文档库 最新最全的文档下载
当前位置:文档库 › 钢桁架梁悬索桥抖振响应影响因素分析

钢桁架梁悬索桥抖振响应影响因素分析

钢桁架梁悬索桥抖振响应影响因素分析
钢桁架梁悬索桥抖振响应影响因素分析

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析 1、概述 钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。 相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技

术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。 2、结构设计 公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。 2.1主桁 主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

贝雷片(贝雷架)图片、规格尺寸及构件表

贝雷片(贝雷架)图片、规格尺寸及构件表 “贝雷片”又称贝雷架,贝雷梁或桁架,最先在二战时由一名英国工程兵发明,以解决战争期间桥梁快速架设的需要,并以他的名字命名。可用于公路桥梁,拼装龙门吊车,导梁,架桥机,吊篮等。 贝雷片具有结构简单、运输方便、架设快捷、载重量大、互换性好、适应性强的特点。

“321”钢桥是在原英制贝雷桁架桥基础上,结合我国国情和实际情况研制而成的快速组装桥梁,于1965年定型生产,在我国得到了很大发展,广泛应用于国防、战备、交通工程、市政水利工程,是我国应用广泛的组装式桥梁。具有结构简单、运输方便、架设快捷、载重量大、互换性好、适应性强的特点。“HD200”型装配式公路钢桥增加了桁架高度,提高了承载能力,增强了稳定性能,增加了疲劳寿命,提高了可靠度。与321型钢桥相比,在相同组合情况下,强度提高了33%,刚度提高了2.3倍。适用范围单车道桥面净宽4.2M,组合跨径9.14-76.2m,双车道桥面净宽7.4m,组合跨径9.14-57.91m。 贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16锰钢,销子采用铬锰钛钢,插销用弹簧钢制造,焊条用T505X型,桥面板和护轮木用松木或杉木。材料的容许应力按基本应力提高30%,个别钢质杆件超过上述规定时,不得超过其屈服点的85%,设计时采用的容许应力如下:木料--顺木纹弯应力、压应力及承压应力为16.2MPa;受弯时顺木纹剪应力为2.7MPa。弹性模量E=98.5×105MPa。钢料—16锰钢拉应力、压应力及弯应力为1.3×210=273MPa;剪应力为1.3×160=208MPa。30铬锰钛拉应力、压应力及弯应力为0.85×1300=1105MPa;剪应力为0.45×1300=585MPa。现有进口贝雷梁多系20世纪40年代的产品,材料屈服点强度为351MPa,其容许应力按0.7×351=245MPa考虑,销子容许应力可考虑与国产销子一样。 NGU

贝雷梁作业规范

贝雷梁搭设 1 适用范围 本作业指导书适用于利用贝雷梁修建临时便桥、临时支架、作业平台及桥梁水毁后紧急抢修等。贝雷梁的最大特点,在于部件轻巧,各部件间用销子或螺栓连接,装拆方便,用简单的工具和人力就能迅速完成贝雷梁搭设。 2 作业准备 2.1 搭设前的准备工作 2.1.1 依照设计清点各种构件数量是否配齐,检查各构件尤其是销子等重要受力构件是否有损伤,必要时应对销子进行探伤检查; 2.2 贝雷梁搭设所需专用工具设备如下表: 主要工具设备表 2.3 劳动力组织如下表: 劳动力组织机构表

3 操作方法 3.1 拼装工艺流程图如下: 3.2 拼装方法 3.2.1 桁架标准节拼装 贝雷梁桁架标准节段长3m,高1.5m,重约270kg。其桁架结构如下图所示:

