文档库 最新最全的文档下载
当前位置:文档库 › The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family

The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family

The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family
The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family

The LATERAL ORGAN BOUNDARIES Gene Defines a Novel,Plant-Specific Gene Family 1

Bin Shuai,Cristina G.Reynaga-Pen ?a 2,and Patricia S.Springer*

Department of Botany and Plant Sciences,University of California,Riverside,California,92521–0124

The LATERAL ORGAN BOUNDARIES (LOB )gene in Arabidopsis defines a new conserved protein domain.LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots.LOB encodes a predicted protein that does not have recognizable functional motifs,but that contains a conserved domain (the LOB domain)that is present in 42other Arabidopsis proteins and in proteins from a variety of other plant species.Proteins showing similarity to the LOB domain were not found outside of plant databases,indicating that this unique protein may play a role in plant-specific processes.Genes encoding LOB domain proteins are expressed in a variety of temporal-and tissue-specific patterns,suggesting that they may function in diverse processes.Loss-of-function LOB mutants have no detectable phenotype under standard growth conditions,suggesting that LOB is functionally redundant or required during growth under specific environmental conditions.Ectopic expression of LOB leads to alterations in the size and shape of leaves and floral organs and causes male and female sterility.The expression of LOB at the base of lateral organs suggests a potential role for LOB in lateral organ development.

The shoot apical meristem (SAM)is a group of cells at the growing tip of a plant that is formed during embryogenesis and is maintained throughout its life.The SAM is organized into a central zone composed of slowly dividing stem cells and a peripheral zone containing more rapidly dividing cells that become incorporated into organ primordia.Thus,the SAM serves as the source of cells for all initiating lateral organs of the https://www.wendangku.net/doc/be16654582.html,ans initiate in a specific pattern that depends on the positioning of founder cells in the peripheral zone.This pattern is controlled by a combination of genetic and environmental fac-tors (Steeves and Sussex,1989).Maintenance of the SAM requires a balance between the pool of central stem cells and the flanking peripheral zone cells.A number of genes required for SAM initiation and maintenance have been identified.Proper meristem function requires the competing action of the CLAVATA (CLV)signaling pathway and the tran-scription factor WUSCHEL (WUS)(for review,see Clark,2001).The CLV pathway is required to limit the number and position of stem cells in the meristem by restricting the domain of WUS expression.In con-trast,WUS is required for stem cell maintenance and is thought to act on the CLV pathway by positively regulating expression of the putative ligand encoded by CLV3.The interaction between CLV and WUS is

thought to function as a feedback loop to limit mer-istem size (Brand et al.,2000;Schoof et al.,2000).The class 1KNOX homeobox genes are also impor-tant for SAM function.Class 1KNOX genes are spe-cifically expressed in the SAM and are down-regulated in lateral organ anlage in a number of plant species (Jackson et al.,1994;Long et al.,1996;Nish-imura et al.,1999;Sentoku et al.,1999).Loss-of-function mutations in the Arabidopsis SHOOT MER-ISTEMLESS (STM )or maize (Zea mays )Knotted1genes demonstrate that class 1KNOX genes are im-portant for SAM formation and maintenance (Long et al.,1996;Vollbrecht et al.,2000).One apparent func-tion of STM is to negatively regulate expression of the ASYMMETRIC LEAVES1(AS1)gene in the mer-istem (Byrne et al.,2000).AS1encodes an MYB do-main transcription factor that is a homolog of the Antirrhinum PHANTASTICA and maize ROUGH SHEATH2genes.These genes all show expression in lateral organ primordia (Waites et al.,1998;Timmer-mans et al.,1999;Tsiantis et al.,1999;Byrne et al.,2000).as1mutants are epistatic to stm ,such that as1stm double mutants form a vegetative meristem.These observations suggest that the loss of a meris-tem in stm mutants is due to expression of AS1in the meristem (Byrne et al.,2000).In turn,AS1activity is needed to repress KNOX gene expression in the leaf (Byrne et al.,2000;Ori et al.,2000).

Formation of a proper SAM is closely tied to boundary formation and organ separation,as stm mutants show limited fusion at the cotyledon base (Barton and Poethig,1993).The cup-shaped cotyledon (cuc )mutants also lack a SAM and show extensive cotyledon fusion (Aida et al.,1997).The CUC genes are expressed at the boundary between the SAM and cotyledon primordia,and their activity is required

1This work was supported by the National Science Foundation (grant no.IBN–9875371to P.S.).

*Corresponding author;e-mail patricia.springer@https://www.wendangku.net/doc/be16654582.html,;fax 909–787–4437.2

Present address:Departamento de Ingenier?′a Gene ′tica,CIN-VESTAV Unidad Irapuato,Irapuato,Gto.CP 36500,Mexico.

Article,publication date,and citation information can be found at https://www.wendangku.net/doc/be16654582.html,/cgi/doi/10.1104/pp.010926.

_________________________________________________________________________________________________________This article is published in Plant Physiology Online, Plant Physiology Preview Section, which publishes manuscripts accepted for publication after they have been edited and the authors have corrected proofs, but before the final, complete issue is published online. Early posting of articles reduces normal time to publication by several weeks.

_________________________________________________________________________________________________________

for STM expression(Aida et al.,1999;Takada et al., 2001).We have identified a novel gene that is ex-pressed at the adaxial base of initiating lateral or-gans.The LATERAL ORGAN BOUNDARIES(LOB) gene encodes a plant-specific protein of unknown function.The LOB protein contains a conserved ap-proximately100-amino acid domain that is found in 42other Arabidopsis proteins.Although the function of LOB is unknown,its expression indicates a poten-tial role in organ separation or other aspects of lateral organ development.

RESULTS

?-Glucuronidase(GUS)Expression in the Transposant Line ET22

In a screen for gene-trap expression patterns in the shoot apex of Arabidopsis seedlings(P.Springer and R.Martienssen,unpublished data),an enhancer trap line(ET22)was identified that showed GUS reporter gene activity in defined regions around the SAM.We examined GUS expression in ET22plants throughout development.GUS activity in ET22embryos was first detected at the torpedo stage,and was localized throughout the embryo(Fig.1A).GUS activity be-came progressively localized to the shoot and root apices during later stages of embryogenesis.In ma-ture embryos,GUS activity was confined to the shoot apex and root tip(Fig.1B).Following germination, GUS activity was detected in a band of cells at the base of the cotyledons and leaf primordia(Fig.1,C and D).Longitudinal and transverse sections through the shoot apex revealed that GUS activity was confined to an adaxial domain that was three to five cells deep(Fig.1D and data not shown).GUS expression persisted at the base of expanded

and Figure1.Analysis of GUS activity in ET22enhancer trap line and p LOB5.0::GUS transformants.ET22(A–G).p LOB5.0::GUS

transformants(H–J).A,Torpedo-stage embryo.B,Mature embryo.C,Four-day-old seedling;arrow marks cells at base of

cotyledons,and arrowhead marks cells at base of leaf primordia.D,Transverse section through9-d-old seedling apex

showing GUS staining on the adaxial side of leaf bases.S,SAM;lp,leaf primordium.E,Inflorescence.F,Lateral root.G,

Longitudinal section through lateral root primordium.H,Seven-day-old seedling.I,Inflorescence.J,Lateral root.The tissue

in G was counter-stained with Safranin-O after sectioning.Scale bar?50?m in A and B;?100?m in C,D,F–H,and J;

and?1mm in E and I.

Shuai et al.

mature leaves(data not shown).A similar expression pattern was seen at the base of all lateral organs formed from vegetative,inflorescence,and floral meristems(Fig.1E).GUS activity was also detected in the anthers of the flower(Fig.1E).In the root,GUS activity was detected at the junction between the primary root and lateral root primordia,in a ring of cells at the base of the lateral root(Fig.1,F and G). Expression was maintained at the base of fully de-veloped lateral roots.

Isolation of the LOB Gene

DNA gel-blot hybridization was used to determine that the ET22transposant line possessed a single DsE element(data not shown).Thermal asymmetric in-terlaced(TAIL)-PCR(Liu et al.,1995;Tsugeki et al., 1996)was used to amplify genomic DNA flanking the DsE element.Sequence of the TAIL-PCR product matched that of P1clone MDC12on chromosome5. Genomic DNA fragments from the region around the insertion site were amplified and used as probes to screen a cDNA library derived from floral buds(Wei-gel et al.,1992).Two overlapping cDNA clones were isolated and sequenced.5?-RACE-PCR(Frohman et al.,1988)was used to identify a full-length cDNA sequence(data not shown).Based on the expression pattern of the GUS reporter gene in the transposant line,the corresponding gene was named LOB.The MDC12sequence has recently been annotated,and the LOB gene corresponds to hypothetical gene At5g63090(MDC12.5).At5g63090is identical to LOB throughout the coding region,but does not contain 5?-and3?-untranslated regions(UTRs)that were de-fined by the cDNA https://www.wendangku.net/doc/be16654582.html,parison of the LOB cDNA and genomic DNA sequences showed the presence of one intron in the5?-UTR,with an open reading frame completely contained within the last exon.The DsE insertion was near the3?end of LOB and was inserted such that the GUS gene was tran-scribed opposite to LOB(Fig.2A).

The LOB gene encodes a deduced polypeptide of 186amino acids(Fig.2B)with a predicted molecular mass of20.2kD.Database searches did not identify similarity to known proteins in any species or to any known functional motifs.However,a number of hy-pothetical or unknown proteins in the Arabidopsis genome that were similar to LOB were identified.We have named this region of similarity,which spans approximately100amino acid residues,the LOB do-main(Fig.2B).Expressed sequence tag(EST)se-quences corresponding to related genes from soy-bean(Glycine max),maize,rice(Oryza sativa),tomato (Lycopersicon esculentum),Lotus japonicus,Medicago truncatula,pine(Pinus sylvestris),aspen(Populus spp.),wheat(Triticum aestivum),and potato(Solanum tuberosum)were also identified.Similar genes were not identified in other species,indicating that the LOB domain proteins are unique to plants.

Expression of LOB

To confirm that GUS activity in the ET22trans-posant line accurately reports LOB expression,we constructed two different LOB-promoter::reporter fu-sion constructs.p LOB2.8::GUS contains the5?-UTR and1.1kb of genomic DNA upstream of the putative transcription start site fused to the uidA gene. p LOB5.0::GUS contains the5?-UTR and 3.3kb of genomic DNA upstream of the putative transcription start site fused to the uidA gene.These constructs were introduced into Arabidopsis ecotype Landsberg erecta.GUS expression patterns were examined in seven independent transgenic lines containing p LOB2.8::GUS and in24independent transgenic lines containing p LOB5.0::GUS.GUS activity was nearly ubiquitous in two of the p LOB2.8::GUS lines and in six of the p LOB5.0::GUS lines(data not shown). These insertions were assumed to be adjacent to strong promoter or enhancer sequences that affected activity of the LOB promoter.In the remaining trans-formants for each construct,GUS activity

generally

Figure2.ET22genomic structure and sequence

of LOB.A,Structure of genomic DNA near the

DsE insertion in ET22.Boxes represent exons

and arrows show the direction of transcription.

B,Amino acid sequence of LOB.The LOB do-

main is highlighted in gray,and conserved C

and GAS blocks are underlined with solid and

dashed lines,respectively.The double underline

marks the predicted coiled coil.Invariant Cys

and Pro residues are shown with dots.?,The

site of insertion of the T-DNA in lob-2.?,The

site of insertion of DsE in ET22.

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

mimicked the activity of the ET22transposant line. However,the p LOB2.8::GUS transformants typically showed weaker and more variable GUS expression than the transposant line(data not shown).In addi-tion,the onset of GUS expression in floral buds was later than in the ET22line,and GUS activity was occasionally detected in the leaf blade(data not shown).GUS activity in the remainder of the p LOB5.0::GUS transformants resembled the pattern of the transposant line in the shoot apex(Fig.1H),the inflorescence(Fig.1I),and the root(Fig.1J).How-ever,GUS activity was not detected in the anthers of p LOB5.0::GUS transformants(Fig.1I),suggesting that some regulatory elements were missing from this promoter sequence.

To investigate the possibility that GUS activity in the transposant line was influenced by neighboring genes,expression of the adjacent gene At5g63080 (MDC12.4)was examined.At5g63080is3?to LOB and is transcribed in the same orientation,such that the5?end of At5g63080is6.5kb from the start of transcrip-tion of the GUS gene in ET22(Fig.2A).At5g63080 encodes an unknown protein.An EST sequence cor-responding to At5g63080was identified from a de-veloping seed cDNA library(White et al.,2000).We could not detect expression of At5g63080using re-verse transcriptase(RT)-PCR in any vegetative or floral tissues(data not shown).The neighboring gene on the5?side of LOB,At5g63100(MDC12.6),is5.6kb from the site of insertion,placing it approximately 11.6kb from the start of transcription of the GUS gene(Fig.2A).Expression of At5g63100was not examined.

