文档库 最新最全的文档下载
当前位置:文档库 › 解析几何答案-第四章

解析几何答案-第四章

解析几何答案-第四章
解析几何答案-第四章

第4章 柱面、锥面、旋转曲面与二次曲面

§ 4.1柱面

1、已知柱面的准线为:

?

?

?=+-+=-+++-0225

)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程

?

?=+-+=-+++-0

225

)2()3()1(222z y x z y x 中消去x 即:2+y (2

而0M 2、设柱面的准线为???=+=z x z y x 22

2,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量{

}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:

???

??+==-=?

??

?

??-==+=t z z y

y t

x x t

z z y y t

x x 220

0000

而0M 在准线上,所以:

??

?+=-++=-)

2(2)2(2

2t z t x t z y t x 消去t ,得到:010*******

22=--+++z x xz z y x

此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。 解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为

()

(,0,0,0的圆心为

,152(0-

M 4}Z Y ,,,试证明柱面的矢量式参数方程与坐标式参数方程分别为:

S v u Y x +=)(

??

?

??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。

证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则,

v M ='

即v M O OM ='-

亦即S v u Y Y =-)(,S v u Y Y +=)( 此即为柱面的矢量式参数方程。 又若将上述方程用分量表达,即:

{}{}{}Z Y X v u z u y u x z y x ,,)(),(),(,,+=

?

??+=+=∴Yv u y y Xv u x x )()( 1即:2+x 2、已知锥面的顶点为)2,1,3(--,准线为0,12

22=+-=-+z y x z y x ,试求它的方程。

解:设),,(z y x M 为要求的锥面上任一点,它与顶点的连线为:

2

2

1133++=++=--z Z y Y x X 令它与准线交于),,(000Z Y X ,即存在t ,使

???

??++-=++-=-+=t z Z t y Y t x X )2(2)!(1)3(30

00 将它们代入准线方程,并消去t 得:

044441026753222=+-+-+--+-z y x xz yz xy z y x

此为要求的锥面方程。

3、求以三坐标轴为母线的圆锥面的方程。 解:(这里仅求Ⅰ、Ⅶ卦限内的圆锥面,其余类推)

圆锥的轴l 与k j i ,,等角,故l 的方向数为1:1:1 ∴与l

平面+y x )1,0,0(,此即为要求的圆锥面的方程。

4、求顶点为)4,2,1(,轴与平面022=++z y x 垂直,且经过点)1,2,3(的圆锥面的方程。 解:轴线的方程为:

1

42221-=

-=-z y x 过点)1,2,3(且垂直于轴的平面为:

0)1()2(2)3(2=-+-+-z y x

即: 01122=-++z y x

该平面与轴的交点为)9

37,920,911(

,它与)1,2,3(的距离为: 3

116)1937()2920()3911(222=-+-+-=d

∴要求圆锥面的准线为:

?????

=-++=

-+-+-0

11229116)937()920()911(222z y x z y x 对锥面上任一点),,(z y x M ,过该点与顶点的母线为:

,)2t -

Z 40+=0512=x

5}00,,z y ,试证明锥面的矢量式参数方程与坐标式参数方程分别为:

()(1)v u v γγγ=+-

0()(1)x vx u v x =+-?式中,u ,证明:对锥面上任一点),,(z y x M ,令OM γ=,它与顶点A 的连线交准线于((),(),()M x u y u z u '=,即OM ()u γ'=。

//AM AM ',且0AM '≠(顶点不在准线上) AM vAM '∴=

即00(())v u γγγγ-=- 亦即0()(1)v u v γγγ=+-

此为锥面的矢量式参数方程。

若将矢量式参数方程用分量表示,即:

000{,,}{(),(),()}(1){,,}x y z v x u y u z u v x y z =+-

??

?