图1 桁架单元 1-横梁夹具孔;2、6、8、11-支撑架孔;3-工字钢;4-阴头;5、9、14-弦杆螺栓孔;7-上弦杆;10-阳头;12、13-风构孔;15-槽钢;16、横梁垫板;17-下弦杆;18-斜撑 如图1所示,竖杆及斜杆焊接而成,上下弦杆的一端为阴头,另一端为阳头。阴阳头上都有销栓孔。两节桁架连接时,将一节的阳头插入另一节的阴头内,对准销子孔,插上销子,最后插入保险插销即可。 弦杆上焊有多块带圆孔的钢板,其中有:弦杆螺栓孔,在拼装双层或加强桥梁时,在此孔插桁架螺栓或弦杆螺栓,使双层桁架或桁架与加强弦杆结合起来;支撑架孔,用于安装支撑架。当桁架用在桥梁上部时,使用中间两个孔;当桁架用作桥墩时,用端部的一对孔,以加固上下节桁架。下弦杆两端钢板上的圆孔及弦杆槽钢腹板上的长圆孔叫做风构孔,用以连接抗风拉杆。下弦杆设有4块横梁垫板,上有栓钉,以固定横梁位置。端竖杆有支撑架孔,为安装支撑架、斜撑与联板用。端竖杆及中间杆的矩形孔叫做横梁夹具孔,用来安装横梁夹具。每件桁架重270kg,用杠肩抬,4人即可搬运,用手搬运则需6-8人,如将下弦加强弦杆与桁架连接后用手抬运,在加强弦杆一边需增加1-2人。

刘家峡桁架梁悬索桥的颤抖振时域分析_李宇

文章编号:1673-0291(2014)01-0055-06 D OI :10.11860/j .issn .1673-0291.2014.01.011 刘家峡桁架梁悬索桥的颤抖振时域分析 李 宇,车艳阳,王 森 (长安大学公路学院,旧桥检测与加固技术交通行业重点试验室,西安710064) 摘 要:以刘家峡大桥为工程背景,建立了钢桁架梁悬索桥的有限元模型,采用改进谐波合成法模拟了脉动风荷载,结合大跨桥梁颤抖振分析的基本理论,计算了对应于桥梁各节点的静风力、抖振力和自激力.在此基础上,利用ANSYS 参数化设计语言(APDL )编制了相应的计算程序,将计算所得的各类风荷载施加在全桥有限元模型的节点上,对刘家峡桁架梁悬索桥进行了颤抖振时域分析,以精确求解不同桥面基准风速下,桥梁各关键部位的抖振扭转角、抖振侧向位移、抖振竖向位移,进而研究了风速变化对悬索桥最大颤抖振响应的影响.与全桥模型风洞试验的对比结果表明:对大跨桥的颤抖振分析方法是合理可行的,可为同类大跨桥梁风致振动的研究提供科学的依据和参考.关键词:悬索桥;颤振;抖振;非线性;时域分析中图分类号:U448.27 文献标志码:A Trembling vibration of Liujiaxia steel truss suspension bridge based on time domain analysis LI Y u ,CHE Yanyang ,WANG Sen (K ey Labo rato ry of Ministry of Communications for Bridge Detection &Reinforcement Technology , School of Highway ,Chang 'an University ,Xi 'an 710064,China ) Abstract :Based on Liu -jia -xia Bridge ,a FEA model of steel truss suspension bridge is established .Mean -w hile ,perfect stochastic fluctuating wind field processes are generated by using improved WAWS method .Combined with the basic theory for tremble vibration analy sis of large span bridge ,static wind force ,buffeting fo rce and self -ex cited force are computed according to the nodes of bridge .By using AN -SYS parametric design language ,one calculation prog ram is prepared to apply the calculated wind loads on the nodes of FEA model .Based on time domain analysis ,the trembling vibration of Liu -jia -xia steel truss suspension bridge is carried on to compute buffeting torsio n angle ,chattering lateral displacement and vertical displacement chattering of some principle parts of bridge .The effects of w ind speed on max trembling vibration of truss suspension bridge are studied .Compared with the result of w ind tunnel test of whole bridge ,it can be know n that the tremble vibration analysis method suggested in this paper is reasonable and feasible .So ,some meaningful references are provided for the further research on w ind -in -duc ed vibration fo r long -span bridges . Key words :suspension bridges ;fluttering response ;buffeting response ;nonlinear ;time domain analysis 收稿日期:2012-11-26;修回日期:2013-12-16 基金项目:国家自然科学基金资助项目(50878020);中国博士后科学基金资助项目(2011M 501429);中央高校基本科研业务费专项资金资助(2013G1211006)作者简介:李宇(1982—),男,福建福州人,副教授,博士,硕士生导师.研究方向为桥梁抗震及抗风.email :liyu @chd .edu .cn . 近年来,我国建成了一大批技术先进、造型优美的大跨度桥梁,使得我国桥梁建设跻身于世界先进 水平,由此引起的桥梁风致振动问题也成为当前风工程界研究的热点,特别是大跨桥的颤抖振问题更 第38卷第1期2014年2月 北 京 交 通 大 学 学 报JO URN AL O F BEIJIN G JIAO TO NG UN IV ERSI T Y V ol .38N o .1 Feb .2014

