文档库 最新最全的文档下载
当前位置:文档库 › 【配套K12】教案.教材-—发酵工程与设备 教材

【配套K12】教案.教材-—发酵工程与设备 教材

【配套K12】教案.教材-—发酵工程与设备 教材
【配套K12】教案.教材-—发酵工程与设备 教材

教案.教材-—发酵工程与设备教材

发酵工程与设备第一章绪论

生物技术作为21世纪高新技术的核心,对人类面临的食品、资源、健康、环境等重大问题发挥越来越大的作用。大力发展生物技术及其产业已成为世界各国经济发展的战略重点。一.发酵工程的主要内容

发酵工程属于生物技术的范畴,生物技术又称生物工艺学,最初是一位匈牙利工程师于1917年提出的。当时他提出的生物技术这一名词的涵义是指甜菜作为饲料进行大规模养猪,即利用生物将原料转化为产品。现在的生物技术的定义为:生物技术是应用自然科学及工程学原理依靠生物催化剂的作用将物料进行加工以提供产品或社会服务的技术。因此,生物技术是一门综合性多学科技术,他涉及的基础学科有生物学、化学和工程学。下图为生物技术与基础学科关系的示意图。它逐渐成为与生物学、生物化学、化学工程等多学科密切相关的综合性边缘学科。

现代生物技术作为一门新兴的高科技术产业,它的生命力在于他对社会经济和发展的各个方面都带来了极大冲击和影响。

发酵工程是指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的技术。

发酵工程于涉及到生物催化剂,因而与化学反应有关。于生物技术的最终目标是建立工业生产过程为社会服务,因而该生产过程可称为生物反应过程。

在发酵技术中一般包括微生物细胞或动植物细胞的悬浮培养,或利用固定化酶,固定化细胞所做的反应器加工底物,以及培养加工后产物大规模的分离提取等工艺。主要是在生物反应过程中提供各种所需的最适环境条件。如酸碱度、湿度、底物浓度、通气量以及保证无菌状态等研究内容。

二、发酵工程的发展历史

生物技术的发展和利用可以追溯到1000多年以前如酒类的酿造。而人类有意识地利用酵母进行大规模发酵生产是在19世纪。当时进行大规模生产的发酵产品有乳酸、酒精、面包酵母、柠檬酸和蛋白酶等初级代谢产

机密第 1 页 XX-8-23

物。19世纪中叶,法国葡萄酒的酿造者在酿酒的过程中遇到了麻烦,他们酿造的美酒总是变酸,于是,纷纷祈求于正在对发酵作用机制进行研究的巴斯德。巴斯德不负重望,经过分析发现,这种变化是乳酸杆菌使糖部分转化为乳酸引起的。同时,找到了后来被称为乳酸杆菌的生物体。巴斯德提出,只要对糖液进行灭菌,就可以解决这个问题,这种灭菌方法就是流传至今的巴斯德灭菌法。

巴斯德关于发酵作用的研究,从1857年到1876年前后

持续了20年。否定了当时盛行的所谓“自然发生说”。他认为“一切发酵过程都是微生物作用的结果。发酵是没有空气的生命过程。微生物是引起化学变化的作用者”。巴斯德的发现不仅对以前的发酵食品加工过程给以科学的解释,也为以后新的发酵过程的发现提供了理论基础,促进了生物学和工程学的结合。因此,巴斯德被称为生物工程之父。

到了20世纪初,人们发现某些梭菌能够引起丙酮丁醇的发酵,丙酮是制造炸药的原料,随着第一次世界大战的爆发刺激了丙酮丁醇工业的极大发展。虽然现在竟争力更强的新方法已逐步取代了昔日的发酵法。但它是第一个进行大规模工业生产的发酵过程,也是工业生产中首次采用大量纯培养技术的。这一工艺获得成功的重要因素是排除了培养体系中其他有害的微生物。这在19世纪末,20世纪初,是相当先进的生物技术。因此,可以说,巴斯德是生物工程初始阶段的开拓者。

1929年Flemming爵士发现了青霉素,从此生产技术产品中增加一大类新的产品—抗生素。1929年,英国科学家弗来明在污染了霉菌的细菌培养平板上观察到了霉菌菌落的周围有一个细菌抑制圈,于这种霉菌是青霉菌,所以弗来明把这种抑制细菌生长的霉菌分泌物叫青霉素。可是他的提取精制,在当时无法做到,弗来明只好忍痛割爱,放弃研究。

10年以后,第二次世界大战的战火越烧越旺,大量伤员

急需抢救,英国的一些科学家恢复了弗来明的工作,竟戏剧性的获得了成功。当时,英国本土已经战火弥漫无法试制,美国承担了青霉素的试制任务。要生产这种药物,必须要有一种严格的、将不需要的微生物排除在生产体系之外的无菌操作技术,必须要从外界通入大量的空气而又不污染杂菌的培养技术,还要想方设法从大量培养液中提取这种当时产量极低的较纯的青霉素。美国的科学家和工程师齐心协力,攻克

机密第 2 页 XX-8-23

许多难关,到1942年终于正式实现了青霉素的工业化生产。这一伟大成就拯救了千千万万挣扎在战争死亡线上的人们。这是生物工程第一次划时代的飞跃。在这一飞跃中,作为生物技术核心的发酵技术已从昔日的以厌氧发酵为主的工艺跃入深层通风发酵为主的工艺。这种工艺不只是通通气,而与此相适应的有一整套工程技术,如1、大量无菌空气的制备技术,2、中间无菌取样技术,3、设备的设计技术等等。因此,我们说这是生物工程技术的一次划时代飞跃。尽管后来开发了许多新产品,如数以千计的抗生素、多类氨基酸、不同用途的酶制剂等,就根本来说,青霉素投产后的半个多世纪中,深层培养技术没有出现质的改变。

20世纪40年代,以获取细菌的次生代谢产物—抗生素为主要特征的抗生素工业成为生物发酵工业技术的支柱产

业。

20世纪50年代,氨基酸发酵工业又成为生物技术产业的又一个成员。实现了对微生物的的代谢进行人工调节,这又使生物技术进了一步。

20世纪60年代,生物技术产业又增加了酶制剂工业这一成员。

70年代,为了解决于人口迅速增长而带来的粮食短缺问题,进行了非碳水化合物代替碳水化合物的发酵,如利用石油化工原料进行发酵生产,培养单细胞蛋白,进行污水处理,能源开发等。

80年代以来,随着重组DNA技术的发展,可以按人类社会的需要,定向培养出有用的菌株,这为发酵工程技术引入了遗传工程的技术,使生物技术进入了一个新的阶段。

纵观生物技术的发展历史,我们可以知道,生物技术在经历了漫长的以传统工艺技术为主体的时期以后,正向系统的理论和实际应用相结合的方向发展,即奠定了可靠的理论和实践基础,也为今天和今后相当长时期生物技术的产业化准备了条件。

三、发酵工程的特点

在研究用微生物进行某种物质生产时,大体上有两种研究方式:一种是各种酶水平上研究微生物细胞内的生物化学反应,如大量摇瓶在实验室里观察限制反应速率的因素和最

适的培养方法,这可以认为是一种小规模的研究形式;另一种是大规模的研究形式,即过程放大。利用小型和中型反应器进行培养试验,并进一步在工业规模上研究生产物的分离和精制方

机密第 3 页 XX-8-23

法,以确定在细胞水平上的综合的最适培养条件。

一般化学工业的放大,可以说仅需对其放大原理给予充分的研究就足够了。而在发酵技术的放大方面,则需要小试放大到中试逐步进行探讨。实验室进行的小规模发酵所获得的最适条件的各种参数,能否在工业规模生产使用的一百多立方到数百立方,也同样保证其最适条件,那就是不是轻而易举的事了。这是发酵工程的一个基本特点。例如,从摇瓶试验到各种规模的反应器试验,即使培养液的成分、温度、pH值等参数各种条件完全相同,并且微生物的活性及其培养过程与各个装置之间有着必要的相互关联,但一般情况下,反应结果可能完全不一致。尽管目前已有生物传感器,可以迅速准确地就位监测罐内、塔内或反应器中的反应过程,也有微机处理帮助大大提高了自动化调控的能力,而这些先进装置确实是保证在最适条件下进行发酵的有利武器,但如何保证大规模发酵在最适条件下进行,仍是一个值得研究的课题,它不仅涉及到发酵设备的工程问题,也与各类生物细胞的生理生化特性相关。一般生物反应过程四个部分组成。

