文档库 最新最全的文档下载
当前位置:文档库 › 微积分B(2)第6次习题课参考答案(第一型曲线、曲面积分)

微积分B(2)第6次习题课参考答案(第一型曲线、曲面积分)

微积分B(2)第6次习题课参考答案(第一型曲线、曲面积分)
微积分B(2)第6次习题课参考答案(第一型曲线、曲面积分)

曲线积分和曲面积分

定积分、二重积分、三重积分、曲线和曲面积分统称为黎曼积分,是高等数学研究的热点。定义了定积分、二重积分、三重积分、曲线积分和曲面积分的划分、逼近、求和、极值等概念。最后,将它们简化为特定结构和公式的限制。定义可以用统一的形式给出: 从上述积分的概念形式和计算方法来看,定积分的积分区域是线性的,二重积分的区域是平坦的,三重积分的区域是主体。上述三种积分的概念、性质和计算方法是相似的,在逼近过程中,得到的点是积分曲线或积分曲面上满足曲线或曲面方程的点。因此,曲线和曲面积分转化为定积分或二重积分的方法可以用来计算曲线和曲面积分。 曲面积分的形式如下: \begin{equation*}\int{S}\stackrel→{F}·d\overArrowRow{a}\end{equation*} 这意味着在向量场中,我们需要对向量场中的曲面s进行积分,D/stacklel→{a}表示曲面上任何一点垂直于Δs方向的方向向量(Δs代表微分曲面上的任何点),即它只代表一个方向。二者之间的数学关系是点乘,点乘的结果是矢量在垂直于Δs方向(即右箭头

{a})上任何一点的分量向量。最后,利用{f}·D{a}对整个曲面进行积分,即不断增加曲面上每个点的点乘结果。求某向量场中曲面s上垂直于Δs方向的所有子向量之和。 换句话说,曲面积分表示向量场{f}与曲面s相交的程度,因此,它也被生动地称为通量。 在这里,我们可以说明为什么麦克斯韦方程组的积分形式的二重积分也被称为电通量和磁通量。 根据点乘的几何定义,由于{f}与{a}D/stacklel→{a}之间存在点积 \超右箭头{a}·\overarrowRow{b}=|\overarrow{a}| | \\ overArrowRow{b}| cos\theta\qquad(0≤\theta≤\pi) 如果stacklel→{f}与s平行,则所有向量的方向垂直于{overarrowRow}的{a},则cos <theta=cos(<pi/2)=0,其中点积为0,表面积为0。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

曲线积分和曲面积分

定积分,二重积分,三重积分,曲线和曲面积分统称为黎曼积分,这是高等数学研究的重点。定积分,二重积分,三重积分,曲线和曲面积分的定义均被划分,近似,求和和极值。最后,它们被减小到特定结构和公式的极限值。该定义可以统一形式给出:

从以上积分的概念形式和计算方法来看,定积分的积分区域是线性的,二重积分的区域是平面的,三重积分的区域是主体的。以上三个积分的概念,性质和计算方法相似;在逼近过程中,获取的点是积分曲线或积分曲面上满足曲线或曲面方程的点。因此,可以使用将曲线和曲面积分转换为定积分或双积分的方法来计算曲线和曲面积分。 表面积分的形式如下: \ begin {equation *} \ int_ {S} \ stackrel→{F}·d \ overarrowarrow {a} \ end {equation *}这意味着在向量场中,我们需要在向量场中对表面s进行积分,并且D / stacklel→{a}表示垂直于表面上任意点上Δs方向的方向向量(Δs表示微分曲面上的任意一点),也就是说,它仅代表一个方向。两者之间的数学关系是点相乘,点相乘的结果是向量在垂直于Δs的方向(即,由右箭头{a}指向的方向)上的任意点处的向量的分量向量。)。最后,通过使用{f}·D {a}进行整个表面的积分,即连续增加表面上每个点的点相乘结果。求出一定矢量场中表面s上垂直于Δs方向的所有子矢量的总和。