钢桁架桥计算书-毕业设计之欧阳歌谷创编

目录 欧阳歌谷(2021.02.01)1.设计资料1 1.1基本资料1 1.2构件截面尺寸1 1.3单元编号4 1.4荷载5 2.内力计算7 2.1荷载组合7 2.2内力9 3.主桁杆件设计11 3.1验算内容11 3.2截面几何特征计算11 3.3刚度验算15 3.4强度验算16 3.5疲劳强度验算16 3.6总体稳定验算17 3.7局部稳定验算18 4.挠度及预拱度验算19 4.1挠度验算19

4.2预拱度19 5.节点应力验算20 5.1节点板撕破强度检算20 5.2节点板中心竖直截面的法向应力验算21 5.3腹杆与弦杆间节点板水平截面的剪应力检算22 6.课程设计心得23

1.设计资料 1.1基本资料 (1)设计规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86); (2)工程概况 该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。 (3)选用材料 主桁杆件材料采用A3钢材。 (4)活载等级 采用公路I级荷载。 1.2构件截面尺寸 各构件截面对照图

各构件截面尺寸统计情况见表1-1: 表1-1 构件截面尺寸统计表 编号名称类型 截面 形状 H B1 (B) tw tf1(tf ) B2tf2C 1下弦杆E0E2用户H型0.460.460.010.0120.4 6 0.012 2下弦杆E2E4用户H型0.460.460.0120.020.4 6 0.02 3上弦杆A1A3用户H型0.460.460.0120.020.4 6 0.02 4上弦杆A3A3用户H型0.460.460.020.0240.4 6 0.024 5斜杆E0A1用户H型0.460.60.0120.020.60.02 6斜杆A1E2用户H型0.460.440.010.0120.4 4 0.012 7斜杆E2A3用户H型0.460.460.010.0160.4 6 0.016 8斜杆A3E4用户H型0.460.440.010.0120.4 4 0.012 9竖杆用户H型0.460.260.010.0120.2 6 0.012 10横梁用户H型 1.290.240.0120.0240.2 4 0.024 11纵梁用户H型 1.290.240.010.0160.2 4 0.016 12下平联用户T型0.160.180.010.01 13桥门架上下横撑和短 斜撑 用户双角0.080.1250.010.01 0.0 1 14桥门架长斜撑用户双角0.10.160.010.010.0

贝雷梁支架专项施工方案

一、工程概况 (3) 二、编制依据 (3) 三、施工投入情况 (4) 四、支架施工方案 (4) (三)、钢管桩立柱及工字钢施工 (6) (四)、贝雷梁施工 (7) (五)、施工控制要点 (8) 五、30m跨支架受力验算 (9) (一)、荷载组成 (9) (二)、模板和方木验算 (10) (三)、14工字钢验算 (11) (四)、贝雷梁验算 (16) (五)、40A#工字钢验算 (21) (六)、钢管支墩强度验算 (23) 由40a#工字钢剪力图可知,最大支座反力为: (23) (七)、桩基、承台基础和地基承载力验算 (24) (八)、支架整体稳定性验算 (25) 十、施工预拱度设置 (29) 十一、支架拆除 (29) (一)、传统支架拆除工艺 (29) (二)、预留钢管拆除工艺 (31)

