文档库 最新最全的文档下载
当前位置:文档库 › 关于静电屏蔽的原理及应用

关于静电屏蔽的原理及应用

关于静电屏蔽的原理及应用
关于静电屏蔽的原理及应用

关于静电屏蔽的原理及应用

物理系本科1102班 谷圣文

摘要

空腔导体可以屏蔽外电场,而使内部物体不受任何外电场的影响,叫做“静电屏蔽”。主要讲述静电屏蔽的含义及主要应用。 关键词

静电屏蔽;场强;电势。

引例

1为什么把鸟放入一个用金属网制成的鸟笼中,再把鸟笼放入高压电场中,鸟会安然无恙呢?

2为什么坦克敢闯高压电网,难道坦克兵不怕触电吗? 静电屏蔽的原理

一、静电感应现象

放入电场中的导体,其内部的自由电子在电场力的作用下向电场的反方向作定向移动,致使导体的两端分别出现等量的正、负电荷。这种现象叫静电感应现象。

二、静电平衡状态

(一)定义:导体中(包括表面)没有电荷定向移动的状态叫做静电平衡状态。 + +

+ + + + + + 感应电荷

体 是

等 势

静电平衡状态

(二)处于静电平衡状态导体的性质

(1)导体内部的场强处处为零。

(2)导体表面上任何一点的场强方向跟该点的表面垂直。

(3)导体所带的净电荷只分布在导体的外表面上,导体内部没净电荷。

(4)处于静电平衡状态的导体是等势体,导体表面是等势面。

(三)静电平衡条件

(1)导体内部任何一点处的电场强度为零;

(2)导体表面处的电场强度的方向,都与导体表面垂直; 导体表面是等势面

导体内部电势相等

E + + + + + + + + 0

0=+='E E E 0E 'E 0=E l E d ⊥0d =?=?-∴l E U 0d =?=?AB AB l E U

+ + + + + + E l d n e τe A B

三、静电屏蔽

处于静电平衡状态的导体,内部

电场强度处处为零。

空腔导体(不论是否接地)的内部

空间不受外电荷和电场的影响;接地的

空腔导体,腔外空间不受腔内电荷和电

场影响,这种现象称为静电屏蔽。

静电屏蔽分为外屏蔽和全屏蔽。空腔导体在外电场中处于静电平衡,其内部的场强总等于零。因此外电场不可能对其内部空间发生任何影响。

若空腔导体接地时,外表面上的感应电荷被大地电荷中和,所以不带电荷。金属空腔是零等势体。

若空腔导体接地,且腔外有带电体时,外表面上的感应电荷被大地电荷部分中和,所带电荷的多少必须保证腔内、腔内表面、腔外表面以及腔外电荷在导体内产生的场强为零,即满足静电平衡条件。金属空腔是零电位。

当空腔导体接地时金属空腔是零等势体,由静电场边值问题的唯一性定理可以证明:此时壳内的任何电场都不影响外界,也不受外界影响。

三、对静电屏蔽的总结

理论基础在静电平蘅状态下,不论是空心导体还是实心导体,不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,

其内部场强为零。

下面我们以封闭导体内的电场为例对静电屏蔽做一讨论。

封闭导体内部电场不受壳外电荷或电场影响

如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电。静电平衡时壳内无电场。这不是说壳外电荷不在壳内产生电场,是由于壳外壁感应出异号电荷,它们与q在荷内空间任一点激发的合场强为零。因而导体荷内部不会受到荷外电荷q或其他电场的影响。

接地封闭导体壳外部电场不受壳内电荷的影响

如果壳内空腔有电壳q, 因为静电感应,壳内部带有等量异号电荷,壳外部带有等量同号电荷,壳外空间有电场存在,此电场可以说说是由壳内电荷q间接产生.也可以说是由壳外感应电荷直接产生的.但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内部感应电荷在壳外产生电场为零.可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地.

三、静电屏蔽的意义

实际意义

屏蔽使金属导体壳内的仪器或工作环境不受外部电场影响,也不对外部电场产生影响。有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,如室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳。又如作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上

一层漆包线并使之接地,达到屏蔽作用。在高压带电作业中,工人穿上用金属丝或导电纤维织成的均压服,可以对人体起屏蔽保护作用。在静电实验中,因地球附近存在着大约100V/m的竖直电场。要排除这个电场对电子的作用,研究电子只在重力作用下的运动,则必须有eE

