文档库 最新最全的文档下载
当前位置:文档库 › 高考数学第一轮复习-第5章 第2讲 平面向量的数量积及应用

高考数学第一轮复习-第5章 第2讲 平面向量的数量积及应用

高考数学第一轮复习-第5章 第2讲 平面向量的数量积及应用
高考数学第一轮复习-第5章 第2讲 平面向量的数量积及应用

高考数学第一轮复习

第2讲 平面向量的数量积及应用 考点一 平面向量的数量积

知识点

1 平面向量数量积的有关概念

(1)向量的夹角:已知两个非零向量a 和b ,记OA →

=a ,OB →

=b ,则∠AOB =θ(0°≤θ≤180°)

叫做向量a 与b 的夹角.

(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积,记作a·b ,即a·b =|a ||b |cos θ.规定:0·a =0.

(3)数量积的几何意义:数量积a·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2 平面向量数量积的性质

设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ?a·b =0.

(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |. 特别地,a·a =|a |2或|a |=a·a . (4)cos θ=

a·b

|a ||b |

. (5)|a·b |≤|a ||b |.

3 平面向量数量积的运算律 (1)a·b =b·a (交换律).

(2)λa·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). 4 平面向量数量积的坐标表示

设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则 (1)a·b =x 1x 2+y 1y 2.

(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),

则|AB →

|=(x 1-x 2)2+(y 1-y 2)2. (3)cos θ=

x 1x 2+y 1y 2

x 21+y 21·x 22+y 2

2

.

(4)a ⊥b ?a·b =0?x 1x 2+y 1y 2=0.

注意点 数量积的含义和向量垂直与共线的区别

(1)两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值确定.

(2)x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.

入门测

1.思维辨析

(1)一个向量在另一个向量方向上的投影为数量,且有正有负.( ) (2)若a·b =0,则必有a ⊥b .( )

(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )

(4)在四边形ABCD 中,AB →

=DC →

且AC →·BD →

=0,则四边形ABCD 为矩形.( ) 2.(1)已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A .-1

7

B.17 C .-16

D.16

(2)如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1,则AC →·AD →

=( ) A .2 3 B.

32

C.3

3

D. 3

解题法

[考法综述] 高考中有关平面向量的数量积运算包含三类问题:①利用坐标计算平面向量的数量积;②根据平面向量的数量积的定义计算几何图形中相关向量的数量积;③根据数量积求参数值.分值在5分左右,难度中等.

命题法 求向量的数量积、夹角、模及平行垂直的条件

典例 (1)AD ,BE 分别是△ABC 的中线,若|AD →

|=|BE →|=1,且AD →与BE →

的夹角为120°,则

AB →·AC →

=( )

A.8

9 B.4

9 C.13 D.23 (2)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )

A .-72

B .-12

C.32

D.52

(3)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.

【解题法】 向量的夹角与模的求法 (1)两向量的夹角的范围是[0,π]

当a 与b 的夹角是锐角时?a ·b >0且a 与b 不共线; 当a 与b 的夹角是钝角时?a ·b <0且a 与b 不共线;

当a 与b 的夹角是直角时?a·b =0. (2)向量的模的求法 ①|a |2=a 2=a ·a .

②|a ±b |2=(a ±b )2=a 2±2a·b +b 2. ③若a =(x ,y ),则|a |=x 2+y 2.

1.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →

=( ) A .-3

2a 2

B .-34a 2

C.3

4

a 2 D.32

a 2 2.△ABC 是边长为2的等边三角形,已知向量a ,

b 满足AB →

=2a ,AC →

=2a +b ,则下列结

论正确的是( )

A .|b |=1

B .a ⊥b

C .a ·b =1

D .(4a +b )⊥BC →

3.设四边形ABCD 为平行四边形,|AB →

|=6,|AD →

|=4.若点M ,N 满足BM →

=3MC →

,DN →

=2NC →

则AM →·NM →

=( )

A .20

B .15

C .9

D .6

4.若非零向量a ,b 满足|a |=22

3

|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4

D .π 5.若向量a ,b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1

D.22

6.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )

A .-2

B .-1

C .1

D .2

7.已知A ,B ,C 为圆O 上的三点,若AO →

=1

2(AB →+AC →),则AB →与AC →的夹角为________.

8.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.

9.已知单位向量e 1与e 2的夹角为α,且cos α=1

3,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为

β,则cos β=________.