一、工程概况 宣曲高速公路是国家高速公路网G56杭瑞高速公路的其中一段,路线位于曲靖市沾益县境内,主线全长94.392公里G60连接线为宣曲、昆曲和曲靖绕城高速公路连接线;连接线公路等级为高速公路,设计时速100公里,路基宽度33.5m。起点于K1+000处接沟岩上互通立交,终点接大龙潭互通立交,并于K2+740处设置沾益互通立交,全连接段长13.523公里。 本项目里程段为K8+630~K11+294,总计10座桥梁包含有现浇箱梁施工,现浇箱梁的桥梁跨径有16m,17.5m,20m,25m,27m,30m,35m共计7种,幅宽有10.5m,16.75m,33m共计3种,各桥箱梁箱梁布置情况统计如下表: 二、编制依据 (一)、《公路桥涵施工技术规范》JTG/T F50—2011; (二)、《公路工程质量检验评定标准》JTG F80/2—2004;

贝雷梁安装

技术交底书 编号: 工程名称合蚌双凤特大桥施工里程DK121+056~DK121+254 设计图号施工部位237#、238#、243#门式墩 交底者日期接收者日期 复核者日期审核者日期 技术交底内容:贝雷梁吊装技术交底 一、贝雷梁吊装 1、帽梁底单组贝雷梁长15m、宽45㎝、高1.8m,总重约7.5t。防护部分的贝雷梁长27m、宽90cm、高1.8m。详见贝雷梁布置图。 2、贝雷梁的主体结构有:桁架、梢子、保险插销、加强弦杆等四种构件。 3、贝雷片进场时,应逐片、逐个杆件组织验收,对于扭曲变形的不予使用,插销连接不牢靠的予以调整加固或更换,贝雷片锈蚀应去除,严重锈蚀的不予使用,对于个别节点存有开裂、脱落的进行焊接加强。 4、根据场地实际情况,贝雷片吊装场地选在铝厂专用线夹角地。 5、每三组吊装一次,吊装前应将贝雷片各杆件连接完毕。 6、支撑连接结构有斜撑、支撑架、抗风拉杆、横梁夹具、桁架螺栓、弦杆螺栓、斜撑螺栓、撑架螺栓等多种构件。 7、吊装前应在两侧工字钢上放出每组贝雷梁的准确位置,人工辅助吊车准确就位。贝雷梁放置在横向分配梁上,采用U型扣与横向分配梁连接。 8、各种杆件应严格按照说明书安装,并组织专人进行验收,并记录。 9、每三组贝雷片最大总重7.5t,根据吊车性能表选用25t汽车吊。 10、吊车就位于贝雷梁小里程方向15m、桥梁中线左侧20m处,起吊距离即吊车位置与吊点(贝雷梁就位后中心)间距离为25m;起吊高度12m。 11、贝雷梁布置图详见贝雷梁布置图。 二、安装注意事项 吊装作业前的注意事项。 1、检查各安全保护装置和指示仪表应齐全。 2、燃油、润滑油、液压油及冷却水应添加充足。 3、开动油泵前,先使发动机低速运转一段时间。 4、检查钢丝绳及连接部位应符合规定。

钢桁架桥梁设计总结讲解

钢桁架桥梁设计总结 区别于混凝土梁部一般设计流程,特编写钢桥设计流程,为初次设计钢梁提供一点参考与设计思路。 一.钢桥设计最终目的: 1.确定用最少的钢材但受力最优的杆件截面 2.确定传力简洁顺畅的连接方式 二.在确定钢桥方案后,一般钢桥包括的计算: 钢桥的设计是一个迭代循环的过程,但是截面的选取顺序还是以主桁优先。 1.主桁截面的粗选(初估联结系与桥面后) 2.主桁截面的检算 3.联结系的检算 4.桥面的检算 5.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算 6.连接计算(各部分杆件之间的连接方式以及节点板、拼接板、焊缝与螺栓计算) 7.预拱度计算及实现方式 8.伸缩缝的计算设计 三.主桁的粗选