Attempts to detect LOB transcripts using in situ hybridization were unsuccessful,suggesting that LOB transcripts are present at low abundance.There-fore,we examined the expression pattern of LOB by RT-PCR(Fig.3A).The expression pattern of LOB shown by RT-PCR was consistent with the GUS ex-pression pattern in the trap line.Amplified fragments

were detected in RNA isolated from6-d-old seed-lings,inflorescence stems,roots,buds,and open flowers(Fig.3A).Amplification of a faint band was detected from RNA isolated from rosette and cauline leaves(which included the leaf base).LOB expression was not detected in an RNA sample isolated from the apical one-half of rosette leaves(data not shown). Based on the sequence of the largest cDNA clone characterized,the LOB-specific primers were ex-pected to amplify a245-bp PCR product.Several amplified products were detected(Fig.3A),includ-ing one of the expected size.Sequencing of the RT-PCR products demonstrated that the multiple PCR products were derived from alternatively spliced LOB transcripts.Four different splice variants were identified in the5?-UTR(Fig.3B).The LOBa and LOBb transcripts differed by four nucleotides at the splice donor site.LOBa,which was identical to the original cDNA sequences,used a non-consensus GC at the splice donor site.The LOBb transcript used a consensus GU splice donor site four nucleotides downstream of the LOBa site(Fig.3B).Use of a5?-GC is unusual;however,1%of Arabidopsis introns have a GC in the5?position(Brown et al.,1996).The remainder of the nucleotides at the splice site con-form to the consensus sequence.The RT-PCR prod-ucts derived from the LOBa and LOBb transcripts could not be resolved on agarose gels,but cloning and sequencing of16clones suggested that the two transcripts were present at similar levels in seedlings. The LOBc and LOBd transcripts used the LOBa splice donor site and included an additional exon that dif-fered at its3?end(Fig.3B).These larger transcripts appeared to be present at lower levels than LOBa and LOBb,based on band intensities of the RT-PCR products.

All four5?-UTR splice variants are predicted to encode an identical protein,as the predicted

open Figure3.Expression of LOB in wild-type tissues.A,RT-PCR analysis of LOB expression.RNA was isolated from Landsberg erecta6-d-old seedlings(S),rosette leaves(RL),cauline leaves(CL),stem(ST),root (RT),flower buds(B),and open flowers(FL).The four products are indicated by arrows.The lower panel shows RT-PCR using primers to the ACT2gene as a control.B,Schematic showing the four LOB transcripts that are produced due to alternative splicing in the5?-UTR.Boxes represent exons,and lines represent introns.The pair of arrows indicates the location of the primers used in the PCR reac-tions.Exon positions in the individual transcripts are 1..296, 1673..2402(LOBa);1..300,1673..2402(LOBb);1..296,1046..1104, 1673..2402(LOBc);1..296,1046..1175,1673..2402(LOBd).Posi-tion1indicates the putative start of transcription and corresponds to position19,609of MDC12(AB008265);position2,402corresponds to position17,208.Accession numbers for each transcript are AF447897(LOBa),AF447898(LOBb),AF447899(LOBc),and AF447900(LOBd).

Shuai et al.

reading frame is not affected.However,the addi-tional exon introduces out of frame AUG codons upstream of the translation start site in both of the larger transcripts.If these upstream AUGs were used,they could perhaps affect translation initiation of the downstream open reading frame.It is not clear if translation would initiate at any of the out of frame AUGs,however,as none of them occurs in a consen-sus context(Joshi et al.,1997).

Alterations in Expression of LOB

The transposant line ET22contains a DsE insertion in the3?end of the LOB gene,corresponding to the non-conserved C terminus of the LOB protein(Fig.2, A and B).To determine whether the insertion af-fected LOB transcript accumulation,RT-PCR was used to examine LOB expression in seedlings that were homozygous for the DsE insertion.After30 PCR cycles,a LOB-specific PCR product could be readily amplified from cDNA derived from6-d-old wild-type seedlings(Fig.3A).In contrast,only a faint band could occasionally be detected after amplifica-tion of cDNA derived from lob::DsE homozygotes, suggesting that the DsE insertion causes a reduction in LOB transcript levels(data not shown).Reconstruc-tion experiments using20cycles of PCR,followed by blotting and hybridization,demonstrated that LOB transcript abundance is reduced20-to50-fold com-pared with wild type in lob::DsE homozygotes(data not shown).Despite the significantly reduced LOB transcript levels,no obvious morphological pheno-types were visible in lob::DsE homozygotes.

To identify additional loss-of-function lob muta-tions,we screened the Arabidopsis Knock-Out Facil-ity’s T-DNA insertion collection(Krysan et al.,1999) and identified a T-DNA insertion in the conserved LOB domain(Fig.2B).This allele was designated lob-2.RT-PCR showed that full-length LOB tran-scripts did not accumulate in plants homozygous for the T-DNA insertion(data not shown).Examination of lob-2homozygotes again revealed no obvious vis-ible phenotypes in plants grown under standard growth conditions.

To determine the effect of expression of LOB out-side of its normal expression domain,the LOB coding sequence was fused to the cauliflower mosaic virus 35S promoter and introduced into wild-type Arabi-dopsis plants.Thirty-seven independent transfor-mants were recovered,and25of them showed a similar phenotype(Fig.4),whereas the remaining nine transformants resembled wild-type plants. Fewer transformants were recovered than in control experiments using empty vector or other transgenes (data not shown),suggesting that high levels of LOB expression may be detrimental.RNA-blot analysis was performed on individual transformants to verify LOB overexpression(Fig.4M).Plants overexpressing LOB were much smaller than wild type at all stages of development(Fig.4,B and C).35S::LOB rosette leaves had short petioles and were more rounded than wild type(Fig.4,B–E).Leaves were often curled upward(Fig.4,D and E).After flowering,the inflo-rescence stem did not elongate appreciably,resulting in a tightly packed cluster of flowers(Fig.4D). 35S::LOB plants produced abnormal flowers that con-tained reduced floral organs and were infertile.Or-gans in the outer three whorls failed to elongate, resulting in exposed gynoecia(Fig.4,G and H). Anthers only rarely produced pollen grains.Al-though35S::LOB carpels elongated and the stigma occasionally appeared to develop normally,pollina-tion with wild-type pollen did not result in the pro-duction of seeds,suggesting that35S::LOB plants are female sterile.We examined35S::LOB leaves by clearing and viewing with DIC optics.Cell size and shape were similar to that of wild type(Fig.4,I–L).In addition,35S::LOB leaves appeared to have a normal arrangement of cells in transverse section(data not shown).

The LOB Domain Gene Family

The Arabidopsis genome database was searched to identify all Arabidopsis genes related to LOB. Searches were performed using TBLASTN with the entire LOB amino acid sequence as a query.A total of 42genes was identified in the Arabidopsis genome that showed similarity to LOB(Table I).All42pre-dicted proteins share varying degrees of similarity in the LOB domain(Fig.5,A and B).No genes were identified that were similar to the carboxy-terminal 75residues of LOB,suggesting that this region of the LOB protein is unique.

EST sequences were available for13of the LBD genes(Table I).cDNA clones corresponding to ESTs for LBD6,13,15,18,25,29,30,37,41,and42were obtained from the Arabidopsis Biological Resource Center(Ohio State University,Columbus),Kazusa DNA Research Institute(Chiba,Japan),or Genome Systems Inc.(St.Louis)and were fully sequenced. We also isolated and sequenced a cDNA clone cor-responding to LBD16.In most cases,the cDNA se-quences agreed with the annotated gene models and included5?-and3?-UTRs.In the case of LBD13,an additional intron was present relative to the anno-tated gene model,resulting in a change in the first four residues in the amino terminus of the deduced protein.The LBD18cDNA sequence differed from the predicted gene model at a splice acceptor site. This change resulted in an insertion of five amino acids in the deduced protein sequence,which al-lowed a better alignment with the other LBD protein sequences(Fig.5A).Although a cDNA clone was not available for LBD31,examination of the gene model revealed a similar situation to LBD18,and movement of the position of a splice acceptor site also resulted in an insertion of five amino acids,allowing better

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

alignment to the consensus.The LBD25cDNA se-quence extended the 5?end of the first exon relative to the gene model.This extended the open reading frame,adding 31amino acids to the amino terminus of the deduced protein sequence.The cDNA se-quences have been deposited in GenBank and acces-sion numbers are shown in Table I.

Genes encoding LBD proteins fall into two classes.Members of class I include 36Arabidopsis genes that are predicted to encode proteins that are similar to LOB (25%–82%identity)throughout the LOB domain

(Fig.5A).Class II consists of six Arabidopsis genes that encode deduced proteins that are less similar to LOB (28%–33%identity)and the other class I pro-teins (Fig.5B).Class II proteins share a conserved amino terminus (62%–93%identity in pair-wise com-parisons).The class II proteins share limited se-quence conservation outside of the LOB domain as well.Signature sequences that define class I and class II proteins were identified (see below).

To identify potential functionally important do-mains within the class I and class II proteins,

blocks

Figure 4.Phenotypes of transgenic plants that ectopically express LOB .A,Wild-type 19-d-old Landsberg erecta plant.B and C,Two independent transgenic 35S ::LOB plants (19-d-old).D,Thirty-two-day-old 35S ::LOB plant.E,Scanning electron microscopy of 35S ::LOB rosette leaf.F,Wild-type Landsberg erecta flower.G,35S ::LOB flower.H,Scanning electron microscopy of 35S::LOB flower.I through L,Differential interference contrast (DIC)images of wild-type (I and K)and 35S::LOB (J and L)cleared rosette leaves.The images show the epidermis (I and J)and mesophyll (K and L).M,Northern-blot analysis of LOB expression in wild-type and five different 35S ::LOB transgenic plants.Ten micrograms of total RNA was loaded in each lane.The filter was probed with the LOB cDNA (top)or 18S rDNA as a loading control (bottom).Scale bar in A through C ?5mm;in I through L ?50?m.

Shuai et al.

Table I.Arabidopsis genes encoding LOB domain proteins

Gene Bacterial Artificial

Chromosome/P1

Locus

Genbank

Protein ID

Chromosome

Locus a

Accession No.Clone Representing EST Sequence b,c

Class I

LOB MDC12.510177290At5g63090BAB10551

LBD1F24B9.18439879At1g07900AAF75065

LBD2F9P14.148844133At1g06280AAF80225

LBD3F3O9.334966373At1g16530AAD34704

LBD4T19E23.116692123At1g31320AAF24588

LBD5T22A15.812324709At1g36000AAG52312

LBD6F5I14.152190548At1g65620AAB60912VBVYB03

LBD7F3N23.185903087At1g72980AAD55645

LBD8F3P11.114191781At2g19510AAD10150

LBD9F6F22.153687236At2g19820AAC62134

LBD10F27L4.153152616At2g23660AAC17095

LBD11T17D12.64510398At2g28500AAD21485

LBD12T27E13.133150407At2g30130AAC16959

LBD13T9D9.152347197At2g30340AAC16936RZ93g04,RZ123h01

LBD14F16D14.154432826At2g31310AAD20676

LBD15T2P4.182651309At2g40470AAB87589241G2,701514676,600038330

LBD16MHK10.154567314At2g42430AAD23725

LBD17MHK10.164567315At2g42440AAD23726

LBD18F4L23.72583113At2g45420AAB82622M13A6,M22C7

LBD19F4L23.82583114At2g45410AAB82623

LBD20F20H23.216006865At3g03760AAF00641

LBD21F9F8.106016686At3g11090AAF01513

LBD22MCP4.89294609At3g13850BAB02910

LBD23MLJ15.2At3g26620

LBD24MLJ15.6At3g26660

LBD25MGF10.69294470At3g27650BAB02689701546372

LBD26K24A2.39294310At3g27940BAB01481

LBD27T23J7.2004741204At3g47870CAB41870

LBD28T20E23.1106561991At3g50510CAB62480

LBD29F9D24.1006735331At3g58190CAB68157RZ58d08

LBD30F6N15.43193318At4g00220AAC19300232A14,701500638,SQ185e01

LBD31F6N15.253193312At4g00210AAC19294

LBD32T12H17.902827547At4g22700CAA16555

LBD33K16F4.48978344At5g06080BAA98197

LBD34F2G14Not annotated d

LBD35MIK22.2110176709At5g35900BAB09931

LBD36MUD21.139758137At5g66870BAB08629

Class II

LBD37K8K14.169758441At5g67420BAB09027AA07F04,AB01G02,APD23d08,APD43f11,

APZ06a08,OBO52,RZ108b01,RZ126f11,47B5,

65DI,179D12,217P3,240N2,701551301 LBD38F3A4.206522915At3g49940CAB62102147D14T7,VBVQC02

LBD39F19F18.304468979At4g37540CAB38293701500839,165E11T7,RZ23c09

LBD40F5A8.24204277At1g67100AAD10658M11G10,M13C9,M15B4,M22A4,M53F11 LBD41F16B3.186957718At3g02550AAF32462RZ101f04,SQ182b06,SQ193f07,111E10,195F24,