理论意义

间接验证库仑定律。高斯定理可以从库仑定律推导出来的,如果库仑定律中的平方反比指数不等于2就得不出高斯定理。反之,如果证明了高斯定理,就证明库仑定律的正确性。根据高斯定理,绝缘金属球壳内部的场强应为零,这也是静电屏蔽的结论。若用仪器对屏蔽壳内带电与否进行检测,根据测量结果进行分析就可判定高斯定理的正确性,也就验证了库仑定律的正确性。五、静电屏蔽的应用

屏蔽装置

在工程技术中,如果需要屏蔽的区域较大,还可采用金属屏蔽网,也有良好的屏蔽效果。在电子仪器中,为了免受静电干扰,常利用接地的仪器金属外壳作屏蔽装置。电测量仪器中的某些联接线的导线绝缘外面包有一层金属丝网做为屏蔽。某些用途的电

源变压器中,常在初级绕组与次级绕组之间放置一不闭合的金属薄片作为屏蔽装置。

屏蔽产品

如屏蔽袋、导电袋、有盖的周转箱等,

利用法拉第杯静电屏蔽原理,保护内装物品。

实际应用

>为了防止外界信号的干扰,静电屏蔽被广泛地应用科学技术工作中。例如电子仪器设备外面的金属罩,通讯电缆外面包的铅皮等等,都是用来防止外界电场干扰的屏蔽措施。

>高压带电作业(500千伏带电作业用的屏蔽服)

>很多电子仪器,比如示波器的接线都是这样的屏蔽线

>汽车外的天线

>有线电视信号线,外面就有一层金属丝,就为了静电屏蔽,使信号不受干扰

>在服务区怕被人打手机,又不能关机,找个金属盒子装进去,就变成了"您拨打的用户不在服务区"

电磁屏蔽一般可分为三种

电磁屏蔽一般可分为三种 :静电屏蔽、静磁屏蔽和高频电磁场屏蔽。三种屏蔽的目的都是防止外界的电磁场进入到某个需要保护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。 但是由于所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽效果也就不相同。 一、静电屏蔽 静电屏蔽的目的是防止外界的静电场进入需要保护的某个区域。 静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强处处为零为止。接地的封闭金属壳是一种良好的静电屏蔽装置。如图所示,接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。根据静电场的唯一性定理,可以证明:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。当壳外电荷分布变化时,壳层外表面上的电荷分布随之变化,以保证壳内电场分布不变。因此,金属壳对内部区域具有屏蔽作用。壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。当壳内电荷分布改变时,壳层内表面的电荷分布随之变化,以保证壳外电场分布不变。因此,接地的金属壳对外部区域也具有屏蔽作用。在静电屏蔽中,金属壳接地是十分重要的。当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。从物理图像上看,因为在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电相互作用的效应。 如果金属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作用。在许多实际应用中,静电屏蔽装置常常是用金属丝编织成的金属网代替闭合的金属壳,即使一块金属板,一根金属线,亦有一定的静电屏蔽作用,只是屏蔽的效果不如金属壳。 在外电场的作用下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有足够长的时间来保证内部

电磁屏蔽原理

利用这个特性,可以达到屏蔽电磁波,同时实现一定实体连通的目的。方法是,将波导管的截止频率设计成远高于要屏蔽的电磁波的频率,使要屏蔽的电磁波在通过波导管时产生很大的衰减。由于这种应用中主要是利用波导管的频率截止区,因此成为截止波导管。截止波导管的概念是屏蔽结构设计中的基本概念之一。常用的波导管有圆形、矩形、六角形等,它们的截止频率如下: 矩形波导管的截止频率:f c=15×109 /l式中:l是矩形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 圆形波导管的截止频率:f c=17.6×109 /d式中:d是圆形波导管的内直径,单位是cm,f c的单位是Hz。 六角形波导管的截止频率:f c=15×109 /w式中:w是六角形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 截止波导管的吸收损耗:落在波导管频率截止区内的电磁波穿过波导管时,会发生衰减,这种衰减称为截止波导管的吸收损耗,截止波导管的吸收损耗计算公式如下 A=1.8×f c×t×10-9(1-(f/f c)2)1/2(dB) 式中:t是截止波导管的长度,单位是cm,f 是所关心信号的频率(Hz),f c是截止波导管截止频率(Hz)。如果所关心的频率f远低于截止波导管截止频率(f﹤f c/5),则公式化简为:A=1.8×f c×l×10-9 (dB) 圆形截止波导管:A=32t/d(dB) 矩形(六角形)截止波导管: A=27t/l (dB) 从公式中可以看出,当干扰的频率远低于波导管的截止频率使,若波导管的长度增加一个截面最大尺寸,则损耗增加将近30分贝。 截止波导管的总屏蔽效能:截止波导管的屏蔽效能由吸收损耗部分加上前面所讨论的孔洞的屏蔽效能不能满足屏蔽要求时,就可以考虑使用截止波导管,利用截止波导管的深度提供的额外的损耗增加屏蔽效能。 16. 截止波导管的注意事项与设计步骤 1)绝对不能使导体穿过截止波导管,否则会造成严重的电磁泄漏,这是一个常见的错误。 2)一定要确保波导管相对于要屏蔽的频率处于截止状态,并且截止频率要远高于(5倍以上)需要屏蔽的频率。设计截止波导管的步骤如下所示: A) 确定需要屏蔽的最高频率F max和屏蔽效能SE B) 确定截止波导管的截止频率F c,使f c≥5F max C) 根据F c,利用计算F c的方程计算波导管的截面尺寸d D) 根据d和SE,利用波导管吸收损耗公式计算波导管长度t 说明: 在屏蔽体上,不同部分的结合处形成的缝隙会导致电磁泄漏。因此,在结构设计中,可以通过增加不同部分的重叠宽度来形成一系列“截止波导”,减小缝隙的电磁泄露。这时,截止波导的截面最大尺寸可

