文档库 最新最全的文档下载
当前位置:文档库 › 初中数学最短路径问题的讨论以及解决策略

初中数学最短路径问题的讨论以及解决策略

初中数学最短路径问题的讨论以及解决策略
初中数学最短路径问题的讨论以及解决策略

初中数学最短路径问题的讨论以及解决策略

最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。

解题总思路:找点关于线的对称点实现“折”转“直”,利用平移把“折”转“直”,利用平面展开图把“折”转“直”。

一、运用轴对称解决距离最短问题利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离。

基本思路是运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.

注意:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.

1、两点在一条直线异侧

例:已知:如图,A,B在直线L的两侧,在L上求一点P,

使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两

点之间线段最短.)

2、两点在一条直线同侧

例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.

解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关

于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,

则点C 就是所求的点.

应用1、(2009年达州)在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).

2、(2009年抚顺市)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( ) A .23 B .26 C .3 D .6

3、(2009年鄂州)已知直角梯形

ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17

17

2

B 、

17174

C 、

17178

D 、3

3、一点在两相交直线内部

例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求

分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小

4、两个点在矩形内部

例:已知矩形ABCD 内有两个点M 、N ,过M 击球到CD 边P ,然后击到BC 边Q ,然后到N,则小球所走的最短路线?

二、利用平移确定最短路径选址通过平移,除去固定部分的长,使其余几段的和正好为

两定点之间的距离。

选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.

解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的

A

D

E

P

B

C

问题.

在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.

例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,

则点M 为建桥的位置,MN 为所建的桥。

证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:

AC+CD+DB=AC+CD+CE=AC+CE+MN,

在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,?可使所修的渠道最短,试在图中确定该点。

作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。

证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC

在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB

所以抽水站应建在河边的点D 处,

例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上

摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?

作法:1.作点C 关于直线 OA 的对称点点D, 2. 作点C 关于直线 OB 的对称点点E, 3.连接DE 分别交直线OA.OB 于点M.N ,

则CM+MN+CN 最短

例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。

作法:1.作点C 关于直线 OA 的 对称点点F, 2. 作点D 关于直线 OB 的对称点点E, 3.连接EF 分别交直线OA.OB 于点G .H ,

·

·

C

D

A

B E a A

O

B

E N

C

M A· B

M

N

E A

O

B

D

·

C

H F

G E

D

则CG+GH+DH 最短

四、求圆上点,使这点与圆外点的距离最小的方案设计

在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

例:一点到圆上的点的最大距离为9,最短距离为1,则圆的半径为多少? (5或4)

三、利用展开图求立体图形表面上小虫的最短路线问题。通过展开立体图形的表面或侧面,化立体为平面,化曲线或折线为直线,利用两点之间线段最短解决问题。

1.台阶问题

(1)如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?

析:展开图如图所示,

AB=1312522=+cm

(2)如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD 平行且>AD ,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精确到0.01米)

分析:解答此题要将木块展开,然后根据两点之间线段最短解答. 解:由题意可知,将木块展开,相当于是AB+2个正方形的宽, ∴长为2+0.2×2=2.4米;宽为1米. 于是最短路径为:

=2.60米.

2.圆柱问题 、点在圆柱中可将其侧面展开求出最短路程

将圆柱侧面展成长方形,圆柱体展开的底面周长是长方形的长,圆柱的高是长方形的宽.可求出最短路程

(1)如图所示,是一个圆柱体,ABCD 是它的一个横截面,AB=,BC=3,一只

蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为( )

A .7

B .

C .

D .5

A

B

5

31

A

B

5

(3+1)×3=12

分析:要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果. 解:将圆柱体展开,连接A 、C , ∵

=

=?π?

=4,BC=3,

根据两点之间线段最短,AC=

=5.

故选D .

(2)有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?

析:展开图如图所示,AB=1312522=+m

变式1:有一圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?

析:展开图如图所示,AB=1312522=+m

变式2: 桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖。问小虫至少爬多少厘米才能到达蜜糖所在的位置。

析:展开图如图所示,做A 点关于杯口的对称点A ‘

。则BA ‘

=1512922=+厘米

3.正方体问题

(1)如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是

A

B

A

B

C

A B

A

B

A

A B

A

B

c

( ).