材料的预处理

包括原材料的选择,必要的物理和化学方法加工,此过程是为提供微生物细胞可以生长和产物形成的基本原料,即培养基的制备过程,包括其配制和灭菌等。生物催化剂的制备

生物反应的催化剂—酶基本上是微生物产生的。因此,要选择高产、稳定、高效、容易培养的菌株,并以此菌株再经过多次逐级扩大培养后达到足够的数量并具有理想质量的微生物培养液作为“种子”接到反应器中。也可以利用固定化酶或固定化细胞,这就要通过一定的固定化技术来制备。生物反应器及反应条件的选择与监控

生物反应器是进行生物反应的核心设备,生物反应主要是在生物反应器中进行的,它为微生物细胞或酶提供合适的反应条件以达到细胞增殖或产品形成的目的。反应器的结构、操作方式和操作条件对反应原料的转化率、产品质量和产品成本有着密切关系。根据发酵周期长短、培养条件等,可采取间歇式操作、多级反应器串联的连续操作等。同时反应参数的检测与控制对生物反应过程的顺利进行也是十分重要的。

机密第 4 页 XX-8-23

产品的分离纯化

这一工序也叫下游加工程序,其目的是用适当的方法和

手段将含量较低的产物从反应液中提取出来或从细胞中提取出来,并加以精制以达到规定的质量要求。包括物理方法、化学方法、生物方法等。生物反应过程主要有这样一些特点:a.采用可再生资源作为主要原料,因而原料丰实,价格低廉,过程中

废物的危害性较小,但于原料的成分复杂,往往难以控制会给产品质量带来一定的影响。

b.于采用的是生物催化剂,反映过程一般在常温常压下进行。但生物催

化剂易受环境的影响和杂菌的污染,因而很易失活,难以长期使用。 c.与一般化工产品相比,其生产设备比较简单,能耗较低。但某些生物反

应于其特殊性质而使反应基质浓度和产物浓度均不能太高,这是因为微生物细胞或生物酶受底物浓度或产物浓度的抑制或不能耐高渗透压所致,不仅使反应器体积增大,而且也加大了提取的困难,因而反应器生产效率较低。

d.尽管生物反应过程成本低,应用广,但反应极为复杂,较难检测与控制。反应液中杂质多,给分离提纯带来了困难。四. 生物反应过程的分类

随着生物技术的发展,生物反应过程的种类和规模都在不断的扩大。目前已进行工业生产的主要有酶催化反应过程,微生物反应过程和废水的生物处理过程。 1. 酶催化反

应过程

采用游离酶或固定化酶为催化剂时的反应过程。生物体中所进行的反应几乎都是在酶的催化下进行的。工业生产中所用的酶,或是经提取分离得到的游离酶,或是固定在多种载体上的固定化酶。 2. 微生物反应过程

采用活细胞为催化剂时的反应过程。这既包括一般的微生物发酵反应过程,也包括固定化细胞反应过程和动植物细胞的培养过程。 3. 废水的生物处理过程

机密第 5 页 XX-8-23

它是利用微生物本身的分解能力和净化能力,除去废水中污染物质的过程。废水生物处理过程与微生物反应过程虽然都是利用微生物的反应过程,但与后者相比废水的生物处理具有以下特点:

a) 是细菌等菌类、原生动物、微小原生动物等各种微生物构成的混合培养

系统。

b) 几乎全部采用连续操作系统。 c) 微生物所处的环境条件波动大。

d) 反应的目的是消除有害物质而不是代谢产物和微生物本身。五、生物化学工程的基本内容

生化工程是运用化学工程的原理和方法将生物技术的实验室成果进行工业开发的一门学科。其原理与方法是指用

以解决生产过程中有关化学反应、原料处理和产物的分离、能量的传递、设备的设计与放大、过程的控制和优化等一系列工程技术问题。

在生物化学反应过程的上游加工中最重要的是生物催化剂的制备,因此必须掌握生物催化剂的生理生化特性和培养特性,解决大规模种子培养或固定化生物催化剂的制备以及如何将其在无菌状态下接入生物反应器中等问题。

上游加工中还包括原材料的物理和化学处理、培养基的配制和灭菌等问题,这里包括有物料破碎、混合和输送等多种化工单元操作以及热量传递、灭菌动力学和设备等有关工程问题。

生物反应器是整个生物反应过程的关键设备。它是为特定的细胞或酶提供适宜的生长环境或进行特定的生化反应的设备,它的结构、操作方式和操作条件与产品的质量、产量和能耗有着密切的关系。生物反应器存在着物料的混合与流动、传质与传热等化学工程问题;存在着氧和基质的供需和传递、发酵动力学、酶催化反应动力学、发酵液的流变学以及生物反应器的设计与放大等一系列带有共性的工程技术问题;同时还包括生物反应过程的参数检测和控制。有关这一中游加工过程的工程问题已发展成为生化工程的重要学科分支—生物反应工程。

生物反应过程的下游是对目的产物的提取与精制。这一

过程是比较困难的。这是因为一方面生物反应液中的目的产物的浓度是很低微的。例如,浓度最高的

机密第 6 页 XX-8-23

乙醇仅为10%左右,氨基酸不超过8%,抗生素不超过5%,酶制剂不超过1%,胰岛素不超过%,单克隆抗体不超过%;另一方面因为反应液杂质常与目的产物有相似的结构,加上一些具有生物活性的产品对温度、酸碱度都十分敏感,一些作为药物或食品的产品对纯度、有害物质都有严格的要求。总之,下游加工过程步骤多,要求严,其生产费用往往占生产成本的一半以上。

生物技术研究的主要目标是最大限度地提高上游处理、发酵与转化、下游处理这三个步骤的整体效率,同时寻找一些可以用来制备食品、食品添加剂和药物的微生物。从20世纪60~70年代起,生物技术的研究主要集中在上游处理过程、生物反应器的设计和下游的纯化过程方面,这些研究使发酵过程的检测、生物反应体系的检测技术和有效的大量培养微生物的技术及相关仪器方面都有了很大的发展。目前,这些仪器已经可以用于生产各种不同的产品。

在利用微生物生产商品的整个过程中,生物转化这个环节往往是最难优化的。通常用于大规模生产的培养条件往往不是自然条件下微生物的最佳生长条件。因此,人们一般通过化学突变、化学诱变或者紫外线照射来产生突变体,从而

改良菌种、提高产量,传统的诱导突变和选择的方法在发酵生产中获得了较大的成功。多种抗生素的大量生产过程就是这种方法的成功例证。

但是通过传统的方法提高产量的幅度是非常有限的,如果一个突变了的菌株某一组分合成太多,那么其他一些代谢物的合成就会受到影响,因此这反过来又会影响微生物在大规模发酵过程中的生长。传统的诱变和选择的方法过程繁琐、耗时过长、费用极高,需要筛选和检测大量的克隆。另外,用传统的方法能提高微生物一种已有的遗传性质,并不能赋予这种微生物以其他遗传特性。总的来说传统的改良菌种的生物技术还仅仅局限在化学工程和微生物工程的领域内。随着DNA重组技术的出现和发展,这种情况发生了根本性的改变。现代生物技术的发展主要体现在下列几方面:

1、基因操作技术日新月异,不断完善。新技术、新方法一经产生就迅速的通过商业渠道出售此项技术并在市场上加以应用。

2、基因工程药物和疫苗研究与开发突飞猛进。新的生物治疗制剂的产业化前景十分光明,21世纪整个医药工业将面临全面的更新和改造。

3、转基因动物和植物取得重大突破。现代生物技术在农业上的广泛应用作为生

机密第 7 页 XX-8-23

物技术的“第二次浪潮”在21世纪将全面展开,给农业畜牧业生产带了新的飞跃。生物技术对农业的总贡献率大于70%,功能性食品在营养学上起着革命性的变化。

4、阐明生物体基因组及其编码蛋白质的结构和功能是当今生命科学的一个主流方向。目前已有多个原核生物及一个真核生物的基因组序列被全部测定。与人类重大疾病相关的基因和与农作物产量、质量、抗性等有关基因的结构与功能及其应用研究是今后一个时期研究的热点和重点。

5、基因治疗取得重大进展,有可能革新整个疾病的预防和治疗领域。估计在本世纪初,恶性肿瘤、爱滋病的防治可望有所突破。

6、蛋白质工程是基因工程的发展,它将分子生物学、结构生物学、计算机技术结合起来,形成一门高度综合的学科。

7、国际上信息技术的飞速发展渗透到了生命科学领域,形成了引人注目、用途广泛的生物信息学。全球通讯网络的日益扩大和完善也大大加速了生物技术的研究、应用和开发。

现代生物技术在近20年的发展中受到了各方面人士的普遍关注,更有许多专家将21世纪称为生命科学的世纪,将现代生物技术产业称为21世纪的朝阳产业。一方面是于现代生物技术发展迅速,用途广泛;另一方面是于现代生物

技术具有其他技术所无法比拟的优越性,即可持续发展。面对人口膨胀、资源枯竭、环境污染等一系列直接关系到整个人类生死存亡的严重问题。,人们越来越深刻的认识到了发展具有可持续发展的新技术、新产业的必要性和紧迫性。于生物技术是以生物为原料生产产品的,因此其原料具有再生性,同时利用生物系统生产产品产生的污染物很少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染物。鉴于生物技术产业的以上特点,清洁、经济的生物技术必然会在21世纪获得更大的发展。六、如何学习《发酵工程与设备》

以微生物的生命活动为基础的发酵工业正为人类的健康和生产实践服务,生

机密第 8 页 XX-8-23

产了大量的抗生素、酶制剂、氨基酸、维生素、蛋白质以及其他有用产品。为了在今后实际工作中对提高发酵工程的生产效率和创立新的发酵过程有所认识,我们必须运用生物化学、微生物学等已学过的知识,详细了解和掌握发酵条件下的微生物新成代谢的规律和整个反应过程所涉及的各个条件及作用,对微生物各种反应做定量的动力学方面初步研究以控制微生物生命活动的途径,在此基础上,学习和掌握微生物代谢过程中的物质传递机理;同时,认识和了解整个生物反应过程中的设备结构和计算、形式各异的反应器的

结构和特点,即在这门课程中,对微生物发酵工业中培养基灭菌、空气除菌、反应动力学数学模型的建立、发酵设备的结构、通气搅拌功率计算和设备放大、设备选型及设计方法进行较为全面的分析和讲解,并在讲解中列举部分实例和有关生化工程设计数据。

另外,要结合有关工艺、技术、设备等方面的知识认真准备和操作实验,做到理论联系实际,便于今后能够较快较好的适应工作。

机密

第 9 页

XX-8-23

第二章菌种的扩大培养

菌种的扩大培养就是把保藏的菌种,即砂土管,冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化,再经过扁瓶或药瓶和种子罐,逐级扩大培养后达到一定的数量和质量的纯种培养过程。这些纯种的培养物称为种子。

工业规模的发酵罐体积越来越大,目前已达到几十立方米至几百立方米。若按5~10%的接种量计算,就要接入几立方到几十立方米的种子。这单靠试管里的种子直接接入是不可能达到必需的数量和质量的,必须从试管中的微生物菌种逐级扩大为生产使用的种子。这是一个从实验室制备到车间生产的过程。然而,菌种种类不同,生产产品品种不同,

其生产方法和生产条件均有所差别,如营养、温度、酸碱度、氧等条件。因此,种子扩大培养应根据菌种的生理特性,选择合适的培养条件来获得代谢旺盛和数量足够的种子。这种种子接入发酵罐后,会使发酵生产周期缩短,设备利用率提高,对杂菌的抵抗能力增加,对发酵生产起到了关键性的作用。所以种子质量的好坏至关重要。

种子必须具备的条件:①菌种细胞的生长活力强,接种后在发酵罐中能迅速生长;②生理性状稳定;③菌体总量和浓度能满足大容量发酵罐的要求;④无杂菌污染;⑤生产能力稳定。第一节种子制备

种子制备过程可分为两大阶段: a、

摇瓶砂土管斜面固体斜面 b、

摇瓶种子罐固体发酵罐

①实验室种子制备阶段:琼脂斜面至固体培养基扩大培养,所以要通气。具体流程如下:

25斜面1520oc35d10ml 试管27oc3d2500(250ml1000ml 三角瓶25oc500ml麦芽汁)2d510 L麦芽汁发酵罐

二.生产车间种子制备

实验室制备的孢子斜面或摇瓶种子移接到种子罐进行扩大培养。种子罐培养一方面使菌种获得足够的数量,另一方面种子罐中的培养基更接近发酵罐培养的醪液成分和培养条件,譬如通无菌空气,搅拌形式等等,以使菌体适应发

酵环境。

机密

第 11 页

XX-8-23

种子罐的接种方法一般根据菌种种类而异。孢子悬浮液一般用微孔接种法接种,摇瓶悬浮液种子可在火焰保护下接入种子罐,也可以用差压法接入。种子罐之间或种子罐与发酵罐之间的移种,主要用差压法,通过种子接种管道进行移种,移种过程中要防止接受罐表压降为零,因为无压会引起染菌。 1. 种子罐级数的确定

种子罐的级数是指制备种子需逐级扩大培养的次数,这要根据菌种生长的特性、孢子发芽速度和菌体繁殖速度,以及发酵罐的容积而定。对于生长快的细胞,种子用量的比例少,即需要的接种量少,所以相应的种子罐也少。如谷氨酸生产中,茄子瓶斜面或摇瓶种子接入种子罐于32℃培养7~10小时,菌体浓度达到108~109个/ml,即可作为种子接入发酵罐,这称为一级种子罐扩大培养,也可叫作二级发酵。生长较慢的菌种,如青霉素生产菌,就需要二级种子罐扩大培养,也可称为三级发酵。一般50m3发酵罐都采取三级发酵。如果是实验室的中试,可以通过直接孢子或菌体接入罐中发酵,即一级发酵。

种子罐级数越少,越有利于简化工艺,便于控制,而且

可以减少多次移种可能发生的染菌机会。当然,也要考虑尽可能地延长菌体在发酵罐中生产产物的时间,缩短种子增殖的非生产时间,提高发酵罐的生产率。

此外,种子罐的级数的减少也可通过改善工艺条件,改变种子培养条件,加速菌体的增殖。 2. 接种种龄和接种量①接种龄:

接种龄是指种子罐中培养的菌体从开始移入下一级种子罐或发酵罐时的培养时间。在种子罐中,随着培养时间的延长,菌体量增加,基质消耗和代谢产物积累,菌体量不再增加,逐渐老化。因此,选择适当的种龄接种量是一个至关重要的因素。接种龄一般以菌体处于生长旺盛期,即对数生长期最合适。如果种子过于年幼。接入发酵罐后,会出现前期生长缓慢,整个发酵周期拉长,产物开始形成的时间推迟,而过老的种子也会出现使生产能力下降而使菌体自溶的现象。

对于不同菌种,不同产品品种,不同工艺条件,其接种龄也不相同,具体的生产,接种龄要进行多次试验,从发酵产品产量的多少,即产率大小来确定最适接种龄。

机密第 12 页 XX-8-23

②接种量

接种量指的是移入的种子悬浮液体积和接种后培养液体的体积的比例。抗生素的工业生产,大多数发酵的最适接

种量为7~15%或更多。啤酒生产发酵的接种量为5~10%,谷氨酸发酵接种量仅为1%。

接种量大小取决于生产菌的生长繁殖速度。大接种量可以缩短发酵罐中菌体数达到高峰的时间,可以提早形成产物。这是因为种子液中含有胞外水解酶类,种子量大,酶量也多,有利于对基质的作用和利用,同时菌体量多,占有绝对生长优势,可以相对减少杂菌的污染生长机会。但接种量太大,也会造成菌体生长过速,溶氧跟不上,从而影响产物的合成。 3. 种子质量的判断

于菌种在种子罐中的培养时间较短,使种子的质量不容易控制,因为可分析的参数不多。一般,在培养过程中要定期取样,测定其中的部分参数来观察基质的代谢变化以及菌体形态是否正常。例如酒精酵母的种子罐,一般定时测酸度变化、还原糖含量、耗糖率、镜检等,镜检内容包括测酵母细胞数、酵母出芽率、酵母形态、是否有杂菌等。三.影响种子质量的因素 1.