静电屏蔽知多少

4静电屏蔽知多少 有个新闻报道一个现象:A 同学自从给手机四周镶嵌着一圈银色的金属壳后,发现手机信号时强时弱,不是显示为正在搜索,便是无服务,手机信号格不停地在四格与三格之间跳动,不时出现信号消失的现象。大家能帮他找出此现象的症结吗?让我们先来了解静电平衡。 如果将导体放在电场强度为E 的外电场中,导体内的自由电子在电场力的作用下,会逆电场方向运动。这样,导体的负电荷分布在一边,正电荷分布在另一边,这就是静电感应现象。 由于导体内电荷的重新分布,这些电荷在与外电场相反的方向形成另一电场,电场强度为E 内。根据场强叠加原理,导体内的电场强度等于E 外和E 内的叠加,等大反向的电场叠加而互相抵消,使得导体内部总电场强度为零。 当导体内部总电场强度为零时,导体内的自由电子不再移动。物理学中将导体中没有电荷移动的状态叫做静电平衡。处于静电平衡状态的导体,内部电场强度处处为零。 由此可推知,处于静电平衡状态的导体,电荷只分布在导体的外表面上。如果这个导体是中空的,当它达到静电平衡时,内部也将没有电场。这样,导体的外壳就会对它的内部起到“保护”作用,使它的内部不受外部电场的影响,这种现象称为静电屏蔽。 在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础。 前面那个现象的原因是A 同学漂亮手机壳是一个完整的闭环金属框,而一个封闭的回路会形成静电屏蔽,因而对手机信号造成影响,就出现了信号的不稳定。 电磁学的奠基人、英国物理学家法拉第曾经冒着被电击的危险,做了一个 闻名于世的实验——法拉第笼实验。法拉第把自己关在金属笼内,当笼外发生 强大的静电放电时,什么事都没发生。法拉第笼是由笼体、高压电源、电压显 示器和控制部分组成。其笼体与大地连通, 高压电源通过限流电阻将10万伏直 流高压输送给放电杆,当放电杆尖端距笼体10厘米时,出现放电火花,根据接 地导体静电平衡的条件,笼体是一个等位体,内部电势为零,电场为零,电荷 分布在接近放电杆的外表面上。在笼里,即使笼内人员将手贴在笼壁上,使放 电杆向手指放电,笼内人员不仅不会触电,而且还可以体验电子风的清凉感觉, 这是因为人体触电的原因是身体的不同部位存在电位差,强电流通过身体,此时手指虽然接近放电火花,但放电电流是通过 手指前方的金属网传入大地,身体并不存在电位 差,没有电流通过,所以没有触电的感觉。(请勿模仿) 高压带电作业操作员的防护服就是用金属丝制成,接触高压线时形成等电位, 人体不通过电流,起到保护作用。外壳接地的法拉第笼可以有效地隔绝笼体内外 的电场和电磁波干扰,这叫做“静电屏蔽”。许多仪器设备采用接地的金属外壳 可有效地避免壳体内外电场的干扰。由于法拉第笼的电磁屏蔽原理,所以在汽车 中的人是不会被雷击中的,而且在同轴电缆也可以不受干扰的传播讯号,同样, 也是因为法拉第笼的原理,如果电梯内没有中继器的话,那么当电梯关上的时候,里面任何电子讯号也收不到。 同轴电缆 穿防护服高压带作操作员