10. 如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →

=3PD →

,AP →·BP →

=2,则AB →·AD

的值是________.

考点二 数量积的综合应用

知识点

1 向量在几何中的应用

(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件:a ∥b ?a =λb (b ≠0)?x 1y 2-x 2y 1=0.

(2)证明垂直问题,常用向量垂直的充要条件: a ⊥b ?a ·b =0?x 1x 2+y 1y 2=0. (3)求夹角问题,常用公式: cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22

. (4)求线段的长度,可以用向量的线性运算,向量的模 |a |=a ·a =x 2+y 2或

|AB |=|AB →

|=(x 2-x 1)2+(y 2-y 1)2. 2 向量在三角函数中的应用

与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.

3 向量中的不等式

①|a·b |≤|a ||b |;②||a |-|b ||≤|a ±b |≤|a |+|b |. 注意点 坐标系的应用

向量在平面几何中的应用,往往与求模、夹角、面积等有关,如果建立适当的坐标,可将问题转化为向量的坐标运算使问题简化.

入门测

1.思维辨析

(1)△ABC 内有一点O ,满足OA →

+OB →

+OC →

=0,且OA →·OB →

=OB →·OC →

,则△ABC 一定是等腰三

角形.()

(2)实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.(

)

(3)在△ABC中,若AB

·BC

<0,则△ABC为钝角三角形.(

)

(4)作用于同一点的两个力F1和F2的夹角为

3,且|F1|=3,|F2|=5,则F1+F2大小为19.()

2.已知点A(1,0),抛物线y2=4x,点Q是抛物线上的一点,若QA

=2AP

,则点P的轨迹方程为________.

[考法综述]平面向量的数量积的应用,主要与三角函数、解析几何相结合、综合性强,难度中等,有时以客观题形式考查,有时会出现在解答题中,需灵活运用向量的相关知识进行转化.命题法利用数量积证明平行垂直或数量积与三角函数解析几何的综合应用

典例(1)在平行四边形ABCD中,∠A=

π

3,边AB、AD的长分别为2、1.若M、N分别是边BC、CD上的点,且满足

|BM

|

|BC

|

|CN

|

|CD

|

,则AM

·AN

的取值范围是________.

(2)已知向量a=????

cos

3x

2,sin

3x

2,b=?

?cos x

2,-sin?

?x

2,且x∈?

?

?

?

π

3,

π

4.

①求a·b及|a+b|;

②若f(x)=a·b-|a+b|,求f(x)的最大值和最小值.

【解题法】向量在几何和三角函数中的解题及策略

解决向量与三角函数知识综合题的关键是把向量关系转化为向量的有关运算,再进一步转化为实数运算(即坐标运算),进而构建出三角函数,然后再考虑三角函数的相关性质,如单调性、最值、周期等,有时还会带有参数,解题时要注意分类讨论.

1.已知AB →⊥AC →,|AB →|=1t ,|AC →|=t .若点P 是△ABC 所在平面内的一点,且AP →

=AB →|AB →|

+4AC

|AC →

|

则PB →·PC →

的最大值等于( )

A .13

B .15

C .19

D .21 2.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( )

A .1

B .2

C .3

D .5

3.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →

=1,CE →·CF →

=-2

3

,则λ+μ=( )

A.12

B.23

C.56

D.712

4.已知点O 为△ABC 的外心,且|AC →

|=4,|AB →

|=2,则AO →·BC →

=________.

5.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →

=AD →

+μAB →

,则μ的取值范围是________.

6.设G 是△ABC 的重心,且7sin A ·GA →

+3sin B ·GB →

+37sin C ·GC →

=0,则角B 的大小为

________.

7.在平面直角坐标系xOy 中,已知向量m =?

?

?

?22,-22,n =(sin x ,cos x ),x ∈????0,π2. (1)若m ⊥n ,求tan x 的值;

(2)若m 与n 的夹角为π

3,求x 的值.

微型专题 平面向量数量积中的创新问题

创新考向

1.以向量为载体的创新问题是近几年高考命题的一个热点,此类问题通常以数量积运算为核心,通过数形结合,转化化归等途径,解决与几何有关的问题,或以向量自身为背景,解决有关模、夹角等问题.