??-+=-+=-+=∴000)1()()1()()1()(z

v u vz z y v u vy y x v u vx x 此为锥面的坐标式参数方程,v u ,为参数。

§ 4.3旋转曲面

1、求下列旋转曲面的方程:

22255224444480x y z xy yz xz x y z ++++-+---=

此为所求的旋转面方程。

(2)对母线上任一点1111(,,)M x y z ,过1M 的纬圆为:

111222222111()()2()0

(1)(1)(1)

(2)

x x y y z z x y z x y z ---+-=??++-=++-?

因1M 在母线上, 1111

211

x y z -∴

==

- (3) 从(1)——(3)消去111,,x y z ,得到:

2225523122424242446230x y z xy yz xz x y z ++--+-+-+=

此为所求的旋转面的方程。

(3)对母线上任一点1111(,,)M x y z ,过该点的纬圆为:

1222222111

(1)(2)

z z x y z x y z =??++=++?

又1M 在母线上,所以:

111

1133

x y z -==- (3) 从(1)——(3)消去111,,x y z ,得到:

2229()10690x y z z +---=

此为所求的旋转面方程。

(4)对母线上任一点1111(,,)M x y z ,过1M 的纬圆为:

1

222222111

(1)(2)

z z x y z x y z =??++=++?

又1M 在母线上,所以

2

112211(1)1

(2)

z x x y ?=??+=??

从(1)——(3)消去111,,x y z ,得到:

221x y +=

211101z z x z ==≤∴≤≤

即旋转面的方程为:22

1x y += (01)

z ≤≤ 2、将直线

01

x

y z

βα

-=

=绕z 轴旋转,求这旋转面的方程,并就,αβ可能的值讨论这是什么曲面?

解:先求旋转面的方程式:

任取母线上一点1111(,,)M x y z ,过1M 的纬圆为:

1222222111

(1)(2)

z z x y z x y z =??++=++?

1

11

01

x y z βα

-=

= (3)

x 从(1)——(3)消去

111

,,

x y z,得到:

222220

x y z

αβ

+--=

此即为所求旋转面的方程。

当0,0

αβ

=≠时,旋转面为圆柱面(以z轴为轴);

当0,0

αβ

≠=时,旋转面为圆锥面(以z轴为轴,顶点在原点);当,0

αβ≠时,旋转面变为z轴;

当0,0

αβ

=≠时,旋转面为单叶旋转双曲面。

3、

而2()()

op x u u

'=

2222

()()cos()()sin

op x u y u i x u y u j

θθ

'=+?++?

2222

()()cos()()sin()

x u y u i x u y u j z u k

γθθ

=+?++?+

(02)

()

x

y

z z u

θ

θθπ

?=

?

?

=≤<

?

?=

??

§4.4椭圆面

1、做出平面20

x-=与椭球面

222

2

1

494

x y z

++=的交线的图形。解:平面20

x-=与椭球面

222

2

1

494

x y z

++=的交线为:

2

2

39

442

y z x ?+=

???=? ,即 22

12734y z ?+=???? ——椭

2 12=

3、r ,

2222r a b c

证明:沿定方向{,,}λμν到曲面上一点,该点的坐标为{,,}r r r λμν 该点在曲面上

222222

2221r r r a b c λμν∴++=

即22222221r a b c

λμν=++

4、由椭球面222

2221x y z a b c

++=的中心,引三条两两相互垂直的射线,分别交曲面123,,p p p ,

设112233,,op r op r op r ===,试证:

222222

123111111

r r r a b c ++=++ 证明:利用上题结果,有222

2222

1(1,2,3)i i i i i r a b c

λμν=++=

其中,,i i i λμν是i op 的方向余弦。

若将(1,2,3)

op i =所在的直线看成新的坐标系的三个坐标轴,则,,λλλ是坐标矢量关于

2231ν+= p 点的轨

2121331221,x z z y

x y z z z z =

=-- 21211221

(

,,0)x z z y

C z z z z ∴-- 又设(,,)p x y z ,,,pA a pB b pC c ===

2222

11

2222222222

21211221()()(1)()()(2)()()(3)

x y y z z a x x y z z b x z z y

x y z c z z z z ?