701667942

LBD42T26J14.812324879At1g68510AAG52389SQ124h04

a Designation from Munich Information Center for Protein Sequences Arabidopsis thaliana Database(MATDB)(www.mips.biochem.mpg.de/proj/thal/db/index. html).

b Clones shown in bold were fully sequenced.

c EST accession nos.:Z33806,Z25656,AF447887(clone VBVYB03);AV554524(clone RZ93g04); AV551296,AV538901,AF447888(clone RZ123h01);N97300(clone241G2);AI993799,AF447889(clone701514676);BE529105(clone600038330);BE520513, BE520514,AF447891(clone M13A6);BE521897,BE521898(clone M22C7);AI998629,AF447892(clone701546372);AV553261,AV544763,AF447893(clone RZ58d08);AI994962(clone701500638);AV563330(clone SQ185e01);N65781,AF432232(clone232A14);BE038006(clone AA07F04);BE038601(clone AB01G02);AV525400(clone APD23d08);AV518911(clone APD43f11);AV526154,AV520071(clone APZ06a08);F14269,F14441(clone OBO52);AV550089 (clone RZ108b01);AV539081,AV551431,AF447894(clone RZ126f11);T14105(clone47B5);T41721(clone65D1);H36818(clone179D12);N38449(clone 217P3);N65652(clone240N2);AI996949(clone701551301);T76164(clone147D14);Z29130,F13856(clone VBVQC02);AI994989(clone701500839);R65200 (clone165E11);AV552189(clone RZ23c09);BE520344(clone M11G10);BE520541(clone M13C9);BE520808,BE520809,BE520810(clone M15B4);BE521846, BE521847(clone M22A4);AV537704,AV549715,AF447895(clone RZ101f04);AV563144(clone SQ182b0);AV563797(clone SQ193f07);AI100279,T42227 (clone111E10);H76116(195F24);AI996685(clone701667942);AV559860,AF447896(clone SQ124h04);AF447890(LBD16).Accession nos.shown in italics represent the complete sequence of the corresponding clone.

d Complement(AL391146.1:60133.60555).

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

were generated with Block Maker (Henikoff et al.,1995).These analyses defined two conserved blocks in the class I proteins (Fig.5A).The C block is 22amino acids in length and contains four absolutely conserved Cys residues in a CX 2CX 6CX 3C motif.

LBD3deviates from this motif slightly,containing four amino acids between the third and fourth Cys residues (Fig.5A).The GAS block is 49amino acids in length,beginning with a FX 2VH motif and ending with a DP(V/I)YG motif (Fig.5A).The Pro residue

in

Figure 5.(Continues on facing page .)

Shuai et al.

the DP(V/I)YG signature is present in all class I proteins.

Three conserved blocks were detected in the class II proteins that together span the entire length of the LOB domain.These blocks are in close proximity to each other and therefore will be considered as one large block (Fig.5B).The class II block contains a Cys motif similar to the class I proteins.Spacing between the four Cys residues is the same in both classes,but the intervening amino acids differ.The class I con-sensus sequence is C AA C KFLRRK C X 3C ,whereas the class II consensus sequence is C NG C RVLRKG C-SE(D/N)C .The class II block contains an invariant Pro residue that is also found in the DP(V/I)YG signature in the class I LOB domains.One distin-guishing feature of the class II proteins is that they are more Cys rich than the class I proteins,containing from nine to 13total Cys residues,whereas the class I proteins contain four to seven cysteines.

Examination of the LOB protein sequence for pos-sible secondary structure revealed a predicted coiled coil of 30amino acids in length at the end of the LOB domain.The predicted coiled coil contains four

leucines in a LX 6LX 3LX 6L spacing that is reminiscent of a Leu-zipper (Landschultz et al.,1988).To deter-mine whether this potential structural domain is con-served,the LBD protein sequences were examined for predicted coiled-coil structures.Among the class I proteins,33of the 36proteins were predicted to form a coiled coil at the end of the LOB domain with ?90%probability.LBD2,26,and 34were not pre-dicted to form coiled-coils.None of the class II pro-teins were predicted to form coiled-coil structures.

Expression of LBD Genes

Twenty-nine of the 42LBD genes were hypothetical in that they were predicted from genomic sequence but had not experimentally been shown to be ex-pressed.We performed RT-PCR to examine the pat-terns of expression of 30different LBD genes in a variety of Arabidopsis tissues.In all cases,primers spanning predicted introns were used to distinguish between amplification of genomic DNA and ampli-fication of cDNA.Expression was detected for 24LBD genes (Fig.6).No expression was detected

for

Figure 5.(Continued from facing page .)

A,Alignment of the LOB domains of class I protein sequences.LBD34is not included in the alignment because the annotation is not certain.B,Alignment of LOB with the class II protein sequences.The alignments were produced by the Alignment program of Vector NTI,which uses the Clustal W algorithm.Conserved amino acids are highlighted in black,and similar amino acids are highlighted in gray.The conserved blocks and invariant residues are shown above the alignments.

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

LBD5,8,9,23,24,and 42in any of the tissues tested.Only one of these genes,LBD42,is represented by an EST sequence.At this time,we do not know if LBD5,8,9,23,and 24are expressed at levels that were undetectable under the conditions used,or are ex-pressed in tissues that were not tested.It is also possible that these genes are pseudogenes.

LBD gene expression patterns were quite variable,with many genes showing tissue or developmental stage-specific patterns (Fig.6).Transcripts from LBD1,3,4,6,15,25,37,38,39,and 41were detected in all tissues examined,although at variable levels.LBD11transcripts were detected in all tissues except root.LBD17transcripts were detected in all tissues except 12-d-old shoots.Transcripts from LBD14,29,

and 33were detected only in roots,whereas tran-scripts from LBD16were primarily detected in roots,but a faint band was also amplified in shoots.In vegetative tissues,LBD12was also expressed pre-dominantly in roots;low levels were detected in shoots and floral stems.LBD12transcripts were also detected in open flowers,but not flower buds.LBD19transcripts were detected in shoots,roots,and floral tissues,but not in stems or leaves.LBD13transcripts were detected in shoots and roots but not in rosette or cauline leaves or inflorescence stems.Low levels were also detected in floral buds and open flowers.Transcripts from LBD20and 40were detected in roots and floral tissues,although at different levels.Transcripts from LBD18and 30were not detected in shoots or rosette leaves,but were present in all other tissues tested.LBD31transcripts were detected in roots,stems,and floral tissues.

DISCUSSION

The LOB gene was identified based on the expres-sion pattern of an enhancer trap insertion.Although we were not able to visualize LOB transcript local-ization,a LOB promoter::GUS fusion largely recapit-ulated the expression pattern of GUS in the ET22line.The p LOB 5.0::GUS fusion differed from the trans-posant line in that it did not drive expression in anthers.This raises the possibility that sequences within the LOB coding region or 3?to the gene con-tribute to its expression.Another possible explana-tion is that the anther staining in ET22plants does not reflect expression of LOB .The DsE insertion in LOB is oriented so that the GUS gene is transcribed opposite to LOB .This could place GUS under the control of 3?regulatory elements or cryptic enhancers that do not normally function.Differences between the expression patterns conferred by the two p LOB ::GUS constructs indicate the presence of en-hancer elements in the region of the promoter unique to p LOB 5.0::GUS .

LOB is expressed at the base of lateral organs in the shoot and the root (Fig.1).No obvious morphologi-cal characteristics distinguish LOB -expressing cells from adjacent cells that do not express LOB .One possible function of genes expressed in such a pat-tern is to define a boundary between the initiating organ primordia and the stem cells they are derived from.As lateral organs initiate in the shoot and the root,founder cells from the SAM and pericycle,re-spectively,are recruited into forming lateral organs (Steeves and Sussex,1989;Laskowski et al.,1995).The establishment of a boundary between a primor-dium and its progenitor cells is likely important for maintaining the integrity of the stem cells and the initiating organ primordium.

A number of plant genes that are expressed in the vegetative shoot apex in a pattern similar to LO

B have been described,including UNUSUAL

FLORAL

Figure 6.RT-PCR analysis of the expression profiles of 24different LBD genes.SH,Twelve-day-old shoot tissue;RL,rosette leaves;CL,cauline leaves;ST,inflorescence stem;RT,root;BD,floral buds;FL,open flowers.

Shuai et al.

ORGANS(UFO),NO APICAL MERISTEM,CYP78A5, and the CUP-SHAPED COTYLEDON1(CUC1)and CUC2genes(Souer et al.,1996;Aida et al.,1997;Lee et al.,1997;Zondlo and Irish,1999;Takada et al., 2001).Analyses of loss-of-function mutations sup-port the idea that some of these genes are important for the establishment of a boundary between organs. Mutations in no apical meristem cause a loss of the SAM and fusion of the cotyledons.CUC1and CUC2 are functionally redundant and cuc1cuc2double mu-tants have fused cotyledons and do not form a SAM. ufo mutants have aberrant floral organs,but no veg-etative phenotypes,suggesting that UFO acts redun-dantly in the vegetative shoot apex.Based on GUS activity in the transposant line,LOB expression ap-pears to commence later in leaf initiation than that of UFO or CUC2.Although it is possible that LOB is expressed earlier,but at levels that are not detectable using the GUS reporter,these observations may in-dicate that LOB functions in the later stages of leaf development.Other possible functions for a gene expressed in such a domain are involvement in con-trol of cell division or differentiation at the leaf base, establishment of adaxial cell fates,or functions in abscission.The Arabidopsis HAESA Leu-rich repeat receptor kinase,which is required for proper abscis-sion of floral organs,is expressed in a pattern similar to LOB(Jinn et al.,2000).HAE expression appears to initiate later than that of LOB however.

Two different lob mutations were identified,and we examined homozygous mutant plants for abnor-mal morphology.Plants that contained a disrupted LOB gene made reduced levels of LOB transcript in the case of lob::DSE or a truncated transcript in the case of lob-2.In both cases,homozygotes were viable and had normal morphology under standard growth conditions.These data may indicate that LOB is func-tionally redundant,or required under a particular growth condition that we did not examine.Further support for functional redundancy comes from the fact that the LOB gene lies within a duplicated region of the Arabidopsis genome(The Arabidopsis Ge-nome Initiative,2000).The corresponding region lies on chromosome3and contains the LBD27gene. However,LBD27is only41%identical to LOB in the LOB domain.Another LOB domain protein,LBD25, also encoded by a gene on chromosome3,is83% identical to LOB in the LOB domain.Phylogenetic analyses also place LOB and LBD25in the same clade and LBD27in a different clade(B.Shuai and P. Springer,unpublished data).For this reason,LBD25 may be more likely to have functions that overlap with LOB.Analyses of LBD25transcript distribution by RT-PCR revealed that the LBD25and LOB expres-sion domains overlap,although LBD25expression appears to be broader than LOB(Figs.3A and6). Functionally redundant genes with expression pat-terns that are not identical have been described;for example,the CUC1expression domain is broader than that of CUC2(Takada et al.,2001).Mutations in LBD25will need to be identified to determine if LOB and LBD25are functionally redundant.

Ectopic expression of LOB outside of its normal domain caused pleiotropic defects,making it difficult to attribute a specific role in plant development to LOB.35S::LOB plants made generally smaller organs. The effects on organ size appeared to be largely due to differences in cell numbers,as we could not detect significant differences in cell size(Fig.4,I–L).This may suggest that LOB functions to limit cell division at the base of lateral organs.An alternate possibility is that the effect on cell division is a pleiotropic stress response.

The deduced LOB protein is not similar to any previously described proteins in plants or animals, and does not contain defined functional domains. However,the amino terminal one-half of the LOB protein contains a conserved domain that is present in a large group of plant proteins that have been identified by EST and genomic sequencing.A search of the Arabidopsis genome sequence revealed42 other genes that are predicted to encode LOB domain proteins(Table I).The LBD genes fall into two dis-tinct classes based on sequence similarity to LOB in the LOB domain(Fig.5).Examination of LBD expres-sion profiles revealed that LBD genes are expressed in a variety of different patterns,with some genes being expressed in all tissues tested,whereas other genes were expressed in a more limited fashion(Fig.

6).These data may indicate diverse roles for the LBD genes.

The LOB domain contains conserved blocks of amino acids that identify the LOB domain gene fam-ily.In particular,a conserved CX2CX6CX3C motif, which is the defining feature of the LOB domain,is present in all LBD proteins.It is possible that this motif forms a zinc finger,although the spacing be-tween the cysteines is not typical of a C2/C2type zinc finger(Takatsuji,1998).LOB and many of the class I LOB domain proteins are predicted to form a coiled-coil motif that may function in protein-protein inter-actions.The lack of a predicted coiled coil in the class II proteins suggests that their function may be dis-tinct from the class I LOB domain proteins.