原材料质量

生产过程中有时会出现种子的质量不稳定现象,这主要是于原材料的质量不一致造成的。有些原材料如麸皮,是用来配制产孢子斜面培养基的。制备霉菌培养基的大米、小米等会因产地、品种、加工方法及颗粒大小不同而使孢子质量受到影响;蛋白胨、琼脂的质量、水质的硬度、污染程度等

对生产均会产生不同程度的影响。 2.培养条件

培养条件对种子质量的影响最直观,最显著。如培养温度高于或低于种子的培养温度范围,会使菌种生长过快或过慢,造成菌体过早衰老自溶或拉长培养时间,而影响生产。所以要控制菌体的培养温度在最适的范围内。湿度对产孢子的菌种影响很大,这一湿度是指培养基的湿度,有时也包括空气湿度。如制白酒酒曲时,空气湿度会影响曲中各种不同微生物的生长。在生产抗生素菌种时,孢子就会受湿度的影响而使其生长快慢不一。通气量对于好气性菌体的生长和质量是

机密第 13 页 XX-8-23

一个很重要的影响因素。有些菌种的通气量甚至可能影响到它们的代谢途径。如酒精酵母,在通入足够的空气时会利用培养基中的糖合成自身细胞物质,而在通气不足或完全不通气时,则使糖代谢进入无氧代谢途径,合成酒精成分。青霉素的菌种在培养时必须通过足够的空气,否则就会影响他们的数量和活力,从而减少发酵液的产率。所以不同的菌种,对通气量的要求是不同的。 3.斜面保藏时间斜面的保藏时间对菌种的质量具有一定的影响。如抗生素中土霉素生产菌的孢子斜面在培养4天后放入4℃冰箱保藏,在7~8天时就开始自溶了,而培养了5天后再冷藏,20天都未发生自溶。此外,冷藏时间过长会使菌体的活力下

发酵工程与设备实验试题答案

发酵工程与设备实验 1.决定摇瓶溶氧量的因素有哪些?它们如何影响摇瓶溶氧量?答:⑴摇瓶的透气性:8层纱布,纱布透气性越好,摇瓶溶氧量越大。⑵摇瓶的转速:转速越大,培养基流动越剧烈,增大与气体接触面积。⑶培养基的粘稠度:粘稠度越大,氧气越难进入,溶氧量越低。 2.采用磷钼蓝法测定发酵液中的植酸酶活性实验中,空白对照中并未发生酶和底物的水解反应,但经过显示后,颜色却呈较深的蓝色,试解释其原因。 答:①磷钼蓝受热,易被氧化成蓝色还原物。②植酸钠中含杂质磷太多。 3.红曲米发酵实验中,为何要添加酸水?无菌酸水如何制得?答:是为了洗脱菌种,同时为红曲霉生长创造酸性环境。 制备:取一烧杯的蒸馏水,往水中加入乳酸并调PH至4.0.然后取10ml配制好的溶液于干净的试管中,密封包扎后,放入高压灭菌锅灭菌,即可得到无菌酸水。 4.产植酸酶黑曲霉的分离实验中,为何选用植酸钙而不选用植酸钠? 答:钠盐易溶解、钙盐难容,易形成透明圈,从而筛选。 5.产植酸酶黑曲霉的分离实验中,为什么不将脱氧胆酸钠溶液

和氯霉素眼药水加入到筛选培养基中一起灭菌? 答:①脱氧胆酸钠会与铁盐高温时反应。②细菌性抗生素、自身就是杀菌的,且本身无菌,也不能灭菌。 6.请详细说明产植酸酶黑曲霉的分离实验的实验原理。 答:以植酸钙为唯一磷来源的选择培养基,同时以透明圈法,从土壤中分离筛选产植酸酶的黑曲霉 7.产植酸酶黑曲霉的摇瓶发酵实验中,摇瓶的作用有哪些?答:①气体和营养分布均匀②温度保持恒定③代谢产物分散④避免影响其他菌丝生长⑤防止细胞沉淀 8.植酸酶酶活力测定实验中,若显色后的反应体系测定吸光度值为2.23,说明什么问题?该如何调整实验方案? 答:浓度过大,该稀释。 9.植酸酶活力测定时做标线的目的是什么? 答:标线是反应吸光度与无机磷浓度之间的关系,待我们测的样品吸光度后即可在标线上读出对应无机磷浓度,从而进行酶活计算。 10.简述灭菌锅的使用方法及步骤。 答:①向锅内注入水至三脚架上边缘、预热。 ②放入物品,将直排气管并放入排气槽。 ③关盖,拧紧对应螺栓,打开开关加热 ④待压力达到0.05MPa,排冷空气,归零。

(完整版)发酵工程与设备习题答案

第一章 1.简述发酵工程的概念及其主要内容。 发酵工程是生物技术的重要组成部分,是生物技术产业化的重要环节。它是应用生物学、化学和工程技术学的原理,大规模(工厂化)培养动植物和微生物细胞,生产生物量或产物的科学。发酵工程可分为上游工程、中游工程和下游工程。 生产微生物细胞(或生物量); 生产微生物的酶;●生产微生物的代谢产物;?生产基因重组产物;?将一个化合物经过发酵改造其化学结构——生物转化。 2.什么叫次级代谢产物?次级代谢产物是微生物在哪些生长时期形成的?其与初级代谢产物有什么关系? 以初级代谢产物为原料通过次级代谢合成的,对自身无明确生理作用的代谢产物叫次级代谢产物。关系:先产生初级代谢产物,后产生次级代谢产物;初级代谢是次级代谢的基础;次级代谢是初级代谢在特定前提下的继续与发展。 3.发酵过程有哪些组成部分? 用于菌种扩大培养和发酵生产用的培养基配方; 培养基、发酵罐和辅助设备的灭菌;●足量的高活性、纯培养的接种物;?在适宜条件的发酵罐中培养菌体生产产物;?产物的提取和纯化;?生产过程的废物的处理。 第二章 1.发酵工程菌株的选育方法有哪些?各有何特点? 自然选育:自发突变率低,变异程度较轻微,变异过程十分缓慢;自发突变不定向,负向变异可能性大,正向变异可能性小 诱变育种:方法简单,快速,收效显著。 原生质体融合:打破种属间的界限,提高重组频率,扩大重组幅度。 杂交育种:使不同菌株的优良性状集中在重组体中,扩大变异范围,具有更强的方向性和目的性。 基因工程育种:按人们的愿望使生物体的遗传性状发生定向变异。 2.发酵工程对菌种有何要求?菌种的分离和筛选基本流程是怎样的? 要求:能大量高效合成产物;发酵培养基原料廉价;培养条件容易控制;易于液中提取产物;不易污染其它杂菌和噬菌体;无毒无害;性能稳定,不易退化