(A )3 (B )

5 (C )2 (D )1

析:展开图如图所示,AB=52122=+

4.长方体问题

1)将右侧面展开与下底面在同一平面内,求得其路程 2)将前表面展开与上表面在同一平面内,求得其路程 3)将上表面展开与左侧面在同一平面内,求得其路程了 然后进行比较大小,即可得到最短路程.

(1)有一长、宽、高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为( )

A .5cm

B .cm

C .4cm

D .3cm

分析:把此长方体的一面展开,在平面内,两点之间线段最短.利用勾股定理求点A 和B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得. 解:因为平面展开图不唯一,

故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.

(1)展开前面、右面,由勾股定理得AB 2=(5+4)2+32

=90;

(2)展开前面、上面,由勾股定理得AB 2=(3+4)2+52

=74;

(3)展开左面、上面,由勾股定理得AB 2=(3+5)2+42

=80; 所以最短路径长为cm .

(2)如图是一个长4m ,宽3m ,高2m 的有盖仓库,在其内壁的A 处(长的四等分)有一只壁虎,B 处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为( )

A .4.8

B .

C .5

D .

分析:先将图形展开,再根据两点之间线段最短可知. 解:有两种展开方法:

①将长方体展开成如图所示,连接A 、B ,

根据两点之间线段最短,AB=

=

②将长方体展开成如图所示,连接A 、B ,则AB=

=5<

所以最短距离 5

A

B

C

A

B

C

2

1

A

B

D C D 1

C 1

4

2

1

AC 1=√42+32=√25;

A

B B 1

C

A 1C 1

4

1

2

AC 1=√62+12=√37;

A 1A

B 1

D 1

D 1

C 1

4

2

AC 1=√52+22=√29 .

(3) 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?

析:展开图如图所示,372925<<

路线1即为所求。

长、宽、高中,较短的两条边的和作为一条直角边,最长的边作为另一条直角边, 斜边长即为最短路线长。

例:如图,AB 为⊙O 直径,AB=2,OC 为半径,OC ⊥AB,D 为AC 三等分点,点P 为OC 上的动点,求AP+PD 的最小值。 分折:作D 关于OC 的对称点D ’,于是有PA+PD ’≥AD ’,

(当且仅当P 运动到P o 处,等号成立,易求AD ’=3。 5、在圆锥中,可将其侧面展开求出最短路程

将圆锥侧面展开,根据同一平面内的问题可求出最优设计方案

例:如图,一直圆锥的母线长为OA=8,底面圆的半径r=2,若一只小蚂蚁从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则蚂蚁爬行的最短路线长是 (结果保留根式)

小虫爬行的最短路线的长是圆锥的展开图的扇形的弧所对的弦长, 根据题意可得出:2πr=n.π.OA,/180则, 则2×π×2= , 解得:n=90°,

由勾股定理求得它的弦长AA

n ×π×8 180

1

A

B A 1B 1D C

D 1C 12

4

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据: 两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于 点C,则点C就是所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于 点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何 A·M 处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥 N E

要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在 河边什么地方,?可使所修的渠道最短,试在图中确定该点。 作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。 证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD, ∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB 所以抽水站应建在河边的点D 处, 例:某班举行晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C 关于直线 OA 的对称点点D, 2. 作点C 关于直线 OB 的对称点点E, 3.连接DE 分别交直线OA.OB 于点M.N , 则CM+MN+CN 最短 例:如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮 · · C D A B E a

初中数学最短距离问题

最短距离问题 1. 如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值. 2. 如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A . B . C .3 D 3. 在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝ 4. 一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式; (2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标. 第题 A B P R Q 图3 A D E P B C

5.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____. 6.如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近 作法:设a、b的距离为r。①把点B竖直向上平移r个单位得到点B'; ②连接AB',交a于C;③过C作CD b于D; ④连接AC、BD。 证明:∵BB'∥CD且BB'=CD,∴四边形BB'CD是平行四边形,∴CB'=BD ∴AC+CD+DB=AC+CB'+B'B=AB'+B'B 在a上任取一点C',作C'D',连接AC'、D'B,C'B' 同理可得AC'+C'D'+D'B=AC'+C'B'+B'B,而AC'+C'B'>A B',∴AC+CD+DB最短。7.如图,矩形ABCD中,AB=20,BC=10,若AC,AB是各有一个动点M,N,求BM+MN最小值. 8.如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .

初中数学问题解决地案例

最短距离问题 摘要:最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题。几何中的最短路线问题是中考热点之一,往往与两点之间线段最短、垂线段最短、轴对称、勾股定理息息相关。

案例问题: (1)如图:一辆汽车在直线公路AB上由A向B行驶,M、N 分别表示位于公路AB两侧的村庄,当汽车行驶到什么位置时,到村庄M、N的距离之和最短?理由是? (2)如图:一辆汽车在直线公路AB上由A向B行驶,若村庄M、N在公路AB的同侧,当汽车行驶到什么位置时,到村庄M、N的距离之和最短?请简单证明。

解决问题: 一 建立几何模型: 案例问题(2)可以转化为数学问题: 如图(1),在直线a 同侧有A,B两点,在直线a 上找一点M ,可使MA+MB 的值最小? 二 几何模型的解决 你可以在a 上找几个点试一试,能发现什么规律? 思路分析:如图2,问题就是要在a 上找一点M ,使AM 与BM 的和最小。设A ′是A 的对称点,本问题也就是要使A ′M 与BM 的和最小。在连接A ′B 的线中,线段A ′B 最短。因此,线段A ′B 与直线a 的交点C 的位置即为所求。 如图3,为了证明点C 的位置即为所求,我们不妨在直线a 上另外任取一点N ,连接AN 、BN 、A ′N 。 因为直线a 是A ,A ′的对称轴,点M,N 在a 上,所以AM= A ′M,AN= A ′N 。

∴AM+BM= A ′M+BM= A ′B 在△A ′BN 中, ∵A ′B <A ′N+BN ∴AM+BM <AN+BN 即AM+BM 最小。 三 几何模型应用: 两条直线间的对称 题目1 如图,在旷野上,一个人骑马从A 出发,他欲将马引到河a1饮水后再到a2饮水,然后返回A 地,问他应该怎样走才能使总路程最短。 点评:这道题学生拿到时往往无从下手。但只要把握轴对称的性质就能迎刃而解了。作法:过点A 作a1的对称点A ′,作a2的对称点A 〞,连接A ′A 〞交a1、a2于B 、C,连接BC.所经过路线如图5: A-B-C-A,所走的总路程为A ′A 〞。 A C 第1题图 第2题图

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、 两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短. 解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点. 三、一点在两相交直线内部 例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小. 解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求 分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥。 A· B M N E

初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题”。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变 式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之间线 段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街 道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的 点. 三、一点在两相交直线部 例:已知:如图A是锐角∠MON部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小. 解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM, ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周 长最小

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中, 关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用。理论依据:“两点之间线段最短” ,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。考的较多的还是“饮马问题” 。 知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题” ,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直” ,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB 与直线L 的交点P ,就是所求。(根据:两点之间线段最短.) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短. 解:只有A、C 、B在一直线上时,才能使AC +BC最小.作点A 关于 直线“街道”的对称点A′,然后连接A ′B,交“街道”于点C,则 点C 就是所求的点. 、一点在两相交直线内部 例:已知:如图A 是锐角∠ MON 内部任意一点,在∠ MON 的两边 OM ,ON 上各取一点B,C ,组成三角形,使三角形周长最小.

解:分别作点A 关于OM ,ON 的对称点A ′,A OM ,ON 于点B、点C ,则点B、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长 最小 例:如图,A.B 两地在一条河的两岸,现要在河 上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E, 2.连接AE 交河对岸与点M, 则点M 为建桥的位置,MN 为所建的桥证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE 中,∵ AC+CE >AE, ∴AC+CE+MN >AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。 例:如图,A、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,?要在河边建一个抽水站,将河水送到A、B 两地,问该站建在 连接A ′,A ″,分 别交 B

人教版八年级数学下册 第17章 勾股定理中最短路径问题专题

勾股定理中最短路径问题专题 一、同步知识梳理 1、勾股数:满足a2+b2=c2的3个正整数a、b、c称为勾股数. (1)由定义可知,一组数是勾股数必须满足两个条件: ①满足a2+b2=c2 ②都是正整数.两者缺一不可. (2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a2+b2=c2 (但不一定是勾股数),例如:3、4、5是一组勾股数,但是以0.3 cm、0.4 cm、0.5 cm为边长的三个数就不是勾股数。 二、同步题型分析 1、等腰三角形的周长是20 cm,底边上的高是6 cm,求它的面积. 2、(1)在△ABC中,∠C=90°,AB=6,BC=8,DE垂直平分AB,求BE的长. (2)在△ABC中,∠C=90°,AB=6,BC=8,AE平分∠CAE,ED⊥AB,求BE的长. (3)如图,折叠长方形纸片ABCD,是点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度. 一、专题精讲 知识总结:长方体: (1)长方体的长、宽、高分别为a、b、c;(2)求如图所示的两个对顶点的最短距离d。 E D A C B D E A C B