LOB is expressed at low levels,is not present in EST databases,and is apparently functionally redundant, suggesting that LOB is unlikely to have been identi-fied by conventional forward mutagenesis or differ-ential expression approaches.The use of a gene trap approach allowed the identification of LOB,a gene encoding a novel,plant-specific protein of unknown function.The fact that LOB is plant specific could suggest its involvement in processes that are unique to plants.Further characterization of LOB and related LBD genes will be needed for the role of LOB in plant development to be understood.

A major goal in plant biology in the coming years will be to determine the function of every plant gene.

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

Analyses of the annotated regions of the Arabidopsis genome suggest that approximately30%of the25,498 Arabidopsis genes are predicted to encode proteins that cannot be classified into functional groups based on sequence(The Arabidopsis Genome Initiative, 2000).Determining the function of genes in this cat-egory will be especially challenging.The analysis of members of multigene families can be particularly difficult,as these genes may be functionally redun-dant.In these instances,information about a gene’s expression pattern can often provide important in-formation regarding a potential biological role.

MATERIALS AND METHODS

Plant Growth Conditions

Seedlings were grown on germination media as previ-ously described(Springer et al.,2000).Soil-grown plants were grown in Sunshine Mix No.1(SunGro,Bellevue,WA) supplemented with fertilizer and insecticide as previously described(Springer et al.,2000).Plants were grown in a 16-h light:8-h dark cycle(180microeinsteins m?2s?1).

Histochemical Localization of GUS

Activity and Microscopy

Plant tissues were stained for GUS activity in5-bromo-4-chloro-3-indolyl-?-glucuronic acid and were cleared in 70%(v/v)ethanol as previously described(Sundaresan et al.,1995).Stained tissue was processed for sectioning as previously described(Springer et al.,2000)and was viewed with a stereomicroscope or mounted on slides and viewed with DIC optics.Leaves were cleared as described(Berleth and Ju¨rgens,1993)and were viewed with DIC.

Cloning of LOB

Genomic DNA was isolated from pooled F3seedlings as previously described(Springer et al.,1995).TAIL-PCR(Liu et al.,1995)was performed as described(Tsugeki et al., 1996).TAIL-PCR products were cloned using the pGEM-T Easy vector system(Promega,Madison,WI)and were sequenced at the University of Maine DNA sequencing facility(Orono,ME).For cDNA library screening,PCR primers were designed to amplify genomic DNA fragments in the vicinity of the DsE insertion in ET22.Primers MDC5, 5?-GGCATTCAAGCAGGTTTACG-3?;MDC6,5?-AGCTA-ATGCTGACTTGGCAC-3?;MDC7,5?-AAGATTTTGTG-GACGTTGGC-3?;and MDC8,5?-TTGGAAGCGAAATT-CAAAGG-3?were used.MDC5and MDC6amplified a 1.5-kb fragment,and MDC7and MDC8amplified a1.6-kb fragment.Both fragments were labeled using a random-primed DNA labeling kit(Roche Molecular Biochemicals, Indianapolis)and were used together to screen a cDNA library made from Arabidopsis flower buds(Weigel et al., 1992).The library,CD4–6,was obtained from the Arabidop-sis Biological Resource Center.Approximately300,000 clones were screened,and two clones were identified that hybridized to both fragments.To clone the5?end of the LOB cDNA,5?-RACE-PCR was performed as previously de-scribed(Frohman et al.,1988)with the following modifica-tions.First strand cDNA synthesis was performed with the primer5?-RACE O,cDNAs were tailed with terminal trans-ferase,and first round amplification was done with primers Q O,Q T,and5?-RACE O.First round PCR products were reamplified using Q I and nested gene-specific primer5?-RACE I.Conditions for the second round PCR amplification were as follows:45s at94°C,1min at55°C,and1min at 72°C for three cycles;45s at94°C,1min at60°C,and1min at72°C for10cycles;and45s at94°C,1min at55°C,and1 min at72°C for10cycles.The LOB gene-specific primers were5?-RACE O,5?-TTTCTTCCTCTTTCAAGGGC-3?and5?-RACE I,5?-AGGGATCCTTACCCTTTGAATTTCGC-3?.Q T, Q O,and Q I primer sequences have previously been de-scribed(Frohman et al.,1988).

Constructs and Generation of Transgenic Plants

The LOB promoter fragments were amplified from gen-omic DNA using primers pET22–3?:5?-CATGCCATGG ACGACGCCATTTGTTTTTCTT-3?and pET22–5?a:5?-CCG-CTCGAGTTCCCACCACTAACCACCAT-3?(p LOB2.8)or pET22–5?b:5?-TCCCCCGGGTTGCTTGGTCATCGTGTC-TT-3?(p LOB5.0).The primers contained introduced restric-tion sites to facilitate cloning.The amplified p LOB2.8frag-ment was cloned into SLJ4D4,which contains a uidA gene fused to the octopine synthase transcription terminator (Jones et al.,1992).The resulting promoter::GUS fusion was cloned into the binary vector pPZP111(Hajdukiewicz et al., 1994)to create the p LOB2.8::GUS plasmid.The amplified p LOB5.0fragment was fused to the uidA gene and was cloned into the binary vector pCAMBIA3200(Center for the Application of Molecular Biology to International Ag-riculture,personal communication)using the Sma I and Pst I sites to create the p LOB5.0::GUS plasmid.A construct for ectopic expression of LOB was made by introducing the LOB coding region into pPS119(P.Springer and R.Mar-tienssen,unpublished data),which contains the35S cauli-flower mosaic virus promoter(Odell et al.,1985)and a3?octopine synthase transcription terminator(DeGreve et al., 1983)interrupted by multiple cloning sites in a pPZP111 backbone(Hajdukiewicz et al.,1994).The single exon con-taining the LOB coding region was amplified from genomic DNA using PFU polymerase(Stratagene,La Jolla,CA)and primers SET22–5,5?-CCGCTCGAGATGGCGTCGTCATC-AAACTC-3?and SET22–3,5?-GCTCTAGACTCACATGTT-ACCTCCTTGC-3?.Both primers contain introduced restriction sites for cloning.The PCR product was cloned into pBS SK?(Stratagene),sequenced to verify its integrity, and subsequently subcloned into pPS119to create the 35S::LOB construct.Binary vectors were introduced into wild-type Landsberg erecta Arabidopsis plants by floral dip (Clough and Bent,1998).

Scanning Electron Microscopy

Thirty-two-day-old35S::LOB transgenic plants were fixed in3%(v/v)glutaraldehyde(EM Sciences,Fort Wash-

Shuai et al.

ington,PA)in1?phosphate-buffered saline at4°C over-night.Plants were rinsed with1?phosphate-buffered sa-line and dehydrated through an ethanol series at4°C. Dehydrated tissue was critical point-dried in liquid carbon dioxide.Individual leaves were mounted on scanning elec-tron microscope stubs,coated,and observed in a scanning electron microscope(XL30-FEG;Philips,Eindhoven,The Netherlands)at an accelerating voltage of20kV. Screening for T-DNA Insertions in LOB

Primers were designed based on the recommendations of the Arabidopsis Knockout Facility(http://www. https://www.wendangku.net/doc/be16654582.html,/Arabidopsis/).Primers used in the screening were:ET22–4,5?-CACTTTGTCTTTTGCTCTTT-CTCCTTCCT-3?and ET22–5,5?-AAGCAGAGACCTT-CAATTATTAGCACCCT-3?in pair-wise combination with T-DNA left border primer JL-202.After identification of a pool containing a T-DNA insertion in the LOB coding region,seeds from subpools were obtained from the Ara-bidopsis Biological Resource Center.PCR reactions on sin-gle plants were used to identify plants homozygous for the T-DNA insertion.

Expression Analyses

RNA was isolated from various tissues from wild-type plants,and RNA gel-blot hybridizations were performed as previously described(Martienssen et al.,1989).For RT-PCR analysis,cDNA was synthesized from2?g of total RNA using an oligo-(dT)primer and M-MLV RNase H minus reverse transcriptase(Promega).One-twentieth vol-ume of each cDNA sample was used as the template for PCR amplification.Primers MDC7and MDC8(Fig.3B,see above),which flanked an intron in the5?-UTR,were used for amplification of LOB under the following conditions: denaturation at94°C for3min,followed by30cycles of45s at94°C,45s at57°C,and1min at72°C.Control reactions using primers to the ACT2gene(An et al.,1996;Li et al., 2001)were performed on the same cDNA samples.The gene-specific primers used were:LBD1,5?-GGAATCCC-AAATCATTGCTC-3?and5?-TTAGTCCATGTGCTGCT-TGC-3?;LBD3,5?-ACAAAAGGGTCACAGACACG-3?and 5?-AAGACCAAAGGAAGTCTCCG-3?;LBD4,5?-CGTTTT-CTCGCCGTATTTTC-3?and5?-ACTCTCCCAAACTGG-CTTCA-3?;LBD5,5?-CCTGGAGTTCACGGAGGTAG-3?and5?-CCTCTAGGAAACCGTCGTCC-3?;LBD6,5?-ATTT-CCCCTCTGAGCAACAG-3?and5?-AAGACGGATCAA-CAGTACGG-3?;LBD8,5?-TCGTCCTTGCTGCGTATG-TA-3?and5?-TCCACATGATCTTTTGCACC-3?;LBD9,5?-TGCGTAATTCAATTTGCCAC-3?and5?-TCAATGTTAA-ACGTGCTCCTTG-3?;LBD11,5?-TTTGGCACCGTACTTT-CCTC-3?and5?-ATGTCCAAAGAGGATCCCAC-3?;LB-D12,5?-GATCCTCACAAATTCGCCAT-3?and5?-TAA-GAGGGTCTTGCATTTGC-3?;LBD13,5?-TGGGAATCA-GGAGACATGTG-3?and5?-GTGGCGTAGGATTTCCG-TAC-3?;LBD14,5?-TTTTGCAGCCATTCACAAAG-3?and 5?-CAGACCAAGGAAAATTGACC-3?;LBD15,5?-GAAT-GTCCCTTTTCGCCATA-3?and5?-TCTCACTTTCAATGT-TGCCG-3?;LBD16,5?-TCGCAGCTATTCACAAGGTG-3?and5?-CCTCCGGTTTGATGATGAGT-3?;LBD17,5?-AAA-AGGATGTGTGTTTGCCC-3?and5?-ATCAGATTATTGC-CGCCATG-3?;LBD18,5?-AGGTCCGATGCTGTCGTA-AC-3?and5?-ACATAGTTCGAGACGGCGAG-3?;LBD19, 5?-TGAGATTGCCTCTGCACAAG-3?and5?-AAGTGCA-AGCCGGAAGTTTG-3?;LBD20,5?-CATGGTGAAGCTGT-TCATGG-3?and5?-TTTTGGGTCAGACCAAGGAG-3?; LBD23,5?-GAATCCAAAAAGATGTGCAGC–3?and5?-TGGCCTCTTGATTATGAGTCTG-3?;LBD24,5?-GCTAA-TGGCCTCTTGATTATGATT-3?and5?-GAATCCAAAAA-GATGTGCAGC-3?;LBD25,5?-AAGGACCTTTTCTTGT-TGCG-3?and5?-CGCCGCTAATTTTCTCAAAG-3?;LBD29, 5?-TGAGGAGGTTTCGTTGTGGT-3?and5?-CGCTGTGA-AGCCGCTATTA-3?;LBD30,5?-TGCGTCTCTCACATCGT-CTC-3?and5?-ACTGACGAGGCAGAACCACT-3?;LBD31, 5?-CTTACGAGGCATTGGCTAGG-3?and5?-GAAGATG-GTCGGTATTTGCC-3?;LBD33,5?-GGTCGTGGCCATA-GTCATCT-3?and5?-CTAAGGAGGAAATGCAACCG-3?; LBD37,5?-AGATGGTTGGTCTTCCGATG-3?and5?-CCGT-CTTCGTCGCTAAATTC-3?;LBD38,5?-CGTGCCGGTTTA-ATGTCTTT-3?and5?-ACGAAGGTTGTTGTTCCGAC-3?; LBD39,5?-GTGGATCTGGAGGTGGAGAA-3?and5?-CCTC-CGTACCTGAACTCCAA-3?;LBD40,5?-TACGAAAAGGC-TGCAGTGAA-3?and5?-GGTACCACCACGTGATTTCC-3?; LBD41,5?-TCCTTCATGAGCAGCCACTA–3?and5?-AAACCAAAGATGCGGATGAG–3?;and LBD42,5?-AAT-GGATCAAATCCGCAGAC-3?and5?-GAACTTGGGAGT-GCCACAT-3?.Primers to At5g63080were MDC12.4–1,5?-GCCATTGGAGGAGAAGCATC-3?and MDC12.4–2,5?-TTTCCAGCCATCGTGTCATA-3?.