?+-+-=??-++-=???-+-+=--??

又p 在AB 的连线上,11

1121

y y z z x x y z z --∴

==--(4) 从(1)——(4)消去1122,,,y z x z ,得到

222

6

若(*即有:[1-亦即:2

2

2(b c

λ22

2

2

2210a a b c

λλ∴-

-+= 即:22

2

22(1)1a a b c

λ-=-

222

2

222

a c

b

c b a λ-=?-

λ∴=满足要求的平面方程为:0y =

§ 4.5双曲面

1、画出以下双曲面的图形:

(1)

22211694x y z -+=; (2)222

11649

x y z -+=- (*) 2o、当A B λ>>时,(*)表示双叶双曲面; 3o、当B C λ>>时,(*)表示单叶双曲面; 4o、当C λ<时,(*)表示椭球面。

3、已知单叶双曲面222

1494

x y z +-=,试求平面的方程,使这平面平行于yoz 面(或xoz 面)且与曲面的交线是一对相交直线。

解:设所求的平面为x k =,则该平面与单叶双曲面的交线为:

(*) 222

1

494

x y z x k ?+-=???=?

亦即 2221944y z k x k ?-=-

???=?

为使交线(*)为二相交直线,则须:2

104

k -=,即2k =± 所以,要求的平面方程为:2x =±

同理,平行于xoy 的平面要满足它与单叶双曲面的交线为二相交直线,则该平面为:3y =± 4、设动点与(4,0,0)的距离等于这点到平面1x =的距离的两倍,试求这动点的轨迹。 2(,4(1)M x x -

此为5 216x x ?+???-?

2x +6、设直线l 与m 为互不垂直的两条异面直线,C 是l 与m 的公垂线的中点,,A B 两点分别在直线l ,m 上滑动,且90ACB ∠=,试证直线AB 的轨迹是一个单叶双曲面。 证明:以l ,m 的公垂线作为z 轴,C 作为坐标原点,再令x 轴与l ,m 的夹角均为α,公垂线的长为2c ,若设tg αλ=,则l 0:y x l z c λ+=??=?

0:y x m z c

λ-=??=-?

令11(,,)A x y c ,22(,,)B x y c -,则有:

11220,0y x y x λλ+=-=

又AC CB ⊥,所以:222222222

11221212()()(2)x y c x y c x x y y c +++++=-+-+

亦即 2

12120x x y y c +-= (2)

又设(,,)M x y z 为AB 上任一点,则

c

c

z y y y y x x x x 2

11--=--=-- (3)

l (47消去参数v u ,,有:122

2222=-+c

z b y a x

此即为单叶双曲面;

又对方程:??

?

??===u c z v btgu y v atgu x sec sin cos

消去参数v u ,,有:122

2222-=-+c

z b y a x

此即为双叶双曲面方程。

§ 4.6抛物面

1、已知椭圆抛物面的顶点在原点,对称面为xoz 面与yoz 面,且过点)6,2,1(和)1,1,3

1(-,求这个椭圆抛物面的方程。

解:据题意可设,要求的椭圆抛物面的方程为:

z b

y a x 222

22=+ 令确定a 与b

)6,2,1( 和)1,1,3

1

(-均在该曲面上。

∴有:

??????

?

91122a a 从而

12

=a

即:x 1822(1(2)α2。 解:(1),0,0(a 即02)1(2

2222=+--++a az z c y x

此为的方程。

(2)取二异面直线的公垂线为轴,中点的坐标为原点;再取x 轴,使其与二异面直线的夹角相等,则二异面直线的方程为:

?

?

?==?+a z x tg y 0

α 与 ?

?

?-==?-a z x tg y 0

α 设所求的轨迹为∑,则

α

α

αα

α

α22

2222

221110011100),,(tg tg y

x x a z tg a z y

tg tg y

x x a z tg a z y z y x M +-+-+--=

+++++?