换句话说,表面积分表示矢量场{f}与表面s相交的程度。因此,它也生动地称为通量。 在这里,我们可以关联为什么麦克斯韦方程组的积分形式的双积分也称为电通量和磁通量。 然后,由于在{f}和{a} D / stacklel→{a}之间存在一个点积,根据点乘法的几何定义\ overrightarrow {a}·\ overarrowarrow {b} = | \ overarrowarrow {a} || \\ overarrowarrow {b} | cos \ theta \ qquad(0≤\theta≤\ pi) 如果stacklel→{f}平行于s,则所有向量的方向均垂直于{overarrowarrow}的{a},则cos ﹤theta = cos(﹤pi / 2)= 0,其中点积为0 ,表面积分为0。

微积分第五章第六章习题答案

习题5.1 1.(1) sin x x ;3sin x (2)无穷多 ;常数(3)所有原函数(4)平行 2. 23x ;6x 3.(1)3223 x C --+(2)323sin 3x x e x C +-+(3)3132221(1565(2))15x x x x C -++-+ (4 2103)x x C -++ (5)4cos 3ln x x C -++(6)3 23 x x ex C +-+ (7) sin 22 x x C -+(8 )5cos x x C --+ 4. 3113y x =+ 5. 32()0.0000020.0034100C x x x x =-++;(500)1600;(400)(200)552C C C =-= 习题5.2 1.(1)1a (2)17(3)110(4)12-(5)112(6)12(7)2-(8)15(9)-(10)12 - 2. (1)515t e C + (2)41(32)8x C --+(3)1ln 122x C --+(4)231(23)2 x C --+ (5 )C -(6)ln ln ln x C +(7)111tan 11x C +(8)212 x e C --+ (9)ln cos ln sin x x C -++(10 )ln C -+(11)3sec sec 3 x x C -++ (12 )C (13)43ln 14x C --+(14)2sec 2 x C + (15 12arcsin 23x C + (16)229ln(9)22 x x C -++ (17 C (18)ln 2ln 133 x x C -+-+ (19)2()sin(2())4t t C ?ω?ωω++++ (20)3cos ()3t C ?ωω +-+ (21)cos 1cos5210x x C -+ (22)13sin sin 232x x C ++(23)11sin 2sin12424 x x C -+ 习题5.3 1.(1)arcsin ,,u x dv dx v x === (2),sin ,cos u x dv xdx v x ===-

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

曲线积分与曲面积分

第十章 曲线积分与曲面积分 一、 基本内容要求 1. 理解线、面积分的概念,了解线、面积分的几何意义及物理意义,能用线、 面积分表达一些几何量和物理量; 2. 掌握线、面积分的计算法; 3. 知道两类曲线积分及两类曲面积分的联系; 4. 掌握格林公式,并能将沿闭曲线正向的积分化为该曲线所围闭区域上的二重 积分; 5. 掌握曲线积分与路径无关的充要条件,并能求全微分为已知的某个原函数, 注意此时所讨论问题单连通域的条件不可缺少; 6. 掌握高斯公式,并能将闭曲面Σ外侧上的一个曲面积分化为由其所围空间闭 区间Ω上的三重积分。 二、 选择 1.设OM 是从O (0,0)到点M (1,1)的直线段,则与曲线积分I=ds e om y x ? +2 2不相等的积分是:( ) A)dx e x 21 2? B) dy e y 21 02? C) dt e t ? 2 D) dr e r 21 ? 2.设L 是从点O(0,0)沿折线y=1-|x-1| 至点A(2,0) 的折线段,则曲线积分I= ? +-L xdy ydx 等于( ) A)0 B)-1 C)2 D)-2 3.设L 为下半圆周)0(222≤=+y R y x ,将曲线积分I= ds y x L ? +)2(化为定

积分的正确结果是:( ) A) dt t t R )sin 2(cos 0 2+? -π B) dt t t R )sin 2(cos 0 2 +?π C) dt t t R )cos 2sin (0 2+-?- π D) dt t t R )cos 2sin (232 2+-?π π 4.设L 是以A(-1,0) ,B(-3,2) ,C(3,0) 为顶点的三角形域的周界沿ABCA 方向, 则 ? -+-L dy y x dx y x )2()3(等于:( ) A) -8 B) 0 C) 8 D) 20 5.设AEB 是由点A(-1,0) 沿上半圆 21x y -=经点E(0,1)到点B(1,0), 则曲线积分I= dx y AEB ? 3等于:( ) A) 0 B)dx y BE ? 32 C) dx y EB ? 32 D) dx y EA ? 32 三、 填空 1.γβαcos ,cos ,cos 是光滑闭曲面Σ的外法向量的方向余弦,又Σ所围的空间闭区域为Ω;设函数P(x,y,z),Q(x,y,z)和R(x,y,z)在Ω上具有二阶连续偏导数,则由高斯公式,有 ds y P x Q x R z P z Q y R ]cos )(cos )(cos )[( γβα??-??+??-??+??-???? ∑ = 。 2.设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,且

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

最新曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

大学高等数学上考试题库及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( B ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( B ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( D ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( C ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( A ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( A ).