Sequence Alignment and Block Analysis

Database searches were performed using TBLASTN (https://www.wendangku.net/doc/be16654582.html,/BLAST/).Protein sequences from each gene were aligned using AlignX program from Vector NTI suite(InforMax,Bethesda,MD).Alignments were done using the LOB sequence as the selected profile with a gap opening penalty of10and a gap extension penalty of0.1.The aligned sequences were shaded using MacBoxshade(http://www.isrec.isb-sib.ch/sib-isrec/ boxshade/MacBoxshade/)in an Encapsulated PostScript output.Conserved blocks were predicted by BlockMaker (https://www.wendangku.net/doc/be16654582.html,/)using the Motif algorithm and all class I or class II sequences as input.Secondary structure predictions were performed with NNPredict (https://www.wendangku.net/doc/be16654582.html,/?nomi/nnpredict; Kneller et al.,1990)and COILS(http://www.ch.embnet. org/software/COILS_form.html;Lupas et al.,1991)pro-grams.COILS parameters used the MTIDK matrix and a 2.5-fold weighting of positions a and d.A coiled coil of30 amino acids in length was predicted(?95%probability)in LOB with window sizes of14,21,and28. ACKNOWLEDGMENTS

We thank Mary Byrne,Elizabeth Bray and Linda Walling for comments on the manuscript,Janena Williams and Rob

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

Lennox for assistance with plant growth,Catherine Bushell for help with RT-PCR,and members of the Springer labo-ratory for helpful discussions.We also thank the Arabidop-sis Biological Resource Center and the Kazusa DNA Re-search Institute for supplying cDNA clones and the Arabidopsis Knock-Out Facility for identifying the lob-2 allele.

Received October9,2001;returned for revision November 8,2001;accepted January7,2002.

LITERATURE CITED

Aida M,Ishida T,Fukaki H,Fujisawa H,Tasaka M(1997) Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant.Plant Cell9: 841–857

Aida M,Ishida T,Tasaka M(1999)Shoot apical meristem and cotyledon formation during Arabidopsis embryogen-esis:interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes.Development126: 1563–1570

An Y-Q,McDowell JM,Huang S,McKinney EC,Cham-bliss S,Meagher RB(1996)Strong,constitutive expres-sion of the Arabidopsis ACT2/ACT8actin subclass in vegetative tissues.Plant J10:107–121

Barton MK,Poethig RS(1993)Formation of the shoot apical meristem in Arabidopsis thaliana:an analysis of development in the wild type and in the shoot meristem-less mutant.Development119:823–831

Berleth T,Ju¨rgens G(1993)The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo.Development118:575–587

Brand U,Fletcher JC,Hobe M,Meyerowitz EM,Simon R (2000)Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3activity.Science289: 617–619

Brown JWS,Smith P,Simpson CG(1996)Arabidopsis con-sensus intron sequences.Plant Mol Biol32:531–535 Byrne ME,Barley R,Curtis M,Arroyo JM,Dunham M, Hudson A,Martienssen RA(2000)Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabi-dopsis.Nature408:967–971

Clark SE(2001)Meristems:start your signaling.Curr Opin Plant Biol4:28–32

Clough SJ,Bent AJ(1998)Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J16:735–743

DeGreve H,Dhaese P,Seurinck J,Lemmers S,van Montagu M,Schell J(1983)Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene.J Mol Appl Genet1:499–511

Frohman MA,Dush MK,Martin GR(1988)Rapid produc-tion of full-length cDNAs from rare transcripts:amplifi-cation using a single gene-specific oligonucleotide primer.Proc Natl Acad Sci USA85:8998–9002 Hajdukiewicz P,Svab Z,Maliga P(1994)The small,ver-satile pPZP family of Agrobacterium binary vectors for plant transformation.Plant Mol Biol25:989–994Henikoff S,Henikoff JG,Alford WJ,Pietrokovski S (1995)Automated construction and graphical presenta-tion of protein blocks from unaligned sequences.Gene 163:17–26

Jackson D,Veit B,Hake S(1994)Expression of maize KNOTTED1related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the veg-etative shoot.Development120:405–413

Jinn T-L,Stone JM,Walker JC(2000)HAESA,an Arabi-dopsis leucine-rich repeat receptor kinase,controls floral organ abscission.Genes Dev14:108–117

Jones JDG,Shlumukov L,Carland F,English J,Scofield SR,Bishop GJ,Harrison K(1992)Effective vectors for transformation,expression of heterologous genes,and assaying transposon excision in transgenic plants.Trans-genic Res1:285–297

Joshi CP,Zhou H,Huang X,Chiang VL(1997)Context sequences of translation initiation codon in plants.Plant Mol Biol35:993–1001

Kneller DG,Cohen FE,Langridge R(1990)Improvements in protein secondary structure prediction by an en-hanced neural network.J Mol Biol214:171–182 Krysan PJ,Young JC,Sussman MR(1999)T-DNA as an insertional mutagen in Arabidopsis.Plant Cell11: 2283–2290

Landschultz WH,Johnson PF,McKnight SL(1988)The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins.Science240: 1759–1764

Laskowski MJ,Williams ME,Nusbaum HC,Sussex IM (1995)Formation of lateral root meristems is a two-stage process.Development121:3303–3310

Lee I,Wolfe DS,Nilsson O,Weigel D(1997)A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol7:95–104

Li H,Shen J-J,Zheng Z-L,Lin Y,Yang Z(2001)The Rop GTPase switch controls multiple developmental pro-cesses in Arabidopsis.Plant Physiol126:670–684

Liu Y-G,Mitsukawa N,Oosumi T,Whittier RF(1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric inter-laced PCR.Plant J8:457–463

Long JA,Moan EI,Medford JI,Barton MK(1996)A mem-ber of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis.Nature379: 66–69

Lupas A,Van Dyke M,Stock J(1991)Predicting coiled coils from protein sequence.Science252:1162–1164 Martienssen RA,Barkan A,Freeling M,Taylor WC(1989) Molecular cloning of a maize gene involved in photosyn-thetic membrane organization that is regulated by Rob-ertson’s Mutator.EMBO J8:1633–1639

Nishimura A,Tamaoki M,Sato Y,Matsuoka M(1999)The expression of tobacco knotted1-type class1homeobox genes correspond to regions predicted by the cytohisto-logical zonation model.Plant J18:337–347

Odell JT,Nagy F,Chua N-H(1985)Identification of DNA sequences required for activity of the cauliflower mosaic virus35S promoter.Nature313:810–812

Shuai et al.

Ori N,Eshed Y,Chuck G,Bowman JL,Hake S(2000) Mechanisms that control knox gene expression in the Arabidopsis shoot.Development127:5523–5532

Schoof H,Lenhard M,Haecker A,Mayer KFX,Ju¨rgens G, Laux T(2000)The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop be-tween the CLAVATA and WUSCHEL genes.Cell100: 635–644

Sentoku N,Sato Y,Kurata N,Ito Y,Kitano H,Matsuoka M(1999)Regional expression of the rice KN1-type ho-meobox gene family during embryo,shoot,and flower development.Plant Cell11:1651–1663

Souer E,van Houwelingen A,Kloos D,Mol J,Koes R (1996)The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries.Cell 85:159–170

Springer PS,Holding DR,Groover A,Yordan C,Mar-tienssen RA(2000)The essential Mcm7protein PROLIF-ERA is localized to the nucleus of dividing cells during the G1phase and is required maternally for early Arabi-dopsis development.Development127:1815–1822 Springer PS,McCombie WR,Sundaresan V,Martienssen RA(1995)Gene trap tagging of PROLIFERA,an essential MCM2–3-5-like gene in Arabidopsis.Science268:877–880 Steeves TA,Sussex IM(1989)Patterns in Plant Develop-ment.Cambridge University Press,Cambridge,UK Sundaresan V,Springer P,Volpe T,Haward S,Jones JDG,Dean C,Ma H,Martienssen R(1995)Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements.Genes Dev9: 1797–1810

Takada S,Hibara K-I,Ishida T,Tasaka M(2001)The CUP-SHAPED COTYLEDON1gene of Arabidopsis reg-ulates shoot apical meristem formation.Development 128:1127–1135Takatsuji H(1998)Zinc-finger transcription factors in plants.Cell Mol Life Sci54:582–596

The Arabidopsis Genome Initiative(2000)Analysis of the genome sequence of the flowering plant Arabidopsis thali-ana.Nature408:796–815

Timmermans MCP,Hudson A,Becraft PW,Nelson T (1999)ROUGH SHEATH2:a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science284:151–153

Tsiantis M,Schneeberger R,Golz JF,Freeling M,Lang-dale JA(1999)The maize rough sheath2gene and leaf development programs in monocot and dicot plants. Science284:154–156

Tsugeki R,Kochieva EZ,Fedoroff NV(1996)A transpo-son insertion in the Arabidopsis SSR16gene causes an embryo-defective lethal mutation.Plant J10:479–489 Vollbrecht E,Reiser L,Hake S(2000)Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene,knotted1.Development127: 3161–3172

Waites R,Selvadurai HRN,Oliver IR,Hudson A(1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum.Cell93:779–789

Weigel D,Alvarez J,Smyth DR,Yanofsky MF,Meyero-witz EM(1992)LEAFY controls floral meristem identity in Arabidopsis.Cell69:843–859

White JA,Todd J,Newman T,Focks N,Girke T,Mart?′nez de Ila′rduya O,Jaworski JG,Ohlrogge JB,Benning C (2000)A new set of Arabidopsis expressed sequence tags from developing seeds:the metabolic pathway from car-bohydrates to seed oil.Plant Physiol124:1582–1594 Zondlo SC,Irish VF(1999)CYP78A5encodes a cyto-chrome P450that marks the shoot apical meristem boundary in Arabidopsis.Plant J19:259–268

The Arabidopsis LATERAL ORGAN BOUNDARIES Domain Gene Family

网络游戏公司简介范文3篇(完整版)

网络游戏公司简介范文3篇 网络游戏公司简介范文3篇 网络游戏指以互联网为传输媒介,以游戏运营商服务器和用户计算机为处理终端,以游戏客户端软件为信息交互窗口的旨在实现娱乐、休闲、交流和取得虚拟成就的具有可持续性的个体性多人在线游戏。下面是网络游戏公司简介范文,欢迎参阅。 网络游戏公司简介范文1 边锋网络游戏是201X年8月整合入盛大网络旗下的边锋游戏和201X年12月整合入盛大网络旗下的游戏茶苑两家中国领先的棋牌游戏公司合并运营而成的。201X年边锋公司购回了盛大持有的股份,独自进行边锋网络游戏的运营,运营的游戏平台有: 纸牌类,如: 德清点子、五人原子、四人斗地主、原子、六扣、双扣、三扣 一、跑得快、斗地主、德州扑克、升级、红五等; 棋类,如: 三英战吕布、军旗翻翻棋、爆笑四国、陆战棋、黑白棋、双飞棋、五子棋、飞行棋等; 骨牌类,如: 新沈阳麻将、丽水麻将、富阳麻将、合肥麻将、德阳麻将、攀枝花麻将、自贡麻将、杭州麻将等; 对战类,如: 台球、对对碰、宇宙方块、斯诺克、疯狂火箭、俄罗斯方块、挖哈哈、连连看等。

桌游类,如: 三国杀online等等 201X年4月,盛大又将边锋连同浩方以35亿元的高价出售给浙报传媒集团,其中,浙报传媒为边锋估值3 1.8亿人民币,而盛大当年收购边锋的总代价为201X万美元,约合 1.64亿元人民币,8年之间,边锋增值30多亿元。 据浙报传媒公告显示,201X年杭州边锋营业收入4亿元,净利润 1.44亿元;201X年营业收入 6亿元,净利润9946万元。 网络游戏公司简介范文2 上海盛大网络发展有限公司 盛大文学通过整合国内优秀的网络原创文学力量,推动纸质书出版,加强第三方版权内容的数字化运营,构建全球领先的正版数字书城,旨在推动数字出版,引领数字阅读潮流,为消费者提供包括数字图书、网络文学、数字报刊等数字商品。并依托原创故事,推动实体出版、影视、动漫、游戏等相关文化产业的发展。 盛大在线作为专为无物流的文化和虚拟产品提供数字出版的服务平台,致力于提供基于云计算服务的综合解决方案。通过完善的统一登录、计费、内容分发、广告营销、搜索、客户关系服务等,为广大互联网用户和企业获取数字内容产品提供优选渠道和专业化的用户服务体系。 盛大游戏是中国领先的网络游戏开发商、运营商和发行商,致力于打造中国乃至全球领先的网络游戏平台。盛大游戏拥有201X多名自

优秀学生个人简历

优秀学生个人简历 姓名:XXX 性别:男 就读专业:人力资源 学号:XXX 宿舍号:6-626 籍贯:江苏省昆山市 出生年月:90.1 政治面貌:团员 原毕业学校:江苏省昆山市亭林中学 联系电话:xxx 在校期间任职情况: 时间班干部职务学生会职务 2005.9~2006.1(高一.上)劳动委员—— 2006.3~2006.6(高一.下)劳动委员劳动卫生部长2006.9~2007.1(高二.上)副班长兼劳动委员学生会主席2007.3~2007.6(高二.下)班长兼劳动委员学生会主席2007.9~2008.1(高三.上)副班长兼劳动委员学生会主席2008.3~2008.6(高三.下)劳动委员——