∑∈

22222222)()()()()()(y x a z a z tg y xtg a z a z tg ++-+-?=-++++?αααα

3(1)42x 4(1)=y (2)2x (3)=

x (4)2x 解:略。

5???

?==2

21sin u z v bu y 与 ??

?=-=uv z v u b y 2)( 式中的v u ,为参数。 解:对方程

???

?

???

===2

21sin cos u z v bu y v au x

消去参数v u ,得:z b

y a x 222

22=+

这正是椭圆抛物面的方程。

对方程

??

?

??=-=+=uv z v u b y v u a x 2)()( 消去参数v u ,得:z

y x 222

22=-

1、 (1)解:(即:( (1) (2)

若令)(2

1s t u -=

,)(2

1s t v +=

,则(2)便是(1)

∴原曲面的直母线族是(1),其中t s ,不全为零。

(2)原方程变形为:ay x

z

=

亦即:t ay x

z

==

??

?==∴t

ay xt

z (1)

ax y

z

= 得: ??

?==s

ax sy

z (2)

(1)(2)即这原曲面的两组直母线族方程。 2、 求下列直线族所成的曲面(式中的λ为参数)

(1)0112λ

λ-=-=-z y x ; (2)???=--=++4

42442z y x z y x λλλλ 解:(1

?-=-λy

x 2(2此即为(23第一族直母线的方向矢量为:},1,2{u - 第二族直母线的方向矢量为:},1,2{v 据题意,要求的直母线应满足:

2

04232104232=?=-+?=?=--?v v u u

要求的直母线方程为:

???????=-=+z y x y

x 2412

4 及 ???????=+=-2

2422

4z y x y

x 4、试证单叶双曲面122

2222=-+c

z b y a x 的任意一条直母线在xoy 面上的射影,一定是其腰圆

的比线。

证明:单叶双曲面的腰圆为?

???==+

0122

22z b y a x

它在xoy (2) 将(2即:(1[

2b

∴ (5、求与两直线11236-==-z y x 与21

4

283-+=

-=z y x 相交,而且与平面0532=-+y x 平行的直线的轨迹。

解:设动直线与二已知直线分别交于),,(),,,(111000z y x z y x ,则

11236000-==-z y x ,21

4

283111-+=-=z y x 又动直线与平面0532=-+y x 平行,所以,0)(3)(21010=-+-y y x x

对动直线上任一点),,(z y x M ,有:

10

010010z z z z y y y y x x x x --=--=--

从(1)——(4)消去111000,,,,,z y x z y x ,得到:z y x 44

92

2=- 6、求与下列三条直线

??

?==z y x 1

, ??

?-=-=z

y x 1 与52

4132+=+=--z y x 都共面的直线所构成的曲面。

?=x 1?-=x 1

注,,1(λp 过p 0)]=+z 7??????

?-=-+)1()((b y u c

z a x v b

c z

a x u 过该族中一条直母线的平面为:0)]1()([)]1()(

[=---++-+b

y

u c z a x v t b y v c z a x u s 即:0)1()()1()(=---++-+b

y

tu c z a x tv b y sv c z a x su (1)

另一族直母线为:??????