A B A 1B 1D C D 1C 1214 (2)长方体盒子表面小虫爬行的最短路线d 是22c b a ++)(、22b c a ++)(、2 2a c b ++)( 中最小者的值。 圆柱体: (1)圆柱体的高是h 、半径是r ;(2)要求圆柱体的对顶点的最短距离。 圆柱体盒子外小虫爬行的最短路线d ; 两条路线比较:其一、AC+BC 即高+直径 ; 其二、圆柱表面展开后线段AB=2 2r h +的长. 题型二、长方体 例题1、如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 . 例题2、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。 B A A B

初中数学《最短距离问题》教学设计

初中数学《最短距离问题》教学设计 课题分析 (1)最短距离问题是初中数学的重要内容之一,也是中考命题的重点之一。学生已有两点之间线段最短的基本知识,故本课应对从直观认识的基础上,着重在不同背景的实际问题中应用,从而渗透化归的数学思想方法。 (2)通过本节的学习,类比、构造、化归转化等数学思想方法的渗透,使学生体会到数学中的美学意义,不断提高学习数学的兴趣,树立学好数学的信心。本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。 学情分析 (1)知识基础:学生了解两点之间线段最短等基本知识点,但此后的学习很少涉及此内容,所以学生对此内容的应用较为陌生,所以学生通过本课的学习,须掌握能在不同背景的实际问题中应用。 (2)能力基础:学生的作图能力还是读图能力,添加适当的辅助线、创造适合的条件去在不同背景的实际问题中应用的能力比较薄弱的,这些能力都必须得到加强。 (3)心理基础:因为陌生而害怕,学生在这部分的学习上存在心理的障碍,这不利于学习,故要在题目的设置上让学生更容易得到成就感,才会让学生敢于动手,达到学好的信心,要充分调动学生的积极性。 教学目标 知识目标:掌握两点之间线段最短问题,能在不同背景的实际问题中应用。 技能目标:学习过平移、轴对称、旋转三种图形变换,利用图形变换能解决一些最短距离问题。 情感目标:引导学生对图形观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.体会数学的对称美,体验化归的思想方法,培养合作精神。 重点难点 重点:1.掌握两点之间线段最短问题,能在不同背景的实际问题中应用 2.利用图形变换能解决一些最短距离问题

中考数学求最短距离总结含答案

一、填空题(共6小题) 1、边长为2的正方形的顶点A 到其内切圆周上的最远距离是 _________ ,最短距离是 _________ . 2、已知点P 到⊙O 上的点的最短距离为3cm ,最长距离为5cm ,则⊙O 的半径为 _________ cm . 3、(2011?广安)如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距 离为5cm ,则弦AB 的长为 _________ . 4、如图,圆锥的底面半径为OB=3,母线SB=9,D 为SB 上一点,且SD=,则点A 沿圆锥表 面到D 点的最短距离为 _________ . 5、如图,P 为半圆直径AB 上一动点,C 为半圆中点,D 为弧AC 的三等分点,若AB=2,则PC+PD 的最短距离为 _________ . 6、如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把牛牵到河边饮水再回家,最短距离是 _________ 米. 二、解答题(共4小题) 7、正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为多少? 8、己知圆锥的底面半径是4cm ,母线长为12cm ,C 为母线PB 的中点,求从A 到C 在圆锥的侧面上的最短距离. 2012年 初中数学求最短距离

9、已知如图,圆锥的底面半径为3cm,母线长为9cm,C是母线PB中点且在圆锥的侧面上,求从A到C的最短距离为多少厘米? 10、如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP. 三、选择题(共4小题) 11、如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为() A、4 B、8 C、10 D、5 12、(2003?贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S的最短距离为() A、B、 C、D、 13、如图,已知圆锥的母线长OA=6,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A 处.则小虫所走的最短距离为()

初二数学专题练习最短距离问题

初二数学专题练习最短距离问题 1.如图3-10,在l上求作一点M,使得AM+BM最小. 2.A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示) 3.如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短. 4.如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值 5.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值是. 6.如图所示,正方形ABCD的面积为12,△ABC是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.3.26 C.3 D6 7.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为 8.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂, (1)不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.