总结: 班干部方面:通过三年的班干部工作,给自己在管理能力等方面得到了很大的锻炼,也从中吸收了很多经验,平时工作时能积极主动配合班主任,勤沟通,认真贯彻、执行各项计划和决定,能发动、组织、带领全班同学开展各项活动,并且与学生相处友好。 学生会干部方面:能熟练地主持学生会日常工作及学生会的会议,对学生会的工作十分熟悉,能出色地完成学校下派的各项任务,曾多次被评为校级、昆山市级“优秀学生干部”称号,也夺得了学校领导老师及广大学生的一致好评。 在校期间所获荣誉: 时间奖项 2006年度第一学期在“班十佳”评选中获“班级工作好”称号; 2006年度第二学期获校“优秀学生干部”称号; 2006年度第二学期在优秀学生会干部评选中获“优秀学生会干部”; 2007年度第一学期获校“三好学生”; 2007年度第二学期在“班十佳”评选中获“班级工作好”称号; 2007年度第二学期获校“三好学生”; 2007年度第二学期在优秀学生会干部评选中获“优秀学生会干部”; 2007年6月被评为昆山市“优秀学生干部”; 2008年度第一学期获校“优秀学生干部”称号; 2008年3月在昆山市青少年法制宣传教育活动中,被评为“百佳学法小标兵”;

快递公司简介范文

快递公司简介范文 中国快递行业目前处于国内快递行业和国际快递巨头竞争激烈的环境中,相对国际快递巨头,中国民营快递公司处于比较弱势,中国国内快递企业多争夺于底端市场。中国快递业务发展程度还很低,现在得快递业务量还不到GDP的0.3%,与发达国家达到GDP的1%左右相比差距很大。下面是快递公司简介范文,欢迎参阅。 快递公司简介范文1 80后快递服务有限公司,是以服务为主体的公司。服务的范围包括有同城快递,物流配送,年节送礼,同行调货,门市宅长期配送服务。另外我们还计划推出80后商务套餐。以满足江城商务迅猛发展的快捷生活需求。 公司名称:武汉80后快递服务有限公司所属行业:快递,服务业企业性质:集体企业成立日期:20xx-4-30武汉80后快递服务有限公司公司的服务网络计划在两个月内完成建设,下一步招募专业人员组建一个为80后为主要人群服务的心理援助中心,帮助解决80后为主要人群在工作,学习,生活,恋爱,婚姻及家庭子女教育中遇到的各种问题。 快递公司简介范文2 申通快递 公司注册商标为“STO+申通”,注册编号为1379930。主要承接非信函、样品、大小物件的速递业务。20xx年3月公司通过ISO9001:20xx国际质量管理体系认证。 公司奉行“团结、务实、开拓、创新”的企业精神,“快速、准确、安全、周到、”的服务方针公司经营十余年来,已深得广大客户的信任和支持。 公司自1993年成立以来,在董事长、总经理陈德军的正确领导下,在广大客户的支持和关怀下,在全体员工的艰苦奋斗和顽强拼搏下,先后荣获上海市松江区民营企业20xx至20xx年度的《信得过企业》、《先进企业》荣誉称号;20xx年,公司荣获《中国物流十大影响力品牌》称号,公司董事长、总经理陈德军先生个人荣获《中国品牌建设十大杰出企业家》荣誉称号。 申通快递介入电子商务配送业务已经开始起步,并计划为新业务斥资千万,一套全新的标准化流程和服务标准已经设计完毕,软件系统也已具备代收货款功能,与几大电子商务网站的谈判正在进行。

优秀学生个性自我介绍范文

优秀学生个性自我介绍范文 在校学生个性的自我介绍 不负所望,本人是一个性格开朗的人,很喜欢笑,很喜欢与人沟通,交朋友,对每一件事物都很热情,责任感较强。可能是因为基因的遗传,本人特别爱好于体育,特别是羽毛球,篮球等。很高兴能参加三下乡,希望在这个义工活动中认识许多不同的朋友和让我得到实践的经验。 我是来自计算机技术系08软件技术web的周燕玲。出生的时候是在炎热的天气,那时有许多的小燕子落在屋檐上一唱一和,就改了“燕”字,可能是因为家人都希望我长大后是一位玲珑,活泼开朗的女孩,所以就改了“玲”字。从小到大,我都很喜欢这个名字,因为这是我的亲人给我的一种期望,真的感谢他们所赋予给我的。 不负所望,本人是一个性格开朗的人,很喜欢笑,很喜欢与人沟通,交朋友,对每一件事物都很热情,责任感较强。可能是因为基因的遗传,本人特别爱好于体育,特别是羽毛球,篮球等。很高兴能参加三下乡,希望在这个义工活动中认识许多不同的朋友和让我得到实践的经验。 以上是我的自我介绍,希望大家能够多方面地了解我,并且在工作中多多关照,谢谢! 小学生个性自我介绍范文 Hello!大家好,我叫王晓,现在在xx市xx小学五年级学习。 我有一张圆圆的脸,一双乌黑的眼睛,短头发。我今年12岁了,

不小了吧?却总也脱不掉那满脸的稚气。 我的爱好就是爱看书。说起看书,我还有一段小故事呢!那天,我看见我的一个同学买了一本《苦儿流浪记》,这本书我已经向往了许久,可是爸爸始终没有答应我的要求。我的自尊心很强,从小到大几乎没有央求过别人,这次,我硬着头皮,只好向他去借。谁知,他说可以是可以,可得拿动物图书跟与交换,我只好把书给他,向他要了那本《苦儿流浪记》。 我的缺点就是爱掉“金豆豆”。咳,你可别笑,这也是我的爱好哩!养的宠物死了,哭!受同学欺负,哭!考试不好,哭!看书看到感人处,鼻子一酸,又落下两排“大珍珠”。不过,我丝毫不觉得难为情,古人云:“当笑则笑,当哭则哭,无须掩饰。” 要说我不爱的,就数运动了。体育成绩自然不好了。三年级时,垒球扔个四五米顶天了,成绩还没过70分。不过,这个缺点,以后我要改。 我这个人,不仅爱哭爱笑,爱读书爱剪纸,还爱交朋友。你愿意和我交个朋友吗? 表达小学生个性自我介绍 大家好,我叫巫旖梦,今年10周岁,就读于梅州市梅师附小501班。 从我一踏进学校这个神圣的地方起,我就下定决心要努力学习,做个让老师满意的好学生,让家长放心的好孩子。 我现在担任班里的中队长和副班长,还是学校的大队劳动委员。

网络科技公司简介范文5篇

网络科技公司简介范文5篇Introduction of network technology company 编订:JinTai College

网络科技公司简介范文5篇 小泰温馨提示:写作是运用语言文字符号以记述的方式反映事物、表达思想感情、传递知识信息、实现交流沟通的创造性脑力劳动过程。本文档根据写作活动要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整修改及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:网络科技公司简介范文 2、篇章2:网络科技公司简介范文 3、篇章3:网络科技公司简介范文 4、篇章4:网络科技公司简介范文 5、篇章5:网络科技公司简介范文 网络公司不仅仅是提供域名注册、空间租用、网站开发、网站建设与网络营销活动策划相关的企业组织。下面是网络科技公司简介范文,欢迎参阅。 篇章1:网络科技公司简介范文

支付宝(xxx有限公司是国内领先的独立第三方支付平台,是阿里巴巴集团的关联公司。支付宝致力于为中国电子商务提供“简单、安全、快速”的在线支付解决方案。 支付宝公司从20xx年建立开始,始终以“信任”作为产 品和服务的核心。不仅从产品上确保用户在线支付的安全,同时让用户通过支付宝在网络间建立起相互的信任,为建立纯净的互联网环境迈出了非常有意义的一步。 支付宝提出的建立信任,化繁为简,以技术的创新带动 信用体系完善的理念,深得人心。在六年不到的时间内,为电子商务各个领域的用户创造了丰富的价值,成长为全球最领先的第三方支付公司之一。截止到20xx年12月,支付宝注册用户突破5.5亿,日交易额超过25亿元人民币,日交易笔数达 到850万笔。 支付宝创新的产品技术、独特的理念及庞大的用户群吸 引越来越多的互联网商家主动选择支付宝作为其在线支付体系。 目前除淘宝和阿里巴巴外,支持使用支付宝交易服务的 商家已经超过46万家;涵盖了虚拟游戏、数码通讯、商业服务、机票等行业。这些商家在享受支付宝服务的同时,还是拥有了一个极具潜力的消费市场。

红云希望小学的学乐云教学平台使用情况总结

学乐云平台使用 红云希望小学 自从市里推广学乐云平台使用之后,学校高度重视信息化教育手段在教育教学中的应用,采取了一系列的措施,推广使用学乐云这一平台,取得了良好的效果。 一、学校网站 学校在平台上注册了网站,建设丰富了网站内容,共设立了六大版块二十一个小版块: 1.校园时讯 校园新闻、教育前言、学校公告 2.教学科研 教学动态、科研成果、课题研究、论文教案 3.德育工作 少先队工作、德育活动、思想品德、心理健康 4.党建园地 堂屋学习、党队活动、党建宣传 5.校务公开 信息公开、规章制度、工作计划 6.图片校园 专题活动、美丽校园、对外交流、师生风采

老师和家长可以在网校上了解学校的基本情况、发展状态、活动开展、最新动态等,起到很好的宣传、交流的作用。 二、教师空间 学校为每个教师在学乐云平台进行了实名注册,教师依托平台中“教师端”设置的云盘、教案、预习、授课、作业等环节,提供的丰富教学资源,满足老师个性化备课需求。这样,每位教师在课余可以登录平台进行个人的教学设计、资源的整理和制作,同时还可以观看别人的优秀案例和经验,为自己的教学提供参考,提高教学设计的能力。我们鼓励老师们将日常生活中的感人事例、安全小知识、经典图片以及学生在平台上完成的作业等,上传到该平台,创造属于自己的个性化教案。上课时,直接用班级电脑登陆平台进行教学,课后,将自己的反思、问题通过平台进行反馈,或总结经验,或寻求帮助,学期末,将自己和学生积累的材料进行梳理,很快就能够形成个人的成长档案,提高了个人工作效率,方便、快捷,改变了以往教师应用复杂、费时费力的局面。 三、学生互动 老师利用手机布置电子作业,并通过手机将所备资源分享给学生及家长,即时查看全班同学参与情况并进行点评互动,大大减轻了工作负担,提升了工作效率。

【个人简介】优秀小学生个人简介4篇

小学生个人简介 小学生个人简介的自我介绍(1) 本人在校热爱祖国,尊敬师长,团结同学,乐于助人,是老师的好帮手,同学的好朋友。我学习勤奋,积极向上,喜欢和同学讨论并解决问题,经常参加班级学校组织的各种课内外活动。 在家尊老爱幼,经常帮爸爸妈妈做家务是家长的好孩子,邻居的好榜样。 小学几年我学到了很多知识,思想比以前有了很大的提高,希望以后能做一个有理想,有抱负,有文化的人,为建设社会主义中国做出自己的努力。 当然我也深刻认识到自己的不足,学习不是很勤奋,有时候做事情会只有三分钟热情,我相信只要克服这些问题,我就能做的更好。 本人能自觉遵守小学生守则,积极参加各项活动,尊敬师长,与同学和睦相处,关心热爱集体,乐于帮助别人,劳动积极肯干,自觉锻炼身体,经常参加并组织班级学校组织的各种课内外活动。 本人品德兼优、性格开朗、热爱生活,有较强的实践能力和组织能力。 学习之余,走出校门,本人珍惜每次锻炼的机会,与不同的人相处,让自己近距离地接触社会,感受人生,品味生活的酸甜苦辣。 短暂小学就要离去,我对自己的这六年的学习和生活做个总结。首先,小学让我懂得了学习的作用,不在于死记硬背,而是寓教于乐,关爱生活,虽然我学习进步的不是很快,但我知道学习是终生要奋斗

的事,我爱小学的学习生活。 其次,我培养了独立思维的好习惯。我知道以后的路很长,我要独立思考人生的苦与乐,我从许多老师身上学到了这些人生哲理,不是夸大其词,仅仅是发自内心的感受,要敢于面对错误,毕竟我很小,但我要独立思考自己的将来,把握自己的命运,走自己的路,让别人去说吧。 最后,我要感谢我父母,是他们让我对学习和生活有了更大的憧憬,我知道上完小学,以后的学海更需要我的耐力和毅力,是长辈们给了我这份信念,相信自己,我会大声说出我能行,万岁我的小学生活。 小学生个人简介的自我介绍(2) 大家好,我先自我介绍一下我姓陈,名叫松,是一个很平常的男孩,胖胖的的脑袋瓜子,留着一头帅气的头发。那浓浓的眉毛下嵌着一双炯炯有神的大眼睛。那高高的鼻梁似乎没怎么引人注意,反而是那叽叽喳喳的大嘴巴惹人喜欢。我现在虽上了五年级,但身高只有米。我正为我的身高烦恼呢。 我在班上算不上尖子生。但要是比体育项目的,那我可就是名列前茅了。(对不起,说得有些骄傲了)。我也是个”路见不平,拔刀相助“的人,只要朋友有难,我第一个冲过去帮助他,所以,我的知己才越来越多。可能也正是这样,我忙帮多了,头脑昏了,帮的倒忙也越来越多。 记得那一次,由于语文考试成绩是差上加差,最多也只是90分。老师大发雷霆,简直要置我们于死地,作业要我们把考卷(连短文)