?+=--=+)1()()1()(b

y m c z a x n b y

n c

z

a x m

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

数学必修二第二章解析几何初步试卷及答案.doc

数学必修二第二章解析几何初步 宝鸡铁一中 王芳芳 2010.11 一、选择题: 1.x 轴上任一点到定点(0,2)、(1,1)距离之和最小值是(C ) A .2 B .22+ C .10 D .15+ 2.点(4,0)关于直线5x+4y+21=0对称的点是(B ) A .(-6,8) B .(-6,-8) C .(-8,-6) D .(6,8) 3.直线 032=+-y x l : 关于x y -=,对称的直线方程是(C ) A .032=+-y x B .032=-+x y C .032=--y x D .032=--y x 4.过点P (2,1),且倾斜角是直线l :01=--y x 的倾斜角的两倍的直线方程为(B ) A .012=--y x B .2=x C .)2(21-=-x y D .012=--y x 5.以点A (-5,4)为圆心,且与x 轴相切的圆的方程是(C ) A .25)4()5(22=-++y x B .16)4()5(22=++-y x C .16)4()5(22=-++y x D . 25)4()5(22=++-y x 6.一条直线过点P (-3,23 -),且圆 252 2=+y x 的圆心到该直线的距离为3,则该直线的方程为(C ) A .3-=x B . 23 3- =-=y x 或 C .015433=++-=y x x 或 D .01543=++y x

7.过点A (1,-1),B (-1,1),且圆心在直线02=-+y x 上的圆的方程是(B ) A .4)1()3(22=++-y x B .4)1()1(2 2=-+-y x C .4)1()3(22=-++y x D . 4)1()1(22=+++y x 8.已知圆C :4)2()(2 2=-+-y a x (0 a ),有直线l :03=+-y x ,当 直线l 被圆C 截得弦长为32时,a 等于(A ) A .12- B .2-2 C .2 D .12+ 9.直线)(0)11()3()12(R k k y k x k ∈==--+--,所经过的定点是(B ) A .(5,2) B .(2,3) C .(-21 ,3) D .(5,9) 10.若直线12++=k kx y 与直线2 21 +-=x y 的交点位于第一象限,则实数k 的 取值范围是(C ) A .26-- k B .0 61 k - C .061 k - D . 21 k 11.三条直线 155,02,0321=--=-+=-ky x l y x l y x l :::构成一个三角形, 则k 的范围是(C ) A .R k ∈ B .R k ∈且0,1≠±≠k k C .R k ∈且10,5-≠±≠k k

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

高中数学 第二章 解析几何初步 章末复习

解析几何初步章末复习 知识网络构建 高频考点例析 考点一直线的方程 例1直线l过点P(8,6),且与两条坐标轴围成等腰直角三角形,求直线l的方程. [解]解法一:直线l与两条坐标轴围成的三角形为等腰直角三角形,必须且只需直线l在两条坐标轴上的截距的绝对值相等且不为0, 故设直线l的方程为x a +y a =1或x a +y -a =1(a≠0), 当直线l的方程为x a +y a =1时, 把P(8,6)代入得8 a +6 a =1,解得a=14, ∴直线l的方程为x+y-14=0; 当直线l的方程为x a +y -a =1时,

把P (8,6)代入得8a -6 a =1,解得a =2, ∴直线l 的方程为x -y -2=0. 综上所述,直线l 的方程为x +y -14=0或x -y -2=0. 解法二:设所求直线l 的方程为y =kx +b (k ≠0,b ≠0), 令x =0,得y =b ;令y =0,得x =-b k . ∵直线与两条坐标轴围成等腰直角三角形, ∴|b |=??????-b k . ∵b ≠0,∴k =±1. 当k =1时,直线l 的方程为y =x +b , 把P (8,6)代入得6=8+b ,解得b =-2, ∴直线l 的方程为y =x -2, 即x -y -2=0; 当k =-1时,直线l 的方程为y =-x +b , 把P (8,6)代入得6=-8+b ,解得b =14, ∴直线l 的方程为y =-x +14,即x +y -14=0. 综上所述,直线l 的方程为x +y -14=0或x -y -2=0. 类题通法 常用待定系数法求直线方程 求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件具备时要另行讨论条件不满足的情况.