电磁屏蔽技术

《电磁屏蔽技术》 1. 电磁屏蔽的目的 电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改 2. 区分不同的电磁波 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波、和平面波 电磁波的波阻抗Z定义为:电磁波中的电场分量E与磁场分量H的比值: Z W W = E / H 电磁波的波阻抗电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关 距离辐射源较近时,波阻抗取决于辐射源特性若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω 电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽 3. 度量屏蔽性能的物理量——屏蔽效能 屏蔽体的有效性用屏蔽效能(SE)来度量屏蔽效能的定义如下: SE=20lg(E/E) (dB) 21式中:E=没有屏蔽时的场强 E 有屏蔽时的场强=2 1. 如果屏蔽效能计算中使用的是磁场强度,则称为磁场屏蔽效能,如果屏蔽效能计算中使用的是电场强度,则称为电场屏蔽效能屏蔽效能的单位是分贝(dB),下表是衰减量与分贝的对应关系: 屏蔽前屏蔽后衰减量屏蔽效能 20dB 90% 1 0.1 40dB 99% 1 0.01 60dB 1 99.9% 0.001 80dB 1 99.99% 0.0001 100dB 0.00001 99.999% 1 以下,军用设备机箱的屏蔽效能一般要达到40dB一般民用产品机箱的屏蔽效能在屏蔽

电磁屏蔽基本原理

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

EMI电磁屏蔽原理-导论

在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。 屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。 屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效 能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏 蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。 图1 屏蔽效能定义示意图 屏蔽效能表达式为(dB) 或(dB)

工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。 图2 两类基本源在空间所产生的叠加场 远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的, 为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。 表1 两类源的场与传播特性 波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗 也有所不同,表2与图3分别用图表给出了的波阻抗特性。

电磁屏蔽技术基础知识

Thalez Group 电磁屏蔽技术基础知识

目录 1.电磁屏蔽的目的 2.区分不同的电磁波 3.度量屏蔽性能的物理量——屏蔽效能 4.屏蔽材料的屏蔽效能估算 5.影响屏蔽材料的屏蔽效能的因素 6.实用屏蔽体设计的关键 7.孔洞电磁泄漏的估算 8.减少缝隙电磁泄漏的措施 9.电磁密封衬垫的原理 10.电磁密封衬垫的选用 11.常用电磁密封衬垫的比较 12.电磁密封衬垫使用的注意事项 13.电磁密封衬垫的电化学腐蚀问题 14.与衬垫性能相关的其它环境问题 15.截止波导管的概念与应用 16.截止波导管的注意事项与设计步骤 17.面板上的显示器件的处理 18.面板上的操作器件的处理 19.通风口的处理 20.线路板的局部屏蔽 21.屏蔽胶带的作用和使用方法

电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 一.电磁屏蔽的目的 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。 电磁波的波阻抗ZW 定义为: 电磁波中的电场分量E与磁场分量H的比值: ZW = E / H 电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 二. 区分不同的电磁波

电磁屏蔽原理及应用

电磁屏蔽的原理及应用 摘要:阐述了电磁屏蔽材料的屏蔽原理。介绍了电磁屏蔽材料的发展现状,其中较为详细地介绍了表层导电型屏蔽材料以及填充复合型屏蔽材料。 关键词:电磁屏蔽,危害,屏蔽原理,研究现状 AbStraCt The harms of electromagnetic radiation to electric equipment, fuel, animals and human were intoduced, andthe mechanism of electromagnetic shielding materials and its development was summarized. Key words electromagnetic radiation, shielding, harm, mechanism, development 近几十年来,随着各种电器的普及,电子计算机、通讯卫星、高压输电网和一些医用设备等的广泛应用,由此带来的电磁辐射污染也越来越严重。为此,必须进行电磁屏蔽。 1、电磁屏蔽原理 电磁屏蔽,实际上是为了限制从屏蔽材料的一侧空间向另一侧空间传递电磁能量。电磁波传播到达屏蔽材料表面时,通常有3种不同机理进行衰减:一是在入射表面的反射衰减;二是未被反射而进入屏蔽体的电磁波被材料吸收的衰减;三是在屏蔽体部的多次反射衰减。电磁波通过屏蔽材料的总屏蔽效果可按下式计算: SE=R+A+B (1) 式中:SE为电磁屏蔽效果,dB; R为表面单次反射衰减;A为吸收衰减;B为部多次