(2)另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由. 9.(1)如图1示,∠AOB内有两点M,N,请你确定一点P,使点P到M,N的距离相等,且到OA,OB边的距离也相等,在图上标出它的位置. (2)某班举行文艺晚会,桌子摆成两直线(如图2中的AO,BO),AO桌面上摆满桔子,BO桌面上摆满糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮他设计一条行走路线,使其所走的路程最短. 10.如图,厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个厂的水平距离都是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短.(河的两岸是平行的) ①请画出架桥的位置.(不写画法) ②求从工厂A经过桥到工厂B的最短路程. 11.一次函数y kx b =+的图象与x、y轴分别交于点A(2,0),B(0,4). (1)求该函数的解析式; (2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.12.如图,在直角坐标系中有四个点A(-6,3),B(-2,5),C(0,m),D?(n,0),当四边形ABCD周长最短时,则m=________,n=________. 13.蚂蚁搬家都选择最短路线行走,有一只蚂蚁

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径 问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 选A-B,因为两点之间,直线最短 垂线段最短 如图,点P是直线L外一点,点P与直线上各 点的所有连线中,哪条最短? PC最短,因为垂线段最短

两点在一条直线异侧 A P L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短. 连接AB交直线L于点P,则PA+PB 最短. 依据:两点之间:线段最短 两点在一条直线同侧 相传,古希腊亚历山大里亚城里有一位 久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不 得其解的问题: 从图中的A地出发,到一条笔直的河边 l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短? 作法: 1、作B点关于直线L的对称点B’; 2、连接AB’交直线L于点C; 3、点C即为所求. 证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’. 在△AB’C’中, AC’+B’C’>AB’ ∴AC’+BC’>AC+BC 所以AC+BC最短.

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟 解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习1.1】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

初中数学几何旋转最值最短路径问题专题训练

初中数学几何旋转最值最短路径问题专题训练专练3 最短路径模型——旋转最值类 基本模型图: 【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连 结B′D,则B′D的 最小值是(). A. B.6 C. D.4 【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示. B′D的长最小值= DE-EB′.故选A. 22 -=-

【启示】此题属于动点(B′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E 、B′、D 三点共线B D DE B E ''≤-时,等号成立. 【典例2】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB =90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解. 【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中 点O ,OD 交⊙O 于点H ,此时DH 最小,∵OH =, OD =,∴DH 的最小值为112 AB =OD -OH . 1【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H 在以AB 为直径的圆上,点D 在圆外,DH 的最小值为DO -OH .当然此题也可利用的基本模型解决. DH OD OH ≤-【针对训练 】 1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在轴正半轴上运动时,点C 随之在轴上运动,在运动过程中,点B 到原点O 的最大x y 距离为( ). A B C . D .31

2013中考数学求最短距离大全含答案

2013求最短距离问题大全 一、填空题(共6小题) 1、边长为2的正方形的顶点A到其内切圆周上的最远距离是_________,最短距离是_________. 2、已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为_________cm. 3、(2011?广安)如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离 为5cm,则弦AB的长为_________. 4、如图,圆锥的底面半径为OB=3,母线SB=9,D为SB上一点,且SD=,则点A沿圆锥表 面到D点的最短距离为_________. 5、如图,P为半圆直径AB上一动点,C为半圆中点,D为弧AC的三等分点,若AB=2,则PC+PD的最短距离为_________. 6、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是_________米. 二、解答题(共4小题) 7、正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为多少? 8、己知圆锥的底面半径是4cm,母线长为12cm,C为母线PB的中点,求从A到C在圆锥的侧面上的最短距离. 9、已知如图,圆锥的底面半径为3cm,母线长为9cm,C是母线PB中点且在圆锥的侧面上,求从A到C的最短距离为多少厘米?