解析几何第四版吕林根课后习题答案第三章(同名3095)

第三章 平面与空间直线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: ?? ? ??+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: ?? ? ??+-=+=--=v u z u y v u x 235145 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

空间解析几何及向量代数测试题及答案

军教院 第八章空间解析几何测试题 一、填空题(共7题,2分/空,共20分) 1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a → =,)3,2,1(=→b ,(0,0,1)c →=,则→ →→??c b a )(=__(-2,-1,0)____. 3.点)1,0,1(到直线???=-=03z x y x 的距离是___66 ___________. 4.点)2,0,1(到平面321x y z ++=的距离是__ 3 147 ___________. 5.曲线C:220 1 x y z z x ?+-=?=+?对xoy 坐标面的射影柱面是___2210x x y -+-=____, 对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________. 6.曲线C:220 x y z ?=?=?绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线 C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________. 7.椭球面125 492 22=++z y x 的体积是_________________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里 ,,a b c 是3个非零实数. 解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影 点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-u u u u u u r ,13(0,,)M M b c =-u u u u u u r

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

解析几何试题及答案

解析几何试题及答案https://www.wendangku.net/doc/bd941640.html,work Information Technology Company.2020YEAR

解析几何 1.(21)(本小题满分13分) 设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q 满足 BQ QA λ=,经 过Q 点与M x 轴垂直的直线交抛物线于点M ,点P 满足 QM MP λ=,求点P 的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知 识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由MP QM λ=知Q ,M ,P 三点在同一条垂直于x 轴的直 线上,故可设 .)1(),(),,(),,(),,(2020220y x y x y y x x x M y x Q y x P λλλ-+=-=-则则 ① 再设),1,1().(,),,(010111y x y y x x QA BQ y x B --=--=λλ即由 解得???-+=-+=.)1(, )1(011λλλλy y x x ②,将①式代入②式,消去0y ,得 ???-+-+=-+=. )1()1(,)1(2 211λλλλλλy x y x x ③,又点B 在抛物线2 x y =上,所以211x y =, 再将③式代入211x y =,得222(1)(1)((1)),x y x λλλλλλ+-+-=+- 22222(1)(1)(1)2(1),x y x x λλλλλλλλ+-+-=+-++ 2(1)(1)(1)0.x y λλλλλλ+-+-+= 0,(1),210x y λλλ>+--=因同除以得 故所求点P 的轨迹方程为.12-=x y 2.(17)(本小题满分13分) 设直线11221212:x+1:y=k x 1k k k k +20l y k l =-?=,,其中实数满足,

中医谈方论药第三章答案 解析几何第四版课后答案第三章

中医谈方论药第三章答案解析几何第四版课后答案第三章中医谈方论药第三章答案第三章单元测试 1以下哪一部书是李克绍先生的学术代表作 ( ) A. 《胃肠病漫话》 B. 《伤寒论串讲》C. 《伤寒解惑论》 D. 《伤寒论语释》 2以下哪一项不属于《伤寒解惑论》中提出九种治学方法。( ) A. 关于“要理解当时医学上的名词术语” B. 关于“读于无字处和语法上的一些问题” C. 关于“内容不同的条文要有不同的阅读法” D. 关于“要理解寒温之争” 3丁元庆教授认为,《伤寒解惑论》中提出的哪一项既是标准也是方向?( ) A. 关于“要和《内经》《本草经》《金匮要略》结合起来” B. 关于“要与临床相结合” C. 关于“对传统的错误看法要敢破敢立” D. 关于“对原文要一分为二” 4以下哪段话是李克绍先生所说:( ) A. “胸中有万卷书,笔底无半点尘,始可著书;胸中无半点尘,目中无半点尘者,才许作古文疏注。” B. “能否理论联系实际,在临床医疗中能否灵活运用,这是检验学习《伤寒论》成功与否的重要标志。” C. “《伤寒论》言证候不谈病机,述病理而少及生理,出方剂而不言药理” D. “医者书不熟则理不明,理不明则识不清,临证游移,漫无定见,药证不合,难以奏效。”5以下哪段话,是湖北叶发正研究员在《伤寒学术史》中对李克绍先生的评价:( ) A. “他的论著享誉海内外,称得起现代的伤寒著名学家。” B. “高山仰止,景行行止” C. “他对《伤寒论》的研究创当代《伤寒论》注疏之新风,其见解独特、基于临床、前后呼应、逻辑严密;他活泼泼地注疏通解了活泼泼的《伤寒