反射衰减(只在A<15dB情况下才有意义)。 一般来说,电屏蔽材料衰减的是高阻抗的电场,屏蔽作用主要由表面反射R 来决定,吸收衰减A则不是主要的。所以,电屏蔽可以用比较薄的金属材料制作;而磁屏蔽体的衰减主要由吸收衰减A决定,反射衰减R不是主要的。根据电磁学的有关知识,可分别得出A, R, B的计算公式: (2) A与电磁波的类型(电场或磁场)无关,只要电磁波通过屏蔽材料就有吸收,它与材料厚度成线性增加,并与材料的电导率及磁导率有关。 反射衰减R不仅与材料的表面阻抗有关,同时也与辐射源的类型及屏蔽体到辐射源的距离有关。对于远场源(平面波辐射源): (3) 对于近场源: 磁场: (4) 电场 (5) 金属屏蔽材料一般都比较薄,A也比较小,通常考虑部多次反射衰减B。在此情况下,部多次反射衰减B。在此情况下,部反射甚至可以发生多次, 形成多次反射。用“多次反射修正项”B来表示这种衰减。 对于近场源:

电磁屏蔽分析和应用

电磁兼容课程论文 题目名称:电磁屏蔽技术 院系名称:电子信息学院 班级:测控112 学号:201100454217 学生姓名:白凡 指导教师:魏平俊 2014年5月

摘要:随着电子产品的广泛应用以及电磁环境污染的加重,对电磁兼容性设 计的要求也越来越高,作为电磁兼容设计的主要技术之一——屏蔽技术的 研究也就愈显得重要。本文从电磁屏蔽技术原理出发,讨论了屏蔽体结构、 屏蔽技术分类、屏蔽材料的选择以及所要遵循的原则,在电子设备实施具 体的电磁屏蔽时提供了重要的依据。同时分析了电磁干扰形成的危害,介 绍了工程上解决电磁干扰问题的几种常用方法。 关键词:电磁屏蔽电磁干扰屏蔽技术 Abstract:With the wide application of electronic products as well as the electromagnetic environment pollution is aggravating, more and more is also high to the requirement of electromagnetic compatibility design, as one of the main technology of emc design - shielding technology research is more important.Based on principle of electromagnetic shielding technology, this paper discusses the structure of the shield, shielding the technical classification, the selection of shielding materials and to follow the principle of the electronic equipment to implement specific provides an important basis for electromagnetic shielding.At the same time analyzes the harm of electromagnetic interference, this paper introduces the engineering several commonly used methods to solve the problem of electromagnetic interference. Keywords: Electromagnetic shielding, Electromagnetic interference, Shielding technology

屏蔽干扰原理

屏蔽原理 屏蔽原理:在电子设备中,有时需要将电力线或磁力线的影响限定在某个范围内。需要在某个给定的空间内防止外部的静电感应或电磁感应的影响。 在这种情况下,利用铜或铝等低电阻材料制成的容器,将需要隔离的部分全部包起来;或者是用磁性材料制成的容器将它包起来。我们把防止经电的或电磁的相互感应所采取的这些方法称之为屏蔽。 屏蔽有以下几类: 1.静电屏蔽---防止静电场的影响。它的作用是消除两个电路之间由于分布电容的偶合而产生的干扰。在变压器的原、副边线圈间插入一个梳齿形导体并将其接地,就是静电屏蔽的代表例。另外,在两个导体之间放一个接地导体时,两个导体之间静电偶合从而减弱,因此可以说接地的导体也具有屏蔽作用。 2.电磁屏蔽---主要是用于高频电磁场的影响。它是采用低电阻的金属材料,利用电磁场在屏蔽金属内部产生涡流起屏蔽作用的。一般所谓的屏蔽,多半是指电磁屏蔽。如果将屏蔽板接地,则同时也兼有静电屏蔽的作用。 静电屏蔽的屏蔽导体必须接地如果单是电磁屏蔽,即使不接地,对防止漏磁也是有效的。但由于导体没有接地,增加了静电偶合,也增加了对干扰电压的感应。所以尽管是电磁屏蔽,也还是接地为好。 电磁屏蔽的必要条件是在屏蔽导体内流过高频电流,而且电流必须在抵消干扰磁通的方向上。(如果在垂直于电流方向上开缝,就没有电磁屏蔽效应。) 3.磁屏蔽---主要用于低频,因低频时不是非常有效,故采用高导磁系数的材料进行屏蔽,以便将磁力线限在磁阻小的磁屏导体内部,防止扩散到外部去。 屏蔽接地实例;例一:监控反映不夜城柴油发电机组有无输出电流值都不准且跳动幅度大,尤其在有输出电流时。 检查发现:因油机输出屏KW表损坏拆除,CT输出回路呈开路状态,此时开路形成的高阻抗回路感应出随外界杂乱电磁场而变化的交变信号,经监控电流采样回路送到TIC架内,使监控反映机组电流值不准且跳动幅度大。 处理:经查对后,使CT输出回路恢复正常,监控反映输出电流值仍然有跳动,但比过去好。其他方面检查均无差错,看来外界杂乱电磁场影响很大。 再处理:恰好从CT到小CT到6IN1的连接线为6芯线屏蔽(屏蔽网已剪去,不能利用),有4芯空着,将该4芯线采取两端接地后,监控反映输出电流值正常。 将4芯线采取两端接地,相当于使外界杂乱电磁场感应在该线路上的信号处于短路状态(低阻抗回路),短路形成的电流消耗了其能量,在另外2芯线中呈现的感应量就很弱小了。 例二:监控反映临沂蓄电池组有两只电池电压值幅度无规律大小跳动。 检查发现:经查对后,连接线到TIC架、通道、电路板及其它均无问题,放临时跳线,仍然跳动。 处理:因办法已用尽,故采取在该两通道的TIC架输入端并联电容才解决。 因单缸电池的电压信号不受延时等影响的限制,它又是相对稳定的直流电压信号。电容对该信号无影响,只对外界的杂乱交变量形成短路状态,使其不能进入系统。 所以在日常工作中,可以采取以下一些办法来消除电磁感应和高压引起的故障。 如对8芯的五类线不用的另外4芯采取两端接地;同样对多芯电缆的不用芯线,采取两端接地。 如信号不受延时等影响的限制,可在信号芯线的两端并联0 .02---0.1微法的电容接地。直流电压信号并联电容且电容量可大些。 稳压管的优点是放电时延小,约占0.2、0.3微秒,并接于被保护对象上,能消除瞬时过电压。