发酵工程与设备 教材

发酵工程与设备 第一章绪论 生物技术作为21世纪高新技术的核心,对人类面临的食品、资源、健康、环境等重大问题发挥越来越大的作用。大力发展生物技术及其产业已成为世界各国经济发展的战略重点。 一.发酵工程的主要内容 发酵工程(Fermentation Engineering)属于生物技术的范畴,生物技术又称生物工艺学,最初是由一位匈牙利工程师Karl.Ereky于1917年提出的。当时他提出的生物技术这一名词的涵义是指甜菜作为饲料进行大规模养猪,即利用生物将原料转化为产品。现在的生物技术的定义为:生物技术是应用自然科学及工程学原理依靠生物催化剂的作用将物料进行加工以提供产品或社会服务的技术。因此,生物技术是一门综合性多学科技术,他涉及的基础学科有生物学、化学和工程学。下图为生物技术与基础学科关系的示意图。它逐渐成为与生物学、生物化学、化学工程等多学科密切相关的综合性边缘学科。 现代生物技术作为一门新兴的高科技术产业,它的生命力在于他对社会经济和发展的各个方面都带来了极大冲击和影响。 发酵工程是指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的技术。 发酵工程由于涉及到生物催化剂,因而与化学反应有关。由于生物技术的最终目标是建立工业生产过程为社会服务,因而该生产过程可称为生物反应过程(亦称为生化反应过程)。 在发酵技术中一般包括微生物细胞或动植物细胞的悬浮培养,或利用固定化酶,固定化细胞所做的反应器加工底物(即有生化催化剂参加),以及培养加工后产物大规模的分离提取等工艺。主要是在生物反应过程中提供各种所需的最适环境条件。如酸碱度、湿度、底物浓度、通气量以及保证无菌状态等研究内容。 二、发酵工程的发展历史 生物技术的发展和利用可以追溯到1000多年(甚至4000多年)以前如酒类的酿造。而人类有意识地利用酵母进行大规模发酵生产是在19世纪。当时进行大规模生产的发酵产品有乳酸、酒精、面包酵母、柠檬酸和蛋白酶等初级代谢产

发酵工程与设备习题答案

第一章 1.简述发酵工程的概念及其主要内容。 发酵工程就是生物技术的重要组成部分,就是生物技术产业化的重要环节。它就是应用生物学、化学与工程技术学的原理,大规模(工厂化)培养动植物与微生物细胞,生产生物量或产物的科学。发酵工程可分为上游工程、中游工程与下游工程。 生产微生物细胞(或生物量); 生产微生物的酶;●生产微生物的代谢产物;?生产基因重组产物;?将一个化合物经过发酵改造其化学结构——生物转化。 2、什么叫次级代谢产物?次级代谢产物就是微生物在哪些生长时期形成的?其与初级代谢产物有什么关系? 以初级代谢产物为原料通过次级代谢合成的,对自身无明确生理作用的代谢产物叫次级代谢产物。关系:先产生初级代谢产物,后产生次级代谢产物;初级代谢就是次级代谢的基础;次级代谢就是初级代谢在特定前提下的继续与发展。 3、发酵过程有哪些组成部分? 用于菌种扩大培养与发酵生产用的培养基配方; 培养基、发酵罐与辅助设备的灭菌;●足量的高活性、纯培养的接种物;?在适宜条件的发酵罐中培养菌体生产产物;?产物的提取与纯化;?生产过程的废物的处理。 第二章 1、发酵工程菌株的选育方法有哪些?各有何特点? 自然选育:自发突变率低,变异程度较轻微,变异过程十分缓慢;自发突变不定向,负向变异可能性大,正向变异可能性小 诱变育种:方法简单,快速,收效显著。 原生质体融合:打破种属间的界限,提高重组频率,扩大重组幅度。 杂交育种:使不同菌株的优良性状集中在重组体中,扩大变异范围,具有更强的方向性与目的性。 基因工程育种:按人们的愿望使生物体的遗传性状发生定向变异。 2、发酵工程对菌种有何要求?菌种的分离与筛选基本流程就是怎样的? 要求:能大量高效合成产物;发酵培养基原料廉价;培养条件容易控制;易于液中提取产物;不易污染其它杂菌与噬菌体;无毒无害;性能稳定,不易退化

发酵设备课程设计

年产15万吨木薯干酒精工厂的设计 附:设计依据及设计范围 (1)、设计依据原始数据如下: 生产要求:年产150,000吨医药酒精,酒精含量%(V) 生产原料:木薯干片年生产天数:300天 厂址选择:南方某城市(符合建厂条件) 气候条件:良好 最高气温:38℃最低气温:4℃平均气温:20℃最高湿度:95% 平均湿度:78% 主导风向:冬季东北风夏季东南风 河水温度:最高30℃最低10℃ 深井水温度:最高25℃最低:20℃ 自来水温度:最高31℃最低:14℃ (2)、设计范围: ○1. 工艺流程的选取与论证 ○2. 全厂水、电、汽及原料耗用量的平衡计算 ○3. 设备的设计与计算 ○4. 安全防火、经济核算、三废处理途 ○5. 绘制重点车间设计施工图 ○6. 编写设计说明书 设计说明书前有中、英文摘要各一份。 重点车间:原料蒸煮车间 重点设备:糖化罐 绘图内容: ○1.重点车间工艺、设备流程图(带自动控制点) ○2.重点车间设备平面布置图 ○3.重点设备装配图

目录 1 工艺流程的选取与论证 2 物料及热量衡算 3 酒母制造 4 液化罐与糖化罐设计 5 安全防火、三废处理

1 工艺流程的选取与论证 1.(1)原料预处理:木薯干片原料较大块,不易在一次粉碎达到要求,故采用二次粉碎以提高粉碎度[4]。 (2)调浆:采用一个冲量计进行粉水自动化调浆,实现了自动化生产过程,减轻了工人劳动强度。 (3)蒸煮工艺:采用带喷雾转盘的锅式低温常压连续蒸煮方法,生产条件温和,操作安全、简便,热利用率高,节省了蒸汽、能耗,提高了淀粉利用率和设备利用率。 (4)糖化酶的利用:该酶活性高,用量少,配制成溶液即可投入使用,不用进行高温蒸煮,节约了资金、能源,且快速、易操作。 (5)糖化工艺:采用真空前冷却的连续糖化法,使冷却用水用量大大减少,可将醪液在瞬间降低到相应的温度,冷却好的醪液连续进入糖化锅,锅内有搅拌器,冷却器,使糖化温度得以保证。 (6)发酵工艺:采用连续发酵,缩短了发酵周期,提高设备利用率,便于实现自动化、连续化,降低了生产成本。 (7)精馏工艺:采用两塔式蒸馏,粗馏塔采用泡罩塔,精馏塔采用浮阀塔,二塔间用气相过塔,从而节省加热蒸汽、冷却水,但要注意成品质量控制。 2.工艺及设备计算 (1)根据工艺流程草图逐步地进行物料衡算与热量衡算。 (2)计算单位基本是以每小时计,并尽量采用国际单位。 (3)计算中的物理化学参数基本来源一致。 (4)对于标准设备,直接根据生产能力进行选型,而对于非标准设备,则进行设计计算。 (5)对重点设备——糖化罐进行详细地设计计算。 (6)对于其他内容,如经济核算、安全防火、综合处理费用进行估算。