论》。” D. “先生最反对学术上人云亦云,不求甚解,认为这是自欺欺人的不良学风。先生读书也看前人注解,但决不盲从。” 6以下哪一项,不是丁元庆教授对急性口僻的辨治分析:( ) A. 口僻发生在面部,表现为口眼歪斜。面部是足阳明胃经循行之地。 B. 阳明火热内盛,炙灼足阳明人迎脉,形成人迎脉积。 C. 足阳明经脉受邪,累及经筋,口目为僻。 D. 将葛根汤、葛根芩连汤、黄芪桂枝五物汤等用于急性口僻治疗。 7以下哪一项,不是丁元庆教授对颈动脉粥样硬化的辨治分析( ) A. 颈动脉粥样硬化是卒中的独立危险因素。 B. 阳明火热内盛,炙灼足阳明人迎脉,形成人迎脉积,成为火热致中的中间环节。 C. 足阳明经脉受邪,累及经筋,是发病的重要因素。 D. 提出用葛根芩连汤干预颈动脉粥样硬化及其斑块形成的研究方法。

北师大版必修二第二章解析几何初步综合测试题

北师大版必修二第二章解析几何初步综合测试题 一、单选题 1.已知圆C 的标准方程为222 1x y ,则它的圆心坐标是( ) A .()2,0- B .()0,2- C .()0,2 D .()2,0 2.直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =( ) A .1- B .1 C .3- D .3 3.直线x +(m +1)y ﹣1=0与直线mx +2y ﹣1=0平行,则m 的值为( ) A .1或﹣2 B .1 C .﹣2 D .12 4.已知直线1l :210x ay +-=,与2l :()12102a x ay --+ =平行,则a 的值是( ) A .0或1 B .0或14 C .0 D .14 5.已知两条直线()1:3450l a x y ++-=与()2:2580l x a y ++-=平行,则a 的值是( ) A .7- B .1或7 C .133- D .1-或7- 6.已知点(2,A 0,1),(4,B 2,3),P 是AB 的中点,则点P 的坐标为( ) A .(3,1,2) B .(3,1,4) C .()0,2,1-- D .(6,4,5) 7.直线210x y --=与圆221x y +=的位置关系是( ) A .相切 B .相交且直线过圆心 C .相交但直线不过圆心 D .相离 8.已知点A (-1,0),B (0,2),点P 是圆22:(1)1C x y -+=上任意一点,则△P AB 面积的最大值与最小值分别是( ) A .2,2 B .2,2 C ,4 D . +1-1 9.已知圆O 1的方程为x 2+(y +1)2=6,圆O 2的圆心坐标为(2,1).若两圆相交于A ,B 两点,且|AB |=4,则圆O 2的方程为( ) A .(x -2)2+(y -1)2=6

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根 课后习题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

北师大版高中数学必修二第二章 解析几何初步

第二章解析几何初步 §1直线与直线的方程 1.1直线的倾斜角和斜率 【课时目标】1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素. 1.倾斜角的概念和范围 在平面直角坐标系中,对于一条与x轴相交的直线l,把x轴(正方向)按____________方向绕着交点旋转到和直线l重合所成的角,叫作直线l的倾斜角.与x轴平行或重合的直线的倾斜角为0°.直线倾斜角α的范围是0°≤α<180°. 2.斜率的概念及斜率公式

一、选择题 1.对于下列命题 ①若α是直线l的倾斜角,则0°≤α<180°; ②若k是直线的斜率,则k∈R; ③任一条直线都有倾斜角,但不一定有斜率; ④任一条直线都有斜率,但不一定有倾斜角. 其中正确命题的个数是( ) A.1B.2C.3D.4 2.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为( ) A.a=4,b=0B.a=-4,b=-3 C.a=4,b=-3D.a=-4,b=3 3.设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为( ) A.α+45° B.α-135° C.135°-α D.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135° 4.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是( ) A.[0°,90°]B.[90°,180°) C.[90°,180°)或α=0°D.[90°,135°]