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为 n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分 析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点 (),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于 (),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 1 lim (,).n i i i i M s λρξη→∞ ==?∑ 即这个极限就是该物体的质量.这种和的极限在研究其它问题时也会遇到. 上述结果是经过分割、求和、取极限等步骤而得到的一种和数得极限,这意味着我们已经得到了又一种类型的积分. 抛开问题的具体含义,一般的来研究这一类型的极限,便引入如下定义: 定义13.1 设L 是xoy 面内的一条光滑曲线,函数()y x f ,在L 上有界,用L 上任意插入 图13-1

高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

曲线与曲面积分习题参考答案

十 曲线积分与曲面积分习题 (一) 对弧长的曲线积分 1. 计算ds y x L ?+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t . 解 320 32 2 2 2 20 2 2 2 2 2 2 2cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x L ππ π==++=+???. 2. 计算ds x L ?,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界. 解 )12655(12 1 4121 021 0-+= ++=???dx x x dx x ds x L . 3.计算?L yds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧. 解 ?L yds =dy y y dy y y ??+=+2 22 2421)2(1 )122(3 4)4(4412202-=++= ?y d y . 4.计算?+L ds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段. 解 ?+L ds y x )(=23 2 11)(1 0= ++?x x . 5.计算?L xyzds ,其中L 是曲线232 1 ,232,t z t y t x == =)10(≤≤t 的一段. 解 ?L xyzds =??+=++1 31 02223)1(232 )2(121232dt t t t dt t t t t t =143 216. 6.计算L ?,其中L 为圆周222x y a +=,直线y x =及x 轴在第 一象限所围成的扇形的整个边界.

曲线积分与曲面积分(答案word

第十章 曲线积分与曲面积分 (一) 1.解:两点间直线段的方程为:x y -=1,()10≤≤x 故()dx dx dx y ds 21112 2=-+='+= 所以()()2211 =-+=+??dx x x dx y x L 。 2.解:L 的参数方程为??? ????=+=θθsin 212 1cos 21a y a a x ,()πθ20≤≤ 则()?θθcos 12||2 1 sin 2121cos 212 22+=??? ??+??? ??+=+a a a a y x 2cos ||12cos 212||212θθa a =??? ? ? -+= ||21cos 2sin 22 2 2 2 a a a d y x ds =?? ? ??+??? ??-='+'=θθθ 所以? ? =+πθθ 20 22 22 cos 21d a ds y x L ?? ? ??-= ??πππθθθθ0222cos 2cos 21d d a 220222sin 22sin 221a a =??? ? ??-=π ππθ θ 3.解:()()atdt dt t at t at dt y x ds =+= '+'=2222sin cos 故() ()()[] ? ?-++=+π20 2 2 222cos sin sin cos atdt t t t t t t a ds y x L ()()? +=? ??? ??+=+=ππ ππ20 2 3220 42 33321242a t t a dt t t a 4.解:如图? ? ? ?++++++=3 2 22 2 21 2 22 2L y x L y x L y x L y x ds e ds e ds e ds e

微积分课后习题答案

习题1—1解答 1. 设y x xy y x f + =),(,求) ,(1),,(),1,1(),,(y x f y x xy f y x f y x f -- 解y x xy y x f + =--),(;x xy y y x f y x y x xy f x y xy y x f +=+=+=222),(1;),(;1)1,1( 2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++= ) ,(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=?+?+?+?=++=?= 3. 求下列函数的定义域,并画出定义域的图形: (1);11),(22-+-=y x y x f (2);) 1ln(4),(222y x y x y x f ---= (3);1),(22 2222c z b y a x y x f ---= (4).1),,(2 2 2 z y x z y x z y x f ---++= 解(1)}1,1),{(≥≤=y x y x D (2) { y y x y x D ,10),(2 2 <+<=