系统集成公司简介范文

系统集成公司简介范文 系统集成商是指具备系统资质,能对行业用户实施系统集成的企业。下面是系统集成公司简介范文,欢迎参阅。 系统集成公司简介范文1 广州系统集成公司,专业为客户提供结构化布线系统、网络技术工程、程控交换机系统安装、监控安防系统、一卡通系统、音视频系统、机房建设等系统方案设计、施工及维护的服务。 “全面满足,不断超越,永创新高,打造行业领跑者形象”,公司一直秉承“以市场为导向、以客户为中心”的发展理念,以“团结、务实、拼搏、创新”为宗旨,不断苦练内功,随时为广大客户提供最优质的产品与服务。 系统集成公司长久以来一直努力的目标,就是协助客户建立最具竞争力的信息化系统,即协助客户去规划、建设和维护高性能的网络系统、可靠的网络安全建设、智能建筑系统等。并在业界树立了良好的口碑和有了很好的发展。如今,开建智能的服务网络覆盖多个地方并都设有办事机构。自建立以来,开建智能坚持的目标从不曾改变,凭借着其日益成熟的经营理念和专业水平,开建智能必将协助客户获取更强的竞争力。 专业而经验丰富的技术人力资源。开建智能的全体员工拥有专业的技术知识,并在大型系统、结构化网络系统、远程通讯、办公自动化、系统技术支持,和软件编写方面拥有丰富的经验。

系统集成公司简介范文2 中国电信集团系统集成有限公司成立于1996年,是中国电信集团公司的全资子公司。公司旨在为大客户提供ICT整体解决方案、为电信运营商提供应用软件开发和IT服务支撑、为中小企业客户提供综合信息化服务。 公司依托于中国电信全国垂直一体化的三级营销服务体系和运行维护体系,凭借中国电信丰富的网络资源、专业的电信及IT技术、优秀的技术团队、广泛的客户资源和行业知识,致力于为电信运营商、政府、金融、企业提供网络基础设施建设、网络升级及改造、网络管理服务、网络及设备代维服务、设备租赁、应用软件集成及开发、IT 服务支撑等“一站式”服务。 公司在为电信运营商、全国性大客户进行一系列大型网络建设和服务的过程中,归纳总结了一整套项目管理方法,形成了独特、完善的项目管理体系和实力强大的核心团队。公司通过了ISO9001(2000)质量管理体系认证。同时,还获得了信息产业部颁发的“计算机信息系统集成一级资质”和“通信信息网络系统集成甲级资质”,是国内第一家拥有“双一级”资质的系统集成企业。 公司将站在客户的角度思考客户的业务运营,通过对客户业务运营流程以及信息化需求的全面理解,为客户提供创新而适用的综合信息化解决方案和ICT支撑服务,提升客户价值,与客户共同成长。 系统集成公司简介范文3 联通系统集成有限公司是中国联通的全资子公司,注册资金亿元,

学乐云操作说明(电脑版)(1)

学乐云教学平台操作说明------教师账号(电脑版)

目录 一、登陆.................................................................................................................... - 2 - 1、电脑登陆 ...................................................................................................... - 2 - 2、初始使用设置 .............................................................................................. - 3 - 二、如何绑定手机号?............................................................................................ - 5 - 三、如何添加更改教材版本或班级?.................................................................... - 6 - 四、如何上传、查看、收藏、下载、分享资源?................................................ - 8 - 1、上传资源 ...................................................................................................... - 8 - 2、查看收藏资源 .............................................................................................. - 9 - 3、下载、分享资源 ........................................................................................ - 10 - 五、如何备课?...................................................................................................... - 11 - 1、使用电子课本 ............................................................................................ - 11 - 2、使用云盘资源 ............................................................................................ - 13 - 3、输入文字 .................................................................................................... - 13 - 4、使用题库 .................................................................................................... - 14 - 5、保存课件 .................................................................................................... - 14 - 六、如何在电子白板(一体机)上课使用?...................................................... - 15 - 1、班级没有网络时离线授课 ........................................................................ - 15 - 2、班级里有网络时在线授课 ........................................................................ - 16 - (1)、截图功能分享重点 ....................................................................... - 16 - (2)、计时功能音乐提醒 ....................................................................... - 16 - (3)、随机点名机会公平 ....................................................................... - 17 - (4)、画线功能实虚立显 ....................................................................... - 17 - (5)、橡皮擦清除部分或全部 ............................................................... - 18 - (6)、随堂反馈师生互动 ....................................................................... - 18 - (7)、几何工具辅助练习 ....................................................................... - 20 - 七、教师网络空间.................................................................................................. - 21 - 八、撰写教案.......................................................................................................... - 21 - 九、发布通知-家校通功能 .................................................................................... - 22 -

优秀学生干部个人简历模版

☆基本信息 姓名:X X X毕业院校:安徽大学专业:通信工程 性别:男出生年月:1986.10 民族:汉 联系电话:137xxxxxxxx 0551-386xxxx 籍贯:安徽省亳州 联系地址:皖合肥市安徽大学磬苑校区2005级通信工程(230601) 电子邮箱:xxxxxxxxxxx ☆求职意向(技术类) ☆教育经历2005年9月-2009年7月安徽大学通信工程(本科)工学学士☆个人技能 英语方面通过CET-4,并具有基础的英语听说读写能力 日语方面日语初级水平,简单会话 计算机方面通过国家计算机二级C;掌握简单的C语言及汇编语言编程; 熟练使用Protel DXP 进行PCB电路设计;熟练使用Ms Office等常用办公软件 ☆实践经历 2007.09 –-2008.01 参加创新实验《多功能节电控制器》的研究与制作2008.07—2008.09 参加“2008安徽大学第二届机器人剧场赛”,并获季军和最佳啦啦队奖2008.09.01—09.15 专业实习:合肥大蜀山发射台、安徽四创电子股份有限公司2005.10—2008.03 院学生会治保部副部长、权益部部长 2007.07 参加2007年安徽大学暑期社会实践重点团队并获暑期社会实践先进个人2008.04至今院团委宣传委员兼院团学新闻中心主任 2008.04至今创建安徽大学XX协会,并担任第一任会长 2008.05至今班级XXX(如班长、生活委员等) ☆所获证书 2008年9月获“2008安徽大学第二届机器人剧场赛”,季军和最佳啦啦队奖2007—2008学年获安徽大学学习优秀奖三等、团学工作奖一等、“优秀学生干部标兵”2005—2006学年获安徽大学“优秀学干” 2006—2007学年获安徽大学“优秀团员”、“社会活动积极份子”、获院“优秀学生会干部”2007年获安徽大学“优秀团干”、“暑期社会实践先进个人” ☆所修课程 基础课:电路分析基础、线性电子线路、通信电子线路、脉冲与数字电路、信号与线性系统、电磁场与电磁波、EDA技术、数字信号处理、单片机原理、微机原理与接口技术 核心课:通信原理、程控交换原理、通信网基础、数字移动通信、光纤通信原理、C语言程序设计☆自我评价 积极乐观、为人诚实、做事认真细心、能吃苦耐劳、较强的学习能力、注重理论联系实践; 较强的组织协调能力、活动策划能力、人际交往能力、强烈的责任感和团队合作精神

手游公司简介范文1

手游公司简介范文1 随着手游功能的开发,90%手机上玩游戏的也越来越多了。下面是手游公司简介范文,欢迎参阅。 手游公司简介范文1 深圳市手游界网络有限公司 手游tv是一家关注手机游戏行业发展、为移动开发者、发行商、移动游戏行业提供高价值的业内新闻资讯、数据报告等的公司。公司位于深圳市南山区科技园。 手游tv的主要产品是游戏助手。 手游tv是untiy及国内多家知名游戏媒体的合作伙伴。 手游公司简介范文2 梦想手游 公司概况 “梦想手游”是国内新兴的、专注于移动游戏的发行商。总部设立在广州,核心团队汇聚了数十名拥有手游发行和运营经验的专业人才。 发展历史 从手机游戏的发行、运营到营销各个环节,人员配置,深谙国内ios及安卓平台发行模式。梦想手游已获得国内机构逾亿元投资,在2014年发行数款重量级手游产品,将占据中国手游发行市场一席之地。 金鹰卡通核心动漫ip手游《哪鹅快跑》今日正式上线。日前,金鹰卡通高调宣布将投2亿打造哪鹅ip产业链,而《哪鹅快跑》的上线也意味着梦想手游正式入局金鹰卡通动漫生态圈。

手游公司简介范文3 宝开游戏公司(popcap games),是休闲游戏的开发商和发行商,在2000年由john vechey, brian fiete 和jason kapalka共同建立,总部位于美国的西雅图,截至2009年,已发展到180多个员工。 popcap【宝开】的出名作游戏是bejeweled(宝石迷阵),一个转换宝石的消除类游戏,因该款游戏在2002年获得了cgw hall of fame奖项。 2011年7月,popcap被美国电子游戏产业巨头艺电(ea)收购。 [1] 2014年3月为了适应在移动游戏中为玩家提供在线服务,以及开发新ip的需求宝开进行了裁员。 手游公司简介范文4 中国手游集团有限公司(即中国手游)是国际领先的移动游戏开发商与发行商,专注于移动游戏的开发及发行。 cmge中国手游于2012年9月25日登陆美国纳斯达克(nasdaq:cmge),cmge中国手游是国内首家登陆纳斯达克的手机游戏公司。 cmge中国手游以“公正尽责合作创新”为企业价值观,坚持“用户第一”的理念,致力于为用户提供出色的产品和有效的服务,持续创新,提升玩家体验,创造手机游戏与社会文化相融合的环境,从而实现“移动游戏快乐生活”的品牌倡导。 企业文化 愿景:成为国际一流的移动游戏开发商与发行商 价值观:公正尽责合作创新 品牌倡导:移动游戏快乐生活!

(完整版)学乐云学习心得1

浅谈“学乐”云平台的优化教学的基本功能 马场小学黄文平 什么是“学乐云教学平台”?它给教育带来了什么新的希望,竟能在一夜之间“俘获众生”?为什么如此多的教师和校长积极地将它引入课堂呢?是因为学乐云” 教学平台通过用技术优化教与学,让管理更高效,让教学更轻松、让学习更快乐。 一、让管理更加高效 区域教育管理者可以登录平台浏览该区域内各个学校的教学情况,并及时作出相应指导。同时,平台会自动记录所有教师的备课教案、教学目标等全过程,也会记录学生的日常练习、成绩等信息,并生成大数据分析报告,能够帮助教学和校园管理工作更加规范与高效。 二、让教学更加轻松 “教师端”设置了云盘、教案、预习、授课、作业等环节,并提供了丰富的课件资源,支持老师个性化编辑。比如《桂林山水》这节课,老师只要打开平台,已经集成了桂林山水视频、音频、图片和PPT的课件几分钟就可以制作好,保存即可上课。同时,老师可以发起互动话题,交流教学心得,还可以看到每位学生作业的完成情况,并对作业进行批注和点赞。 三、让学习更加有趣 “学生端”设有云作业、云学习、同步课堂、个人空间等模块,每个学生都有实名制的互动学习空间。学生可以通过手写拍照,语

音传送,视频拍摄等方式完成作业,可以随时翻阅老师上课的课件,回顾自己没有听懂的地方。而且,从作业的质量、完成速度到课后学习巩固、经验分享,这些学生的“动作”都会被系统记录下来,形成学习的大数据。同时,小伙伴之间还可以互相鼓励、点赞与交流。 四、让沟通更加便捷 家长可以在平台中以多种方式参与到学校的教学过程中。比如,家长可以参与到学生课堂和作业的过程当中,转变之前只检查作业的“严”形象。同时,家长可以通过平台反馈孩子课外学习与生活情况,也能够在线与老师进行及时沟通,让“家校共育”之路变得更加通畅。