金属网屏蔽电磁波原理

金属网可以屏蔽电磁波传播的原理是什么? 首先,不是衍射。 我们都做过直流电路实验,导线就是金属,也就谈不上屏蔽(静电屏蔽是指接地 金属罩,屏蔽静电场)。电磁波辐射,是关于时变电磁场的问题,导体对其影响大不相同 如果利用趋肤效应,解释的实际上是金属板屏蔽电磁场原理。 ?对于一个金属板(良导体),电磁波从一面辐射而来,大部分能量被反射,小部分能量进入金属,该电磁波会随进入金属的深度成e指数衰减(能量转化为表面电流),当金属层过薄时,电磁波就会穿透金属层继续传播。对于同一频率电磁波,电导率越高,衰减越快。对于相同金属材料,电磁波频率越高,衰减越快。 ?定义:趋肤深度,电磁波传输一个趋肤深度的距离后,振幅衰减到原来的 36.8%,能量衰减到13.5%。对于相同金属材料,电磁波频率越高,趋肤深度越 小。 ?例:10GHz电磁波。银,电导率 6.173e7(S/m),趋肤深度6.4e-7(m),即0.64微米;1GHz电磁波,趋肤深度20.24e-7(m),即2.24微米。【1】 那么,同材料的金属板,频率越高,趋肤深度越小,对辐射防御能力是越强

回归正题,金属网屏蔽电磁场原理,(趋肤效应解释波导也有用到,不是重点)先说矩形波导,四壁是金属,电磁波在波导中的介质中传播。金属网实际上就是下图中许许多多的矩形波导叠放组合在一起,z方向长度再缩短些就 是了。 为何电磁波不会从金属网的窟窿中穿透呢?对于金属网,每一个网孔都是一个波导。借用光的粒子说,电磁波像弹球一样,进入网孔波导后,来回在金属壁上反弹,曲折前进。【2】 ?为满足金属壁这一边界条件下的Maxwell方程,对于相同规格的矩形波导,频率越低(波长越大),theta越大;当波长大于等于截止波长时,theta=90。,电磁波只上下弹跳,不前进了。 ?截止波长=2a (a为上上图中的矩形波导长边),若孔径指半径,孑L径=a/2,则波长大于4倍孔径的电磁波就会被屏蔽。“金属网孔形式若为矩形整齐排列,金属网孔径小于电磁波波长的1/4时,则电磁波不能透过金属网”有相当