(3) ????++=),(2 2222b y a x y x D (4){} 1,0,0,0),,(222<++≥≥≥=z y x z y x z y x D 4.求下列各极限: (1)2 21 01lim y x xy y x +-→→=1100 1=+- (2)2ln 0 1)1ln(ln(lim 02 2 )0 1 =++= ++→→e y x e x y y x (3)41 )42()42)(42(lim 42lim 000-=+++++-=+-→→→→xy xy xy xy xy xy y x y x (4)2) sin(lim )sin(lim 202=?=→→→→x xy xy y xy y x y x 5.证明下列极限不存在: (1);lim 0 0y x y x y x -+→→ (2)22 22200)(lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim 00 20-=-+=-+→→=→x x x x y x y x x x y x ; 如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim 00 20==-+→→=→y y y x y x y y x y x

安徽大学高等数学期末试卷和答案

安徽大学2011—2012 学年第一学期 《高等数学A(三)》考试试卷(A 卷) (闭卷时间120 分钟) 考场登记表序号 题号一二三四五总分 得分 阅卷人 一、选择题(每小题2 分,共10 分)得分 1.设A为n阶可逆矩阵,则下列各式正确的是()。 (A)(2A)?1 =2A?1 ;(B)(2A?1)T=(2A T)?1 ;(C) ((A?1)?1)T=((A T)?1)?1 ;(D)((A T)T)?1 =((A?1)?1)T。 2.若向量组1, 2 , , r ααα可由另一向量组 ()。 βββ线性表示,则下列说法正确的 是 1, 2 , , sβββ线性表示,则下列说法 正确的是 (A)r≤s;(B)r≥s; (C)秩( 1, 2 , , r1, 2 , , s1, 2 , , r ααα)≤秩(βββ);(D)秩(ααα)≥ 秩( ββ β)。 1, 2 , , sββ β)。 3.设A, B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则下列说法正确的是()。 (A)λE?A=λE?B; (B)A与B有相同的特征值和特征向量; (C)A与B都相似于一个对角矩阵; (D)对任意常数k,kE?A与kE?B相似。 4.设1, 2 , 3 ααα为R3 的一组基,则下列向量组中,()可作为R3 的另一组基。 (A)1, 1 2 ,3 1 2 1, 2 ,2 1 2 α+αα+αα+α。 αα?αα?α;(B)ααα+α; (C) 1 2 , 2 3, 1 3 α+αα+αα?α;(D) 1 2 , 2 3, 1 3 5.设P(A) =0.8 ,P(B) =0.7 ,P(A| B) =0.8 ,则下列结论正确的是()。

曲线积分与曲面积分总结

对弧长的曲线积分??+=L L y d x d y x f ds y x f 22),(),( ???==) ()(:t y y t x x L βα≤≤t dt t y t x t y t x f ?'+'βα)()())(),((22 (,,)((),(),(L L f x y z ds f x t y t z t =??():()()x x t L y y t z z t =??=??=? βα≤≤t ((),(),(f x t y t z t βα ? 22222.2x y L L L e ds e ds e ds e π+===? ?? 22=2(0)L x y y +≥为上半圆周 ?+L dy y x q dx y x p ),(),( ???==) ()(:t y y t x x L α=t β=t dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?βα (,,)(,,)(,,)L P x y z dx Q x y z dy R x y z dz ++?

():()()x x t L y y t z z t =??=??=? α=t β =t ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++? 11 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+?? 1( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? ??=??-??D dxdy y p x q )( ?+L dy y x q dx y x p ),(),( y p x q ??=?? ???+=+2 1212211),(),(),(),(21) ,(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,)P x y dx Q x y dy dU x y +=Q P x y ??? =?? 1、 ?? ??++= =∑xy D y x dxdy f f y x f y x ds z y x y x f z 221)),(,,(),,(),(μμ 2、 (,)(,,)(,(,),xz D y f x z x y z ds x f x z z μμ∑==???? 3、 (,)(,,)((,),,yz D x f y z x y z ds f y z y z μμ∑==???? ds ∑ =∑??面积。

相关文档
相关文档 最新文档