影响量i X ),2,1(n i ,?=间的函数关系,一般可写为 ),2,1(n X X X f Y ,?=。 ● 若被测量Y 的估计值为y ,输入量i X 的估计值为i x ,则有),x ,,x f(x y n ?= 21。有时为简化 起见,常直接将该式作为数学模型,用输入量的估计值和输出量的估计值代替输入量和输出量。 ● 建立数学模型时,应说明数学模型中各个量的含义。 ● 当测量过程复杂,测量步骤和影响因素较多,不容易写成一个完整的数学模型时,可以分步评定。 ● 数学模型应满足以下条件: 1) 数学模型应包含对测量不确定度有显著影响的全部输入量,做到不遗漏。 2) 不重复计算不确定度分量。

不确定度计算

2、不确定度各分量的评定 根据测量步骤可知,测量氨氮质量的不确定度来源有几个方面,一是由标准曲线配制所产生的不确定度,二是测试过程所产生的不确定度。按《化学分析中不确定度的评估指南》,对于只涉及积或商的模型,例如:C N=m/v,合成标准不确定度为: % 「"㈣12 工「"(¥) —-\\[ ------- J + L—J c \ m v 式中,u(c)为质量m和体积v的合成标准测量不确定度,mg/L ; u(m)为质量m的标准测量不确定度,ug; u(v)为体积v的标准测量不确定度,mLo 2.1取样体积引入的相对不确定度u rel(V) 所取水样用50mL单标线吸管移取。查JJG 196— 2006〈〈常用玻璃量器检定规程》,A级50mL 单标线吸管的容量允差为0.05mL,根据JJF 1059-1999〈〈测量不确定度评定与表示》的规定,标定体积为三角分布,则容量允差引入的不确定度为:u(△ V)=0.050/ V6。 根据制造商提供的信息,吸量管校准温度为20C,设实验室内温度控制在土5C范围内波动,与校准时的温差为5C,由膨胀系数(以水的膨胀系数计算)为2.1X 10-4/C得到50mL水样的标准不确定度为(假定为均匀分布):

= 50.00x2.1x 10~4 x 5/ = 0.03ImL w) 综合以上两项,则: u(r}= =/o.021’+ 0.031’ = 0,038(wZ)取样体积引入的相对不确定度为: 打 =打/ 50 = 0.038/5。= 7.6 x 1 O'4 2.2重复性测定引入的相对不确定度U rel(rep) 采用A类方法评定,与重复性有关的合成标准不确定度均包含其中。对某水样进行7次重复性测定,所得结果如下: 1.33、1.35、1.34、1.34、1.35、1.38、1.35mg/L,平均值 1.35 mg/L。 重复测量数据的标准不确定度为: X(x t-x) 5 = [I ------------ = 0.0060 | — 1) 因此,重复测量的相对标准不确定度为: '(明二&0060/1.35 二0.00445 2.3铉(以氮计)的绝对量m引入的不确定度U rel(m) 2.3.1配制过程中引入的不确定度U rel(1)

平整度作业指导书3

路面平整度测定 作业指导书 文件编号:xxxx 发布日期:2019年01月25日 批准: 审核: 编写: xxxx工程检测有限公司

平整度 1.1 直尺测定平整度试验方法 1.本方法规定用3m直尺测定距离路表面的最大间隙表示路基路面的 平整度,以mm计。 2.本方法适用于测定压实成型的路面各层表面的平整度,以评定路 面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 1.2 仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)楔形塞尺:木或金属制的三角形塞尺,有手柄,塞尺的长度与高 度之比不小于0,宽度不大于15mm,边部有高度记刻 度精度不小于0.2mm,也可使用其他类型的量尺。(3)其它:皮尺或钢尺、粉笔等。 1.3 方法与步骤 1 准备工作 (1)按有关规范规定选择测试路段。 (2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要 时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮迹(距车道线80--100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位

置为测定位置,用粉笔在路面上作好标记。 (3)清扫路面测定位置处的污物。 1.4 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测 试地点的路面上。 (2)目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的位 置。 (3)用有高度的塞尺塞进间隙处,量记其最大间隙的高度(mm),准确 至0.2mm。 (4)施工结束后检测时,按现行《公路工程质量检验评定标准 (JTJ071-94)的规定,每1处连续检测10尺,按上述(1)--(3)的步骤测记10个最大间隙。 1.5 计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10尺时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 1.6.报告 单杆检测的结果应随时记录测试位置及检测结果。连续测定10 尺时,应报告平均值、不合格尺数、合格率。 2.1 连续式平整度仪测定平整度试验方法 1.本方法规定用连续式平整度仪量测路面的不平整度的标准差(б),

(整理)不确定度的计算方法.

精品文档 测量结果的正确表达 被测量X 的测量结果应表达为:)(单位U X X ±= 其中X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 直接测量不确定度的计算方法 2 2仪?+=S U 其中: 1 )(2 --= ∑n X X S i 为标准差; 仪?是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 间接测量)??=,,,(z y x f N 的平均值公式为:)??=,,,(z y x f N ; 不确定度合成公式为: +???+???+???=2 22222)()()( Z Y X N U Z N U Y N U X N U 。 也可根据表1中的公式计算间接测量的不确定度。 表1 常用函数不确定度合成公式 函数表达式 合成公式 2 γ β αZ Y X N = 222222)()()(Z U Y U X U N U Z Y X N γβα++= 注: 1. 在函数关系是乘除法时,先计算相对不确定度(N U N )比较方便.例如表中第二行的公式. 2. 不确定度合成公式可以联合使用. 例如: 若φθτ3sin = ,令θsin =u ,φ3=w 则w u =τ.

精品文档 根据表中第二行公式,有: 22)()(w U u U U w u +=ττ; 根据表中第一行公式,有: φφU U U w 332 2 ==; 根据表中第三行公式,有: θθU U u ?=cos . 所以, 2222)( )sin cos ( )33( )sin cos ( φ θ θτφ θ θτφθ φθ τU U U U U +??=+??=

相关文档