发酵工程试题

发酵工程 一、名词解释 1、分批发酵:在发酵中,营养物和菌种一次加入进行培养,直到结束放出,中间除了空气 进入和尾气排出外,与外部没有物料交换。 2、补料分批发酵:又称半连续发酵,是指在微生物分批发酵中,以某种方式向培养系统不 加一定物料的培养技术。 3、絮凝:在某些高分子絮凝剂的作用下,溶液中的较小胶粒聚合形成较大絮凝团的过程。 二、填空 1、生物发酵工艺多种多样,但基本上包括菌种制备、种子培养、发酵和提取精制等下游处理几个过程。 2、根据过滤介质截留的物质颗粒大小的不同,过滤可分为粗滤、微滤、超滤和反渗透四大类。 3、微生物的育种方法主要有三类:诱变法,细胞融合法,基因工程法。 4、发酵培养基主要由碳源,氮源,无机盐,生长因子组成。 5、青霉素发酵生产中,发酵后的处理包括:过滤、提炼,脱色,结晶。 6、利用专门的灭菌设备进行连续灭菌称为连消,用高压蒸汽进行空罐灭菌称为空消。 7、可用于生产酶的微生物有细菌、真菌、酵母菌。 常用的发酵液的预处理方法有酸化、加热、加絮凝剂。 8、根据搅拌方式的不同,好氧发酵设备可分为机械搅拌式发酵罐和通风搅拌式发酵罐两种。 9、依据培养基在生产中的用途,可将其分成孢子培养基、种子培养基、发酵培养基三种。 10、现代发酵工程不仅包括菌体生产和代谢产物的发酵生产,还包括微生物机能的利用。 11、发酵工程的主要内容包括生产菌种的选育、发酵条件的优化与控制、反应器的设计及产物的分离、提取与精制。 12、发酵类型有微生物菌体的发酵、微生物酶的发酵、微生物代谢产物的发酵、微生物转化发酵、生物工程细胞的发酵。 13、发酵工业生产上常用的微生物主要有细菌、放线菌、酵母菌、霉菌。 14、当前发酵工业所用的菌种总趋势是从野生菌转向变异菌,从自然选育转向代谢调控育种,从诱发基因突变转向基因重组的定向育种。 15、根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵、补料分批发酵。 16、分批发酵全过程包括空罐灭菌、加入灭过菌的培养基、接种、发酵过程、放罐和洗罐,所需的时间总和为一个发酵周期。

《发酵工程与设备》期末复习题

《发酵工程与设备》期末复习题 1、工业发酵的发展经历了哪几个阶段?(6个阶段) 答: ①自然发酵阶段;②纯培养技术的建立;③通气搅拌发酵技术的建立;④诱变技术与代谢控制发酵的建立;⑤开拓新的发酵原料时期;⑥基因工程阶段(现代发酵工业新阶段)。 2、发酵工程发展过程中的三个转折点什么? 答: 纯培养技术的建立是第一个转折点,通气搅拌发酵技术的建立是第二个转折点,代谢控制发酵技术的建立是第三个转折点。 3、根据不同的分类原则,工业发酵可分为若干类型。按发酵形式、发酵培养基的物理性状、按发酵工艺流程来、按发酵过程中对氧的不同需求来区分,各有哪些? 答: ①发酵形式:细菌发酵、放线菌发酵、霉菌发酵、酵母发酵 ②发酵培养基的物理性状:固体发酵、液体发酵、半固体发酵 ③工艺流程:分批发酵、补料分批发酵、连续发酵 ④对氧的需求:厌氧发酵、好氧发酵、兼性厌氧发酵 4、固体发酵、发酵热、通风比、罐压、临界氧浓度、前体、分批灭菌、种子罐级数、全挡板条件、接种龄、产物合成促进剂、连续灭菌、种子培养、、接种量、轴功率、清洁生产等概念。 固体发酵:又称固态发酵,是指微生物在湿的固体培养基上生长、繁殖、代谢的发酵过程。

发酵热:习惯上将产生的热能减去散失的热能所得的净热量称为发酵热。 通风比: 罐压: 临界氧浓度:各种微生物对发酵液中溶解氧浓度有一个最低要求,这一溶解氧浓度叫做临界氧浓度,以C浓度表示。 前体:指加入到发酵培养基中,能直接被微生物在生物合成过程中结合到产物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高的一类化合物。 分批灭菌:将配制好的培养基输入发酵罐内,直接用蒸汽加热,达到灭菌要求的温度和压力后维持一定时间,再冷却至发酵要求的温度,这一工艺称为分批灭菌或实罐灭菌。 种子罐级数:制备种子需逐级扩大培养的次数 全挡板条件:是指达到消除液面旋涡的最低条件,在一定转速下面增加罐内附件而轴功率仍保持不变。 接种龄:是指种子罐中培养的菌丝体开始移入下一级种子罐或发酵罐时的培养时间 产物合成促进剂:是指那些细胞生长非必需的,但加入后却能显著提高产量的物质。 连续灭菌:也叫连消,是指将培养基在发酵罐外经过一套灭菌设备连续地加热灭菌、冷却后送入已灭菌的发酵罐内的工艺过程。 种子培养:

(完整版)发酵工程与设备习题答案

第一章 1 ?简述发酵工程的概念及其主要内容。 发酵工程是生物技术的重要组成部分, 是生物技术产业化的重要环节。 学和 工程技术学的原理,大规模(工厂化)培养动植物和微生物细胞, 科学。发酵工程可分为上游工程、中游工程和下游工程。 生产微生物细胞(或生物量); 生产微生物的酶; 生产微生物的代谢产物; 因重组产物; 将一个化合物经过发酵改造其化学结构 ——生物转化。 2?什么叫次级代谢产物?次级代谢产物是微生物在哪些生长时期形成的?其与初级代谢产 物有什么关系? 以初级代谢产物为原料通过次级代谢合成的, 对自身无明确生理作用的代谢产物叫次级代谢 产物。 关系:先产生初级代谢产物,后产生次级代谢产物; 初级代谢是次级代谢的基础; 次级代谢是初级代谢在特定前提下的继续与发展。 3. 发酵过程有哪些组成部分? 用于菌种扩大培养和发酵生产用的培养基配方; 培养基、发酵罐和辅助设备的灭菌; 足量的高活性、纯培养的接种物; 在适宜条件的发酵罐中培养菌体生产产物; 产物的提 取和纯化; 生产过程的废物的处理。 第二章 1?发酵工程菌株的选育方法有哪些?各有何特点? 自然选育:自发突变率低,变异程度较轻微,变异过程十分缓慢;自发突变不定向,负向变 异可能性 大,正向变异可能性小 诱变育种:方法简单,快速,收效显著。 原生质体融合:打破种属间的界限,提高重组频率,扩大重组幅度。 杂交育种:使不同菌株的优良性状集中在重组体中, 扩大变异范围,具有更强的方向性和目 的性。 基因工程育种:按人们的愿望使生物体的遗传性状发生定向变异。 2?发酵工程对菌种有何要求?菌种的分离和筛选基本流程是怎样的? 要求:能大量高效合成产物; 发酵培养基原料廉价; 培养条件容易控制;易于液中提取产物; 不易污 染其它杂菌和噬菌体;无毒无害;性能稳定,不易退化 调査研究并充分查闻竄料 湮计礎方霁 V 辎左用释田主态坏境 T 锚争走的电蜡虽芹 漁TH 性姦丰T 番和戸番祿测極 厘种语盒 确住M 曲基羸鞋件 r 丽》(快通检梔一色样丄援航培弄诳) 主产性世试魅 ?fl 减 詛棘鉴宦 @轉僅■匱柞为进一毋■科的出變■株 3. 菌种退化的主要表现,并分析原因和防治的方法。 表现:菌种的退化可以是形态上 的,也可以是生理上的,如原有细胞形态性状变得不典型, 菌种生长速度变慢,产生的孢子变少,代谢 产物生产能力下降等。 原因:一是菌种保藏不当;二是菌种生长的要求没有得到满足。 方法: 1)减少传代次数; 2)创造良好的培养条件; 3)经常进行纯种分离,并对相应的性 状指标进 它是应用生物学、化 生产生物量或产物的 生产基

发酵工程设备设计

精心整理发酵罐设计说明书 题目:设计生产红霉素机械搅拌通风发酵罐 2009年5月 任务书 一、题目 题目:机械搅拌通风发酵罐的设计 二、设计依据、条件 1、应用基因工程菌株发酵生产红霉素,此产物是次级代谢产物。 2、发酵罐体积:503M 3、高径比为2,南方某地,蛇管冷却。 4、初始水温20℃,出水温度28℃。 5、非牛顿型流体,三级发酵。 三、设计项目、要求 (1)确定工艺参数几何尺寸,以及主要设备工作部件尺寸的设计,如:罐体封头的壁厚、冷却面积及用水量、搅拌轴功率等。 (2)对整个设计方案进行分析、拟定 (3)一定情况下结合具体的图形来解释说明 (4)考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚

(5)对整个发酵罐的设计进行总结,得出规范的说明书 目录 1设计条件(设计方案的分析) (5) 2机械通风发酵罐设计 (6) 2.1夹套反应釜的总体结构 (6) 2.2几何尺寸的确定 (6) 2.3主要部件尺寸的设计计算 (8) (8) (8) (9) 2.4挡板 (9) 2.5搅拌器 (10) 2.6人孔和视镜 (10) 2.7接口管 (11) 2.8冷却装置设计 (12) (12) (12) (13) 2.9搅拌轴功率的计算 (14) (14) (15) 3设计小结 (18) 4参考文献 (18)

摘要此为我设计的发酵罐说明书,我设计的是一台503M的机械搅拌通风发酵罐,发酵生产红霉素,发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附件组成。这次设计就是要对机械搅拌通风发酵罐的几何尺寸进行计算,再确定主要设备工作部件尺寸的设计,如:罐体封头的壁厚、冷却面积及用水量、搅拌轴功率。本说明书结合了个人所学知识绘制出装配图,让机械搅拌通风发酵罐具体形象的展现在眼前,一目了然。通过精细的计算和设计绘制,使此次设计的发酵罐能达到生产最优标准,应用并服务于生产实践。 关键词机械搅拌通风发酵罐红霉素设计绘制生产 第一章设计方案的分析、拟定 我设计的是一台50M3机械搅拌通风发酵罐,发酵生产红霉素。经查阅资料得知生产红霉素的菌种有红色链霉菌、红霉素链霉菌、红色糖多孢菌,综合最适发酵温度、PH、等因素选择红霉素链霉菌,该菌种最适发酵温度为31℃,pH为6.6~7.2,培养基为发酵培养基,主要成分为淀粉10%、黄豆饼粉5%、硫酸铵0.5%、磷酸二氢钾0.2%、碳酸钙2%。 发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附件组成。这次设计就是要对机械搅拌通风发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合的搅拌装置,传动装置,和人孔等一些附件的确定,完成整个装备图,完成这次设计。 这次设计包括一套图样,主要是装配图,还有一份说明书。而绘制装配图是生物工程设备的机械设计核心内容,绘制装配图要有合理的选择基本视图,和各种表达方式,有合理的选择比例,大小,和合理的安排幅面。说明书就是要写清楚设计的思路和步骤。 压力P——除注明外,压力均指表压力,单位用MPa表示。 工作压力——指在正常情况下,容器顶部可能达到的最高压力。 设计压力——指设定的容器顶部的最高压力。它与设计温度一起作为设计载荷条件,其值不小于工作压力。 一般在装有安全阀时Pd=(1.05~1.1)Pw 当无安全阀时,Pd=(1.0~1.05) *1、设计压力 容器的设计压力是指相应的设计压温度下,用以确定壳体厚度的压力,其值不得小于最高工作压力。容器的最高工作压力是指在正常操作情况下,容器顶部可能出现的最高表压力。 *2、设计温度

发酵工程设备题库

发酵工程设备题库 第一章通风发酵设备 一、选择题 1、好气性发酵需要无菌空气,概括起来无菌空气在发酵生产中得作用就是ABD 。 A、给培养微生物提供氧气 B、能起一定得搅拌作用,促进菌体在培养基中不断混合,加快生长繁殖速度 C、打碎泡沫,防止逃液 D、保持发酵过程得正压操作 2、气升式发酵罐得优点就是无需 B 。 A、空气过滤系统 B、搅拌器 C、空气喷嘴 D、罐外上升管 3、喷射自吸式发酵罐得优点就是ABC 。 A、空气吸入量与液体循环量之比较高 B、无需搅拌传动系统 C、气液固三相混合均匀 D、适用好氧量较大得微生物发酵 4、气升式发酵罐得特点有BD 。

A、高径比(H/D)比机械搅拌通风发酵罐得小 B、无需机械搅拌 C、无需空气压缩机 D、溶氧速率较高 5、自吸式发酵罐得搅拌轴就是从罐下方进罐得,因此 C 轴封。 A、应该用填料函 B、应该用单端面机械 C、应该用双端面机械 D、无需 6、一个优良得生物反应器应具有ABCD 。 A、良好得传质、传热与混合得性能 B、结构严密,内壁光滑,易清洗,检修维护方便 C、有可靠得检测及控制仪表 D、搅拌及勇气所消耗得动力少 7、发酵罐得罐顶可装设得管路有ABD 。 A、进料管 B、排气管 C、冷却水进出管 D、压力表接管 8、发酵罐得罐身可装设得管路有ABCD 。 A、取样管 B、冷却水进出管 C、空气进管 D、检测仪表接口管 9、涡轮式搅拌器得特点有ABC 。 A、结构简单 B、溶氧速率高 C、剪切力大 D、气泡

破碎程度低 10、某发酵罐直径为5m,下列组合可达到全挡板条件得有AD 。 A、挡板宽度为0、5m,挡板数为4 B、挡板宽度为0、4m,挡板数为6 C、挡板宽度为0、5m,挡板数为6 D、挡板宽度为0、4m,挡板数为5 11、双端面机械轴封得主要部件有ABCD 。 A、动环 B、静环 C、弹簧加荷装置 D、辅助密封元件 12、耙式消泡器通常安装在发酵罐得 C 。 A、内壁上 B、马达上 C、搅拌轴上 D、搅拌器上 13、下列ACD 可提高氧传递推动力,从而增加溶氧速率。 A、降低培养液黏度 B、机械搅拌 C、通入富氧空气 D、提高通气压强 14、在发酵过程中,发酵罐罐顶压强(表压)一般为 C MPa。 A、0、01 B、0、03 C、0、05 D、0、07 15、有导流筒结构得发酵罐就是 B 。 A、机械搅拌通风发酵罐 B、气升式发酵罐

发酵工程原理与技术应用

发酵复习资料 1, 发酵工程原理与技术应用: 2, 发酵工业的特点: 1.一步生产:微生物发酵是由一系列极其复杂的生化反应组成,反应所需的各 种酶均包含在微生物细胞内。 2.反应条件温和 3.原料纯度要求低:常以农副产品作原料,如薯干、麸皮等。原料来源丰富,价 格低廉。 4.设备的通用性高:对微生物发酵来说,无论好氧发酵还是厌氧发酵,它们的 发酵设备都大同小异,即好氧的一般都用搅拌式发酵罐加空气过滤系统。厌氧 发酵都用密封式发酵罐。 5.对环境的污染相对较小:发酵所用的原料是农副产品,废水中虽然生物需氧量 (BOD)、化学需氧量(COD)较高,但有毒物质少。 6.生产受自然条件限制小 3,工业发酵的类型: 按微生物对氧的需求可分为需氧发酵、厌氧发酵以及兼性厌氧发酵。 按培养基物理性状可分为液体发酵和固体发酵。 按工艺流程分为分批发酵、连续发酵(又分为单级恒化器连续发酵、多 级恒化器连续发酵及带有细胞再循环的单级恒化器连续发酵))和补料 发酵。 4,发酵生产的工艺流程: ○1用作种子扩大培养及发酵生产的各种培养基的配制; ○2培养基、发酵罐及其附属设备的灭菌 ○3扩大培养有活性的适量纯种,以一定比例将菌种接入发酵罐中; ○4控制量适的发酵条件使微生物生长并形成大量的代谢产物; ○5将产物提取并精制,以得到合格的产品; ○6回收或处理发酵过程中所产生的三废物质。 5,发酵工业菌种品种: 细菌 枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等 放线菌 链霉菌属、小单胞菌属 酵母 啤酒酵母、假丝酵母、类酵母等 霉菌 根霉、毛霉、犁头霉、红曲霉、曲霉及青霉等 未培养微生物 6,发酵工业对菌种的要求: 1,能够利用廉价的原料,简单的培养基,大量高效地合成产物 2,有关合成产物的途径尽可能地简单,或者说菌种改造的可操作要强 3,遗传性能要相对稳定 4,不易感染它种微生物或噬菌体