10、如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP. 三、选择题(共4小题) 11、如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为() A、4 B、8 C、10 D、5 12、(2003?贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S的最短距离为() A、B、 C、D、 13、如图,已知圆锥的母线长OA=6,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A 处.则小虫所走的最短距离为() A、12 B、4π C、D、 14、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()

中考数学专题:最短距离问题

最短距离问题分析 洪湖市峰口镇二中 刘万兵 最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。利用一次函数和二次函数的性质求最值。 一、“最值”问题大都归于两类基本模型: Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定 某范围内函数的最大或最小值 Ⅱ、归于几何模型,这类模型又分为两种情况: (1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最 小值”时,大都应用这一模型。 (2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大 值”时,大都应用这一模型。 几何模型: 条件:如图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P , 则PA PB A B '+=的值最小(不必证明). 模型应用: (1)如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知, B 与D 关于直线A C 对称.连结E D 交AC 于P ,则 PB PE +的最小值是___________; (2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上, OA OB ⊥,60AOC ∠=°,P 是OB 上一动点, 求PA PC +的最小值; 解:(1)PB PE +的最小值是5DE = (2)PA PC +的最小值是23 【典型例题分析】 1.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( ) A .23 B .26 C .3 D .6 A D E P A B A ' P l A B B 图1 A B C 图2 P

中考数学专题最短距离问题

中考数学专题最短距离问题 考查知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 问题原型:“饮马问题”,“造桥选址问题”。 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、A是直线A同旁的两个定点. 问题:在直线A上确定一点A,使A的值最小. 方法:作点A关于直线A的对称点A,连结A交A于 点A,则A的值最小 模型转化应用: 在锐角三角形中探求线段和的最小值 如图1,在锐角三角形ABC中,AB=A,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为. 在等边三角形中探求线段和的最小值 (2010 山东滨州)如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 . 在直角梯形中探求线段和的最小值 (2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________. 在等腰梯形中探求线段和的最小值 如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则 PA+PB的最小值为. 在菱形中探求线段和的最小值 如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB 的最小值为. 在正方形中探求线段和的最小值 如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则 DN+MN的最小值为.

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点) 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小 例1、如图,四边形ABCD 是正方形,△ABE 是等边三 角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ; (2)①当M 点在何处时,AM+CM 的值最小; ②当M 点在何处时,AM+BM+CM 的值最小,并说明理由; (3)当AM+BM+CM 的最小值为 时,求正方形的边长。 例2、如图13,抛物线y=ax 2+bx +c(a≠0)的顶点为(1,4),交x 轴于A 、B ,交y 轴于D ,其中B 点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中E 点的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为PQ 上一动点,则x 轴上是否存在一点H ,使D 、G 、F 、H 四点围成的四边形周长最小.若存在,求出这个最小值及G 、H 的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T ,过点T 作x 的垂线,垂足为M ,过点M 作直线M N ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD ,若存在,求出点T 的坐标;若不存在,说明理由. A B A ' ′ P l

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: -①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. -③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题-求图中所有的最短路径. 【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题

】1作法图形【问题原理 A A 两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.B B,使上求一点P在直线l 值最小.PA+PB 【问题2】“将军饮马”作法图形原理 A A B'B关于作B l 的对称点两点之间线段最短.B

l l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为 P,使P在直线l 上求一点B' PA+PB 值最小. 3】作法图形原理【问题 P'l 1l 1 分别作点P 关于两直线的两点之间线段最短.M P PM +MN +PN 的最小值为对称点P'和P',连P'P',P l l l 、上2.M,P'''的长.N与两直线交点即为线段P 分别求点在直线l212N M 、N,使△PMN的周长P'' 最小. 4】作法【问题图形原理 l 1l1Q' Q关于直线分别作点Q 、P Q两点之间线段最短.MP l 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N ,使四边形N 、M PQMN P' 的周长最小. 【问题5】“造桥选址”作法图形原理范文

精品初中数学竞赛专题讲解最短路径问题(最全资料)(骄阳教育)

初中数学竞赛专题讲解最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查. 【十二个基本问题】 【问题1】 作法 图形 原理 在直线l 上求一点P ,使P A +PB 值最小. 连AB ,与l 交点即为P . 两点之间线段最短. P A +PB 最小值为AB . 【问题2】“将军饮马” 作法 图形 原理 在直线l 上求一点P ,使P A +PB 值最小. 作B 关于l 的对称点B '连A B ',与l 交点即为P . 两点之间线段最短. P A +PB 最小值为A B '. 【问题3】 作法 图形 原理 在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小. 分别作点P 关于两直线的对称点P '和P '',连P ' P '',与两直线交点即为M ,N . 两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长. 【问题4】 作法 图形 原理 分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N . 两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长. l A B l P B A l B A l P B' A B l 1 l 2 P l 1 l 2 N M P'' P' P l 1l 2 N M Q'Q P l 1l 2 P Q

相关文档
相关文档 最新文档