电磁屏蔽基本原理

电磁屏蔽基本原理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

静电感应和静电屏蔽

1 第42节 静电感应、静电屏蔽和静电的应用 1.2016年浙江卷15.如图所示,两个不带电的导体A 和B ,用一对绝缘柱支持使它们彼此接触。把一带正电荷的物体C 置于A 附近,贴在A 、B 下部的金属箔都张开, A.此时A 带正电,B 带负电 B.此时A 电势低,B 电势高 C.移去C ,贴在A 、B 下部的金属箔都闭合 D.先把A 和B 分开,然后移去C ,贴在A 、B 下部的金属箔都闭合 【答案】C 【解析】由于静电感应可知,近端感应出异种电荷,故A 左端带负电,B 右端带正电,处于静电平衡状态下的导体是等势体,故A 、B 电势相等,选项A 、B 错误;若移去C ,则A 、B 两端的等量异种电荷又重新中和,两端的感应电荷消失,则贴在A 、B 下部的金属箔都闭合,选项C 正确;先把A 和B 分开,然后移去C ,则A 、B 带的电荷仍然存在,故贴在A 、B 下部的金属箔仍张开,选项D 错误;故选C . 2.2012年理综广东卷 20.图5是某种静电矿料分选器的原理示意图,带电矿粉经漏斗落入水平匀强电场后,分落在收集板中央的两侧,对矿粉分离的过程,下列表述正确的有 A.带正电的矿粉落在右侧 B.电场力对矿粉做正功 C.带负电的矿粉电势能变大 D.带正电的矿粉电势能变小 【解析】选BD 。由图可知匀强电场的方向水平向左,故带正电的矿粉受水平向左的电场力作用而落在左侧,A 错。在带正电的矿粉下落的过程中,由于受到向左的电场力作用而向左运动,故电场力对带正电的矿粉做正功,该种矿粉的电势能减小BD 正确。对于带负电的矿粉而言,由于受到水平向右的电场力作用而向右运动,在运动过程中电场力对其做正功,电势能减小,C 错。故BD 选项正确。 3.2012年理综浙江卷 19.用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上。小明同学用绝缘材料做的笔套与头 发摩擦后,将笔套自上向下慢慢靠近圆环,当距离约为0.5cm 时圆环被吸引到笔套上,如图所示。对上述现象的判断与分析,下列说法正确的是 第19题图

低频电磁波的屏蔽

低频电磁波的屏蔽一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

静电屏蔽原理_静电屏蔽的应用

静电屏蔽原理_静电屏蔽的应用

————————————————————————————————作者:————————————————————————————————日期:

静电屏蔽原理_静电屏蔽的应用 在探究静电屏蔽前,我们先来说一下静电感应现象。 如果将导体放在电场强度为E的外电场中,导体内的自由电子在电场力的作用下,会逆电场方向运动。这样,导体的负电荷分布在一边,正电荷分布在另一边,这就是静电感应现象。静电感应是静电屏蔽的基础。 由于导体内电荷的重新分布,这些运动后的电荷(如下图导体W自身的电荷)会在与外电场相反的方向形成另一电场。 通过受力分析可知,当产生的电场强度E’小于E时,导体W中的电荷受力并不平衡,电荷还会继续运动,直至受力平衡,即E’=E的情况下。

图示金属导体W内部中空地带C处的电场强度为零 根据场强叠加原理,导体内的电场强度等于自身的电荷产生的E’和外部电场E的叠加,等大反向的电场叠加而互相抵消,使得导体内部总电场强度为零。 当导体内部总电场强度为零时,导体内的自由电子不再移动。物理学中将导体中没有电荷移动的状态叫做静电平衡。 处于静电平衡状态的导体,内部电场强度处处为零。由此可推知,处于静电平衡状态的导体,电荷只分布在导体的外表面上。如果这个导体是中空的,当它达到静电平衡时,内部也将没有电场。 这样,导体的外壳就会对它的内部起到“保护”作用,使它的内部不

受外部电场的影响,这种现象称为静电屏蔽。 静电屏蔽应用 很多细心的同学可能发现了很多轿车都有外置天线,这就是因为汽车自身就是一个箱式导体,起到了静电屏蔽的作用,车内的信号不好。我们用外置天线来加强信号的接受能力。 在军事或工业上,有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,例如军用电子仪器设备外面的金属罩,用来防止外界电场干扰的屏蔽措施。 军事通讯电缆外面包的铅皮,或在外面包一层金属丝,就为了静电屏蔽的效果,使信号不受干扰等等,又如军事设施中的室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳。 在军事上广泛应用的,作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上一层漆包线并使之接地,达到屏蔽作用。 在对军事设备进行高压带电作业中,操作、维修人员穿上用金属丝或导电纤维织成的均压服,可以对人体起屏蔽保护作用。

电磁屏蔽基本原理介绍要点

在电子设备及电子产品中,电磁干扰( Electromagnetic Interferenee )能量通过传导性耦 合和辐射性耦合来进行传输。 为满足电磁兼容性要求, 对传导性耦合需采用滤波技术, 即采 用EMI 滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。在当前电磁频谱日 趋密集、单位体积内电磁功率密度急剧增加、 高低电平器件或设备大量混合使用等因素而导 致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。 屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。 由于辐射源分为近区的电场源、 磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源 的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。 在设计中要达到所需 的屏蔽性能,则需首先确定辐射源, 明确频率范围,再根据各个频段的典型泄漏结构, 确定 控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。 屏蔽体对辐射干扰的抑制能力用屏蔽效能 SE ( Shielding Effectiveness )来衡量,屏蔽效 能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P )的场强匚1 (匚1)和加入屏 蔽体后,辐射干扰源传输到空间同一点 (P )的场强(二2)之比,用dB (分贝)表示。 屏蔽效能表达式为 图1屏蔽效能定义示意图 |场| (dB)或 (dB )