5.若图中直线l1、l2、l3的斜率分别为k1、k2、k3,则( ) A.k10B.mn<0 C.m>0,n<0D.m<0,n<0 二、填空题 7.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为____________. 8.如图,已知△ABC为等腰三角形,且底边BC与x轴平行,则△ABC三边所在直线的斜率之和为____________________________________________________________________. 9.已知直线l的倾斜角为α-20°,则α的取值范围是______________. 三、解答题 10.如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率.

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

解析几何第四版复习重点第二章轨迹与方程

第二章 轨迹与方程 §2.1平面曲线的方程 1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形? 解:动点M 在轨迹上的充要条件是MB MA 21= 。设M 的坐标),(y x 有 2222)6(2 1)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x 此轨迹为椭圆 2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动, 是求此线段中点的轨迹。A ,B 为两端点,M 为此线段的中点。 解: 如图所示 设(,),A x o (,)B o y .则(,)22x y M .在Rt AOB 中有 222()(2)x y a +=.把M 点的坐标代入此式得: 222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a += 3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹. 解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ?=.设(,)M x y 在Rt BNM 中 2 22()a x y AM ++=(1) 在Rt BNM 中222()a x y BM -+=.(2) 由(1)(2)两式得: 22222244 ()2()x y a x y m a +--=-. §2.2 曲面的方程 2、在空间,选取适当的坐标系,求下列点的轨迹方程: (1)到两定点距离之比为常数的点的轨迹; (2)到两定点的距离之和为常数的点的轨迹; (3)到两定点的距离之差为常数的点的轨迹; (4)到一定点和一定平面距离之比等于常数的点的轨迹。 解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则

第二章平面解析几何初步-小检测

平面解析几何初步检测题 考试时间 45分钟 总分 100分 一、选择题(7’× 5) 1.已知直线的方程是21y x +=--,则 ( ) A.直线经过点(2,-1),斜率为-1 B .直线经过点(1,-2),斜率为-1 C.直线经过点(-2,-1),斜率为1 D.直线经过点(-1,-2),斜率为-1 2.过点A(4,1)且在两坐标轴上的截距相等的直线的方程是 ( ) A.5x y += B.5x y -= C.5x y +=或40x y -= D.5x y -=或40x y += 3.斜率为-3,在x 轴上的截距为2的直线的一般式方程是 ( ) A.360x y ++= B.320x y -+= C.360x y +-= D.320x y --= 4.直线20x y k -+=与4210x y -+=的位置关系是 ( ) A.平行 B.不平行 C.平行或重合 D.既不平行也不重合 5.已知A(-4,-5)、B(6,-1),则以线段AB 为直径的圆的方程是 ( ) A.()()221329x y ++-= B.()()22 1329x y +++= C.()()2213116x y ++-= D.()()2213116x y -++= 二、填空题(7’× 2) 6.若直线x +2my -1=0与直线(3m -1)x -my -1=0平行,那么实数m 的值为_________. 7.点P(5a +1,12a )在圆()2 211x y -+=的内部,则a 的取值范围是_________. 三、解答题(14’ + 17’+ 20’) 8.已知P(3,m )在过点M(2,-1)和点N(-3,4)的直线上,则m 的值是多少? 9.直线l 过点P(-2,3)且与x 轴、y 轴分别交与A 、B 两点,若P 恰为线段AB 的中点,求直线l 的方程. 10.已知点P (0,5)及圆C :22 412240x y x y ++-+=, (1)若直线l 过P 且被圆C 截得的线段长为l 的方程; (2)求过P 点的弦的中点的轨迹方程.

相关文档
相关文档 最新文档