湖北自考发酵工程与设备真题 2

发酵工程与设备试题答案及评分参考(B卷) (课程代号:06708) 一、单项选择题(本大题共20小题,每小题1分,共20分) 1. 土壤经风干,过24目筛,分装入安瓿瓶中,灭菌后加入10滴置备好的细胞或者孢子悬液,然后再干燥器中吸干水分,再密封管口,在室温或低温下可保藏数年,这种保藏方法属于: A.穿刺保藏法 B.沙土保藏法 C.冷冻干燥保藏法 D.麸皮保藏法 2. 在实际生产中设计空气过虑系统时,一般要求的染菌机率为 A.10-1 B.10-2 C.10-3 D.10-4 3. 关于培养基灭菌,下列哪种说法是正确的 A.培养基中盐类的浓度越高,微生物的热死亡速率就越慢 B.固体培养基的灭菌时间要比液体培养基长 C. 微生物细胞水分含量越高就越耐热 D. 年老细胞要比年幼细胞更容易被杀死 4.能够准确全面描述发酵概念的是 A.发酵是指酿酒过程中产生二氧化碳而引起的冒泡现象 B.发酵是指酵母菌在无氧条件下的呼吸过程 C.发酵是指微生物为获得能量而进行的有氧呼吸过程 D.发酵是指微生物为获得能量而进行的氧化还原反应 5. 一般当气流速度小于临界速度时,过滤除菌起主要作用的机理是 A.惯性撞击截留作用 B.拦截截留和布朗扩散作用 C.静电吸附作用 D.重力沉降作用 6.下列哪类物质是不能用作发酵工业的消泡剂的 A.天然油脂类 B.高级醇类 C.聚醚类 D.无机盐类 7. 发酵罐的公称容积是指 A.罐的筒身(圆柱)体积 B.罐的筒身(圆柱)体积和底封头体积之和 C.罐的筒身(圆柱)体积、顶封头体积和底封头体积之和 D.发酵时实际可装入培养基的体积 8. 酒精蒸馏系统中,粗馏塔的作用是 A.将酒精成分从发酵醪中提取出来 B.将水分蒸出使酒精浓缩 C.将发酵液中酵母菌体分离出来 D.将发酵液中未利用完的培养基分离出来 9. 下列过滤介质中效率最好的是 A.硅硼玻璃纤维 B.棉花 C.石棉滤板 D. 活性碳 10. 利用热空气将微生物体内的蛋白质氧化进行灭菌的方法称为 A 火焰灭菌法 B 湿热灭菌法 C 干热灭菌法 D 射线灭菌法 11. 属于微生物次级代谢产物的是 A.赖氨酸 B.柠檬酸 C.维生素 D.青霉素 12. 酒精发酵采用的酵母是 A.假丝酵母 B.啤酒酵母 C.毕赤酵母 D.红酵母

发酵工程与设备习题问题详解

第一章 1.简述发酵工程的概念及其主要容。 发酵工程是生物技术的重要组成部分,是生物技术产业化的重要环节。它是应用生物学、化学和工程技术学的原理,大规模(工厂化)培养动植物和微生物细胞,生产生物量或产物的科学。发酵工程可分为上游工程、中游工程和下游工程。 生产微生物细胞(或生物量); 生产微生物的酶;●生产微生物的代产物;?生产基因重组产物;?将一个化合物经过发酵改造其化学结构——生物转化。 2.什么叫次级代产物?次级代产物是微生物在哪些生长时期形成的?其与初级代产物有什么关系? 以初级代产物为原料通过次级代合成的,对自身无明确生理作用的代产物叫次级代产物。关系:先产生初级代产物,后产生次级代产物;初级代是次级代的基础;次级代是初级代在特定前提下的继续与发展。 3.发酵过程有哪些组成部分? 用于菌种扩大培养和发酵生产用的培养基配方; 培养基、发酵罐和辅助设备的灭菌;●足量的高活性、纯培养的接种物;?在适宜条件的发酵罐中培养菌体生产产物;?产物的提取和纯化;?生产过程的废物的处理。 第二章 1.发酵工程菌株的选育方法有哪些?各有何特点? 自然选育:自发突变率低,变异程度较轻微,变异过程十分缓慢;自发突变不定向,负向变异可能性大,正向变异可能性小 诱变育种:方法简单,快速,收效显著。 原生质体融合:打破种属间的界限,提高重组频率,扩大重组幅度。 杂交育种:使不同菌株的优良性状集中在重组体中,扩大变异围,具有更强的方向性和目的性。 基因工程育种:按人们的愿望使生物体的遗传性状发生定向变异。 2.发酵工程对菌种有何要求?菌种的分离和筛选基本流程是怎样的? 要求:能大量高效合成产物;发酵培养基原料廉价;培养条件容易控制;易于液中提取产物;不易污染其它杂菌和噬菌体;无毒无害;性能稳定,不易退化

发酵工程与设备复习题

发酵工程与设备 1.怎么利用目标特性来分离发酵工程菌种?(14-15) 通过两种方法:(一)液体富集培养,(二)固体富集培养 (一)液体富集培养通常在摇瓶中进行。从环境中所取的样品中含有多种微生物,由于目标菌种的生长会改变培养基的条件,从而改变选择压力,使那些不需要的微生物不能生长。再将经过富集的培养物转接种到相同的新鲜培养基上,选择压力又重新确立。经过几次这样的转接培养后,将少量的富集培养液涂布到平板上。 (二)固体富集培养:固体培养基常用于一些酶产生菌的分离,这些技术通常包括选择性培养基,这种培养基含有这种酶的底物,酶作用底物后刺激产生菌的生长。或利用鉴别培养基原理或其他途径,把原先肉眼无法观察的生理性状或产量性状转化为可见的形态性状。 2.发酵工程菌株的选育及改造有哪几种方法?(18-20) 一、诱变育种诱变育种是利用物理或化学等诱变剂处理均匀分散的微生 物细胞群,使其突变率大幅度提高,然后采用简便、快速和高效的筛选方法,从中挑选出少量符合育种目的的突变株,以供生产实践和科研用。 二、杂交育种杂交育种是指两个基因型不同的菌株通过接合,使遗传物质重新组合,从中分离和筛选具有新性状的菌株。一般是指人为利用真核微生物的有性或准性生殖,或原核微生物的接合、F因子转导、转化等过程,促使两个具有不同遗传性状的菌株发生基因重组,获得优良的生产菌株。 三、原生质体融合是指先用酶分别酶解两个出发菌株的细胞壁,在高渗环境中释放出原生质,将它们混合,在助融剂或电场的作用下,使它们互相融合,促使两套基因组之间的接触、交换、遗传重组,在适宜的条件下使细胞壁再生,在再生的细胞中获得重组体。 四、基因工程育种是运用体外DNA各种操作或修改手法获得目的基因,再借助于病毒、细菌质粒或其他载体,将目的基因转移至新的宿主细胞并使其在新的宿主细胞系统内进行复制和表达,或者通过细胞间的相互作用,使一个细胞的优秀性状经其遗传物质的交换而转移给另一个细胞的方法。 3.什么是营养缺陷性?什么是代谢的反馈调节机制?(21) 营养缺陷性:指微生物等不能在无机盐类和碳源组成的合成培养基中增殖,必须补充一种或二种以上的营养物质才能生长。 代谢的反馈调节机制: 反馈抑制:是生物化学途径的末端产物抑制反应途径中某个催化酶的活性(通常是第一个反应)的现象。 反馈阻遏:是生物化学途径的末端产物阻止反应途径中某个催化酶的合成。 4.怎样选育代谢调节突变株 1、细胞膜渗透性的改造通过生物素水平的调节,改变其细胞膜渗透性。 2、不能产生反馈抑制或阻遏的突变株的筛选利用营养缺陷型突变株可以 获得高浓度的产物,这类菌株可以通过降低或消除末端产物浓度,在代谢控制中解除反馈抑制或阻遏,而使代谢途径中间产物或分支合成途径中末端产物积累。 3、不能识别抑制和阻遏现象的突变株的筛选可以通过将菌株变异来实

相关文档