也有所不同,表2与图3分别用图表给出了 的波阻抗特性。 工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射 源和类似于变压器绕组的闭合载流导线辐射源。 由于电偶极子和磁偶极子是上述两类源的最 基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成 (图 2)。 因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的 远近场及波阻 抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。 图2两类基本源在空间所产生的叠加场 远近场的划分是根据两类基本源的场随 1/r (场点至源点的距离)的变化而确定的, l -r;为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。 场源类型 近场(厂') 远场(厂〉%E ) 场特性 传播特性 场特性 传播特性 电偶极子 非平面波 1 以尸"衰减 平面波 1 以厂衰减 磁偶极子 非平面波 1 以k 衰减 平面波 1 以厂衰减

电磁屏蔽室 工作原理

电磁屏蔽室工作原理 电磁屏蔽室的功能: (1)、隔离外界电磁干扰,保证室内电子、电气设备正常工作。特别是在电子元件、电器设备的计量、测试工作中,利用电磁屏蔽室(或暗室)模拟理想电磁环境,提高检测结果的准确度。 (2)、阻断室内电磁辐射向外界扩散。强烈的电磁辐射源应予以屏蔽隔离,防止干扰其他电子、电气设备正常工作甚至损害工作人员身体健康。 (3)、防止电子通信设备信息泄漏,确保信息安全。电子通信信号会以电磁辐射的形式向外界传播,敌方利用监测设备即可进行截获还原。而使用电磁屏蔽室是确保信息安全的有效措施之一。 那么,它是怎么工作的,才能达到这样的效果呢? 电磁屏蔽室工作原理: 计算机、通信机及电子设备在正常工作时会产生一定强度的电磁波,该电磁波可能会对其它设备产生干扰或被专用设备所接收,以窃取其工作内容。同时,这些电子设备也需要在小于一定强度的电磁环境下保证其正常工作。 屏蔽就是用金属板体(金属网)制成六面体,将电磁波限制在一定的空间范围内使其场的能量从一面传到另一面受到很大的衰减。屏蔽室就是利用其屏蔽的原理,用金属材料制成一个六面体房间,由于金属板(网)对入射电磁波的吸收损耗、界面反射损耗和板内反射损耗,使其电磁波的能量大大的减弱,而使屏蔽室产生屏蔽作用。 (河南民生)电磁屏蔽室的基本组成内容: (1)、壳体:以钢板焊接式电磁屏蔽室为例。包括六面龙骨框架、冷轧钢板。龙骨框架由槽钢、方管焊接而成,材料规格按屏蔽室大小确定地面龙骨(地梁)应与地面进行绝缘处理。墙部冷轧钢板厚度1.5mm,,先在车间预制成模块,分别焊接在龙骨框架内侧。所有焊接均采用CO2保护焊,连续满焊,并用专用设备捡漏,防止漏波。 (2)、电磁屏蔽门:是屏蔽室唯一活动部件,也是屏蔽室综合屏蔽效能的关键,技术含量较高,材料特殊,工艺极其复杂,共26道工序。电磁屏蔽门有铰链式插刀门、平移门两大类,各有手动、电动、全自动等形式。 (3)、蜂窝型通风波导窗:通风换气、调节空气是屏蔽室必不可少的设施。蜂窝型波导窗由对边距5㎜的六边形钢质波导管集合组成,波导管不妨碍空气流通,却对电磁辐射有截止作用。 (4)、强弱电滤波器:进入屏蔽室的电源线、通信信号线等导体都会夹带传

电磁干扰的屏蔽方法

电磁干扰的屏蔽方法 上网时间:2000年11月26日 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 ?EMC问题来源 ?金属屏蔽效率 ?EMI抑制策略 ?屏蔽设计难点 ?衬垫及附件 ?结论 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其它设备产生强烈电磁干扰(IEEE C63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部份实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本计算机和测试设备之间、打印机和台式计算机之间以及行动电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是藉由外壳的缝、槽、开孔或其它缺口泄漏出去;而信号传导则藉由耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;藉由屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率 可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为 SE dB=A+R+B 其中A:吸收损耗(dB) R:反射损耗(dB) B:校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况) 一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB。

相关文档