铁西第二小学使用学乐云教学平台经验介绍

云平台助力教与学兴趣效率齐提升 ————乌兰浩特市铁西第二小学 2016.6.3 在信息化浪潮的袭卷下,我校作为乌兰浩特市信息化推进工作的六所试点校之一,借助于学乐云教学平台引领教师迅速踏上了信息高速路。学乐云优秀的平台设计理念,独特的版块设计,丰富的教学资源、简单易学的操作,借助网络的全面覆盖,为我们这样一所处在城乡结合部的小学校,稼接上了信息化的翅膀。 一、作为年度目标,强力整体推进 为突出发挥学乐云作用,学校将信息化作为年度个性化办学目标。制定了2016年信息化工作实施方案,云平台的使用被列为重中之重,保证了工作的顺利开展。 二、师生全员培训,共同参与互动。 我校现有24名专任教师,195名学生(大多数父母均无固定工作),只有28%的学生在家能够利用手机或电脑上网。为了推进云平台的使用,促进教育教学信息化水平的提升,我校于2015年12月、2016年3月对全体师生分别进行了两次云平台使用的专题培训。经过培训,师生基本能够熟练使用云平台;同时利用校讯通和电话等工具不断与家长沟通,解决了部

分学生上网终端不足的问题;并于3月末召开了家长会,在会上校长亲自对家长讲解使用云平台的目的和意义,介绍了近一段时间学生使用情况;并请优秀家长介绍使用云平台前后学习的收获、变化,极大的促进了家长观念的转变,近30%的家长迅速为学生新购置了上网终端。 三、开放平板教室,弥补终端不足 因部分学生无法解决上网终端,学校开学初就决定开放我校现有的一个平板电脑教室,安排辅导教师,在每周一、周三、周四下午让学生自由使用平板电脑查阅资料、上传作业。 四、作业批改前置,提升学习效率。 1、我们利用学乐云教学平台的网络优势,要求学生在固定的时间段上传作业,教师在同一时间内进行批改,发现问题,一对一讲解,评价后学生及时改错后二次上传,养成了认真完成作业和及时改正的好习惯。 2、同时同学们在班级圈内晾晒作业、互动点评、互帮互助,学习气氛空前活跃,学习状态迅速改变。 家长说:“再也不用提醒写作业了,回家的第一件事就是赶紧写作业,赶紧发到班级圈,希望得到老师同学的肯定,更希望为求助的同学帮个小忙,学乐云

十佳优秀学生自我介绍 优秀十佳大学生自我介绍

十佳优秀学生自我介绍优秀十佳大学生自我介绍 在竞选十佳大学生时,要想秀出自己的话,还是需要讲点技巧的,让我们一起来探讨一下应该如何介绍自己吧!以下是小编为你整理的十佳大学生自我介绍,希望大家喜欢。十佳大学生自我介绍篇1 尊敬的各位老师,各位同学: 大家下午好!我叫徐姗,是09级生物师范班学习委员,同时担任我院学生通讯社社长,学工助理,校博物馆讲解队队长等职务。 向院里提出“十佳大学生”的申请,是因为我和在座的各位同学一样,都觉得这是一份可贵而难得的荣誉,并且十分渴望得到她,这是我心里的实话,如若不然,现在也不会勇敢地站在这里了。我想,作为一个学生,一个学生干部,除了希望自己能够尽己所能没有遗憾地完成该做的事情以外,其实更希望的是能够被别人肯定,从而拥有继续努力下去的信心。我想,喜欢荣誉不是一个人的错,在追求荣誉的过程中获取到更有价值的东西,才是关键的意义之所在! 进入湖大之后,终于感觉到足够的自由空间,那时候,我笑称自己如鱼得水,因为有着那么多的时间去做自己喜欢的事情,有那么多的平台去展示自己,有那么多的机会去结识许多志趣相投的朋友。 在学习方面,迄今为止,我已经以较高的分数通过了大学英语四六级考试以及计算机二级考试,并且获得三等奖学金。 在活动方面,刚入校不久,我代表院里参加了校建国六十周年演讲暨普通话风采大赛,初露锋芒,捧回一个二等奖。与楚才学院一位学长合作,全程英语主持了校第四届英语朗诵大赛,随后在校第四节英语翻译大赛口译中获得第五名。院级辩论赛,挑战着心里的胆怯,担任了辩论队四辩的角色,却意外获得最佳辩手。在英语学习月期间,主持了英语电影配音大赛,并且在英语风采大赛中获得了一等奖。 在工作方面,有幸加入校英语广播电台,主持每周二的英语广播节目,被评为优秀工作人员。后来,学校博物馆招聘讲解员,经过层层的筛选,我成为了其中一位,并且做了讲解队队长。在此期间,接待了无数国内专家学者、巴西孔子学院等国外高校访问团、各学院回访校友,中小学师生以及武汉周边市民,并且与武汉科技大学讲解团队进行了相互的访问,组队与武汉市博物馆纪念馆一起参加讲解员大赛促进交流与学习。去年12月份,院内三大组织新闻部合并为学生通讯社,承蒙大家的抬举,让我做了社长。接手工作以来,我一直紧密团结社内成员,在幕后竭尽全力、默默无闻地为学院做着各种新闻宣传报道工作,在校网站校报的发稿量相比于往年有明显的提高。我们积极与校记者团合作,向楚天都市报、楚天金报等校外媒体投发我院的宣传稿件,也获得了一定的成效。作为班上的学习委员,对于班上的各项事务,我一直尽职尽责地去做,并且时常与班主任以及其他班委交流,积极为班级建设献计献策。 我时刻牢记一个中共党员所要起到的先锋模范带头作用,积极要求上进,严格要求自己的行为,在生活中与老师和同学们相处地十分融洽。 我习惯去反省与思考,也自知在很多方面还做的不够。今天来参加”十佳大学生”的评选演讲,,一方面的想法也是想知道在我身边那么多优秀的学生,他们是怎样走过的这些大学时光,我与他们的差距究竟在于哪里,还需要在那些方面去努力。 熊老师总笑我是一匹野马,我在心里很感激这样一句评价,因为真的很感谢老师能这样去理解我。然而我希望,自己不仅仅是一匹野马,更希望是一匹有分寸,有理性,有闯劲,却又不失棱角的野马。最最重要的是做一匹能被在座的各位伯乐所赏识的马。谢谢大家!十佳大学生自我介绍篇2

网店公司简介范文

网店公司简介范文 网店是现在流行的在网上利用网络开的店,那么开一个网店该怎么给它做一个简介呢?下面是橙子为你带来的网店公司简介范文,仅供参考。 网店公司介绍范文篇1 欢迎光临本店,您的支持是我们最大的前进动力,本店所有产品均低价销售,并且保证质量,需要的亲请放心购买,我们一定会给您一个最舒心的购物体验! 本店所有的商品照片为专业摄影师拍摄,后期精心修制及色彩调整,尽量与实际商品保持一致,但由于拍摄时用光、角度、显示器色彩偏差、个人对颜色的认知等方面的差异,导致实物可能会与照片存在一些色差,最终颜色以实际商品为准。请在购买前与我们客服充分沟通后做出慎重选择。色差问题将不被我们认可当退换货的理由! 欢迎光临本店!本店提供优质的商品,完美的售后服力,让您买得放心,买得舒心!所有商品价格已经是最低,请勿议价!有任何疑问请与下面亮灯客服联系,将为您提供耐心解答! 本店郑重承诺,我们将一如既往为各位顾客带来优质的服务!三年来,我们一步一个脚印的成长着,能够做到性价比最优,请各位放心购买!本店默认XX快递,如有特别要求联系客服备注!有任何问题请联系亮灯客服。 本店主营XX系列的网店,本省独家代理!保证质量,款式多多!

价格优惠!望广大朋友给予支持! 谢谢! 网店公司介绍范文篇2 汉中市春雨农业产业开发有限责任公司成立于1998年,现公司已拥有大米精加工厂、特色食品加工厂、玉米金色食品加工厂、技术研究所、营销公司等。在西安、兰州、北京、武汉、上海、太原、广州等20多个大中城市设有销售分公司,形成了固定的销售网络。公司20xx年底总资产6199万元,其中固定资产3024万元,公司占地面积52350㎡,建筑面积26000㎡,职工526人,现已具有年产万吨精米、3000吨橡果、蕨根等系列绿色营养食品、5000吨玉米方便食品的纯天然农副产品深加工能力。20xx年产值6352万元,销售收入达6200万元,年创利税600万元。企业多次荣获省、市级优秀企业、科技明星、重合同守信用等称号,被农业银行评为“AAA”级资信企业,同时被省、市、区政府认定为农业产业化重点龙头企业、陕西省科技创新型企业、陕西省专利技术孵化重点单位。通过了ISO9001:20xx国际质量管理体系认证,被国家农业部评为“全国新农村建设百强示范企业”和“全国乡镇企业创名牌重点企业”。 公司立足汉中这一国家级绿色产业基地,开发出21世纪纯天然绿色(有机)食品五大系列60多个品种,产品多次获得国家级金奖及发明专利,其中纯玉米方便面和玉米超细粉生产技术已获得国家发明专利,部分产品已通过国家绿色食品认证、有机食品和QS认证,所有产品获得“C”标认证。“老玉米营养 1粉”系列方便食品和“橡果

优秀学生个人简历-个人简历范文

优秀学生个人简历-个人简历范文-第一范文网 姓名:方燕彬 性别:男 就读专业:人力资源 学号:2008050119 宿舍号:6-626 籍贯:江苏省昆山市 出生年月:90.1 政治面貌:团员 原毕业学校:江苏省昆山市亭林中学 联系电话:xxx 在校期间任职情况: 时间班干部职务学生会职务 2005.9~2006.1(高一.上)劳动委员 2006.3~2006.6(高一.下)劳动委员劳动卫生部长 2006.9~2007.1(高二.上)副班长兼劳动委员学生会主席 2007.3~2007.6(高二.下)班长兼劳动委员学生会主席 2007.9~2008.1(高三.上)副班长兼劳动委员学生会主席 2008.3~2008.6(高三.下)劳动委员 总结: 班干部方面:通过三年的班干部工作,给自己在管理能力等方面得到

了很大的锻炼,也从中吸收了很多经验,平时工作时能积极主动配合班主任,勤沟通,认真贯彻、执行各项计划和决定,能发动、组织、带领全班同学开展各项活动,并且与学生相处友好。 学生会干部方面:能熟练地主持学生会日常工作及学生会的会议,对学生会的工作十分熟悉,能出色地完成学校下派的各项任务,曾多次被评为校级、昆山市级优秀学生干部称号,也夺得了学校领导老师及广大学生的一致好评。 在校期间所获荣誉: 时间奖项 2006年度第一学期在班十佳评选中获班级工作好称号; 2006年度第二学期获校优秀学生干部称号; 2006年度第二学期在优秀学生会干部评选中获优秀学生会干部; 2007年度第一学期获校三好学生; 2007年度第二学期在班十佳评选中获班级工作好称号; 2007年度第二学期获校三好学生; 2007年度第二学期在优秀学生会干部评选中获优秀学生会干部; 2007年6月被评为昆山市优秀学生干部; 2008年度第一学期获校优秀学生干部称号; 2008年3月在昆山市青少年法制宣传教育活动中,被评为百佳学法小标兵; 2008年度第二学期获校三好学生。 党员年终工作总结范文

网络科技公司简介范文

网络科技公司简介范文 支付宝公司从2004年建立开始,始终以“信任”作为产品和服 务的核心。不仅从产品上确保用户在线支付的安全,同时让用户通 过支付宝在网络间建立起相互的信任,为建立纯净的互联网环境迈 出了非常有意义的一步。 支付宝提出的建立信任,化繁为简,以技术的创新带动信用体系完善的理念,深得人心。在六年不到的时间内,为电子商务各个领 域的用户创造了丰富的价值,成长为全球最领先的第三方支付公司 之一。截止到2010年12月,支付宝注册用户突破5.5亿,日交易 额超过25亿元人民币,日交易笔数达到850万笔。 支付宝创新的产品技术、独特的理念及庞大的用户群吸引越来越多的互联网商家主动选择支付宝作为其在线支付体系。 有我科技是一家集软件研发、电商运营、品牌孵化的复合化科技公司,旗下还有一个军旅风格的童装品牌-TimeHawk,已获得国家商 标局的TM。TimeHawk消费人群是一些喜欢户外或军旅运动的80、 90后爸爸、妈妈,TimeHawk在未来的目标是通过网上销量,吸引实 体加盟,并把加盟地区的网上销售利润,全部分配给区域加盟商的 从网络到实体O2O模式。 中山丰尚网络科技公司(以下简称丰尚网络),前身为中山丰尚网络工作室,是一家集互联网制作及设计于一体的现代设计公司,创 办于滨海城市及伟人故里-中山。现隶属于中山市丰尚广告策划有限 公司。丰尚-仁者丰德,智者尚诚! 作为新兴的电子商务应用服务商,丰尚网络将市场定位于以企业互联网电子商务平台及企业信息化建设为基点,提供全方位的设计 与应用方案。以网站建设及网络营销整合作为其主打服务产品之外,丰尚网络的服务范围还包括网站推广、企业形象设计(VI设计)、域 名注册、虚拟主机、企业电子邮局、软件开发、平面设计、界面设 计等多方位优质服务。

相关文档
相关文档 最新文档