2.命题形式常见有新法则、新定义、新背景、新性质、新运算等. 创新例题

在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →

=2(a +b ).曲

线C={P|OP

=a cosθ+b sinθ,0≤θ<2π},区域Ω={P|0

|≤R,r

A.1

C.r≤1

创新练习

1.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b=mq-np,下面说法错误的是()

A.若a与b共线,则a⊙b=0

B.a⊙b=b⊙a

C.对任意的λ∈R,有(λa)⊙b=λ(a⊙b)

D.(a⊙b)2+(a·b)2=a2b2

已知两向量e1,e2满足|e1|=2,|e2|=1,e1,e2所成的角为60°,若向量2t e1+7e2与向量e1+t e2所成的角为钝角,求实数t的取值范围.

课时练

基础组

1.已知平行四边形ABCD中,AB=1,AD=2,∠DAB=60°,则AC

·AB

等于() A.1 B. 3

C.2 D.2 3

2.已知点P(3,3),Q(3,-3),O为坐标原点,动点M(x,y)满足

??

?

??|OP→·OM→|≤12,

|OQ

·OM

|≤12,

则点

M所构成的平面区域的面积是()

A.12 B.16

C.32 D.64

3.若|a+b|=|a-b|=2|a|,则向量a+b与a的夹角为()

A.

π

6 B.

π

3

C.

3 D.

6

4向量AB

与向量a=(-3,4)的夹角为π,|AB

|=10,若点A的坐标是(1,2),则点B的坐标为() A.(-7,8) B.(9,-4)

C .(-5,10)

D .(7,-6) 5.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )

A. 5

B.10 C .2 5 D .10

6.已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )

A .-92

B .0

C .3

D.152

7.已知向量a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的取值范围为( ) A .[1,2] B .[2,4] C.????14,12 D.????12,1 8.已知平面向量a ,b 的夹角为120°,且a ·b =-1,则|a -b |的最小值为( )

A. 6

B. 3

C. 2

D .1

9.设M 是△ABC 内一点,且AB →·AC →

=23,∠BAC =30°,定义f (M )=(m ,n ,p ),其中m 、n 、p 分别是△MBC ,△MCA ,△MAB 的面积,若f (M )=????12,x ,y ,则1x +4

y

的最小值是( ) A .8 B .9 C .16

D .18 10.关于平面向量a ,b ,c 有下列三个命题: ①若a ·b =a ·c ,则b =c .

②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3.

③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°. 其中真命题的序号为________(写出所有真命题的序号).

11. 非零向量a ,b 满足|a |=2,|b |=1,且|a -2b |∈(2,23],则a ,b 的夹角θ的取值范围是________.

12.已知向量a =(4,5cos α),b =(3,-4tan α),α∈????0,π

2,a ⊥b ,求: (1)|a +b |; (2)cos ???

?α+π

4的值. 能力组

13. 在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则

|P A |2+|PB |2

|PC |2

=( )

A .2

B .4

C .5

D .10

14已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →

的值为________;DE →·DC

的最大值为________.

15.如图,A 是半径为5的圆C 上的一个定点,单位向量AB →

在A 点处与圆C 相切,点P 是

圆C 上的一个动点,且点P 与点A 不重合,则AP →·AB →

的取值范围是________.

16.直线x =1与抛物线C :y 2=4x 交于M ,N 两点,点P 是抛物线C 准线上的一点,记OP →

=aOM →

+bON →(a ,b ∈R ),其中O 为抛物线C 的顶点.

(1)当OP →

与ON →

平行时,b =________; (2)给出下列命题:

①?a ,b ∈R ,△PMN 不是等边三角形;

②?a <0且b <0,使得OP →

与ON →

垂直;

③无论点P 在准线上如何运动,a +b =-1总成立. 其中,所有正确命题的序号是________.

高考数学平面向量试题汇编

高考数学平面向量试题汇编 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么 ( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B . π6 C . π3 D . π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量13 22 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4) 对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若2 2 =a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2)

将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? ,a 平移,则平移后所得图象的解析式为 ( A ) A.π2cos 234x y ?? =+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a , a 在 b 上的投影为2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227? ?- ???, C .227??- ??? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r C .EF OF OE =-+u u u r u u u r u u u r D .EF OF O E =--u u u r u u u r u u u r (四川7) 设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向 在与→ →→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a (天津10) 设两个向量22 (2cos )λλα=+-,a 和sin 2 m m α? ?=+ ?? ? ,b ,其中m λα,,为实数.若2=a b ,则 m λ 的取值范围是( A ) A.[-6,1] B.[48], C.(-6,1] D.[-1,6] (浙江7)

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

第26讲平面向量的数量积及应用

第26讲平面向量的数量积及应用 高三新数学第一轮复习教案〔讲座26〕一平面向量的数量积及应 用 一?课标要求: 1?平面向量的数量积 ①通过物理中"功"等实例,明白得平面向量数量积的含义及其物理意义; ②体会平面向量的数量积与向量投影的关系; ③把握数量积的坐标表达式,会进行平面向量数量积的运算; ④能运用数量积表示两个向量的夹角,会用数量积判定两个平面向量的垂直关系。 2.向量的应用 经历用向量方法解决某些简单的平面几何咨询题、力学咨询题与其他一些实际咨询题的过程,体会向量是一种处理几何咨询题、物理咨询题等的工具,进展运算能力和解决实际咨询题的能力。 二.命题走向 本讲以选择题、填空题考察本章的差不多概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。 平面向量的综合咨询题是”新热点〃题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等咨询题,以解答题为主。 推测07年高考: 〔1〕一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度咨询题;属于中档题目。 〔2〕一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三?要点精讲 1 .向量的数量积 〔1〕两个非零向量的夹角 非零向量a与a,作OA = a , OB = b,那么/ A O A= B〔0 we

2 〔4〕注意在两向量的夹角定义,两向量必须是同起点的,范畴

高考数学平面向量及其应用习题及答案

一、多选题 1.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ?=,则0b = B .向量a 、b 为不共线的非零向量,则22 ()a b a b ?=? C .若非零向量a 、b 满足2 2 2 a b a b +=+,则a 与b 垂直 D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2 π 2.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 3.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 4.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 5.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立 D .在ABC 中, sin sin sin +=+a b c A B C 6.下列关于平面向量的说法中正确的是( ) A .已知A 、 B 、 C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ?=?且0b ≠,则a c = C .若点G 为ΔABC 的重心,则0GA GB GC ++= D .已知()1 2a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 7.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2.平面向量的数量积;3.平面向量数量积的运算律 平面向量数量积的运算 1.利用坐标计算数量积的步骤 第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且 BE =23 BC , DF =16 DC ,则 AE · AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得 3(-1+2m )-4(-2-m )=0,则m =-12,所以b =????-12,1,所以a ·b =-1×????-12+2×1=52. (2)取 BA , BC 为一组基底,则 AE = BE - BA =23 BC - BA , AF = AB + BC + CF =- BA + BC +512 BA =-712 BA + BC ,∴ AE · AF =????23 BC - BA ·????-712 BA + BC =712| BA |2-2518 BA · BC +23| BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足 AB =2a , AC =2a +b ,则下列结 论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥ BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 [解析] (1)在△ABC 中,由 BC = AC - AB =2a +b -2a =b ,得|b |=2,A 错误.又 AB =2a 且| AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )· BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥ BC , D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6). ∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C [易错提醒] x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是

(完整版)《平面向量》测试题及答案

《平面向量》测试题 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为4 3 ,则A 分所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103 C.102 D.10 6.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ????-7 9 ,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1 ) 9.设四边形ABCD 中,有DC = 2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( ) A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2 的图像,则a 等于( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。 14.已知:|a|=2,|b|=2,a 与b 的夹角为45°,要使λb-a 垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a ∥b ,则a ·b= 。 16.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

(完整版)高中数学平面向量测试题及答案

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

2020年高考数学试题分类汇编 平面向量

九、平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r = A .0 B .BE u u u r C .AD u u u r D .CF uuu r 【答案】D 【解析】BA CD EF BA AF EF BF EF C E E F CF ++=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R ),1412A A A A μ=u u u u v u u u u v (μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A , B 则下面说法正确的是 A .C 可能是线段A B 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0,)3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b πθπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b g =12- ,,a c b c --=060,则c 的最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

高考数学平面向量及其应用习题及答案 百度文库

一、多选题 1.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 2.已知点()4,6A ,33,2 B ??- ?? ? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 3.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 5.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4. B .若4A C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC = D .若满足条件的ABC 有两个,则24AC << 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A . B . C .8 D . 8.ABC 中,4a =,5b =,面积S =c =( ) A B C D .9.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

相关文档
相关文档 最新文档