3.1选取的原则:按照钢材的容许应力为屈服应力的1/1.7确定主桁需要的截面面积,从而粗选主桁截面。 以Q370为例: 对于拉杆:拉杆受强度、疲劳控制,应力为370/1.7=217.6Mpa,拉杆应力计算采用扣除螺栓消弱后的净面积,并考虑杆件由于刚接的次应力,所以拉杆杆件需要面积采用:杆件内力/150 对于压杆:压杆受强度、稳定控制,检算稳定时考虑容许应力折减,所以压杆一般由稳定控制。检算压杆,采用毛面积,粗选截面时压杆杆件需要面积采用:杆件内力/160。杆件越长截面越小,压杆容许应力折减越多,所以对于长细杆,可以采用压杆杆件需要面积:杆件内力/140。 粗选主桁后,控制大的指标,读取主桁的支反力、刚度条件是否符合规范。 3.2内力控制组合 主力:恒载+活载+支座沉降 3.3计算模型 平面一次成桥模型 建模方式:a、cad中导入主桁杆件 b、施加荷载,注意二恒的取值,平面一次成桥模型的二恒: (整体二恒+初估联结系+初估桥面)/主桁片数

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

中国最大跨径钢桁梁悬索桥

中国最大跨径钢桁梁悬索桥 坝陵河大桥全长2230米,高达370米,主跨1088米,是跨度“国内第一,世界第六”的大跨径钢桁梁悬索桥。 坝陵河大桥位于贵州黔西地区高原重丘区,是沪瑞国道主干线贵州境内镇宁到胜景关高速公路的控制性重点工程。坝陵河大桥东接壮美的黄果树大瀑布,西临三国索马古道,南毗神秘的红岩天书,北靠滴水滩瀑布,是关岭和黄果树风景区的标志,是一道举世瞩目的风景。 大桥的建成对于贵州、甚至中国的桥梁建设具有历史性的意义。 大桥跨移的坝陵河是打帮河(北盘江支流)的支流,由北向南流入打帮河,坝陵河西岸是关索岭,东岸是晒甲山,关索岭和晒甲山形成的河谷深切400~600米,顶宽3---4千米,长达10千米以上,形成了东岸险峻璧陡,西岸略为平缓的坝陵河大峡谷。 坝陵河大峡谷古往今来都是黔中通往黔西南和云南的必经

之地。 三国时期是关索屯兵和诸葛亮7擒孟获的古战场。晒甲山原名红岩山,关羽之子关索,同盂获大战,遇水淹,撤兵红岩山上,扎营休整,将士们脱下银恺甲来晒,山腰一片银色。大军走后,山上银色不退,满山酷似晒满盔甲,从此红岩山改名晒甲山。传说中的关索,忠勇爱民,有功于黔,为了纪念关羽和关索,后人就把关索屯兵扎营,激战的山岭称为关索岭。 康熙二年(1663年)玄烨亲为关索岭古驿道题“滇黔锁钥”的匾额。 民国十八年(1929年),拥护蒋介石的贵州军阀,四十三军军长李燊(字晓炎)勾结滇军,和讨伐蒋介石的贵州省主席、二十五军军长周西成就是在坝陵河峡谷遭遇激战,结果周西成受伤于晒甲山山腰的鸡公背,在泅渡坝陵河时遭受伏击再次受伤,被洪水冲走,名丧黄泉。 过去的年代里,曾经多次在峡谷底修建步行桥,也多次被汹涌的山洪冲塌,在峡谷间建公路桥,两岸人连做梦都没有想

贝雷片(贝雷架)图片、规格尺寸及构件表

贝雷片(贝雷架)图片、规格尺寸及构件表

“贝雷片”又称贝雷架,贝雷梁或桁架,最先在二战时由一名英国工程兵发明,以解决战争期间桥梁快速架设的需要,并以他的名字命名。可用于公路桥梁,拼装龙门吊车,导梁,架桥机,吊篮等。 贝雷片具有结构简单、运输方便、架设快捷、载重量大、互换性好、适应性强的特点。 “321”钢桥是在原英制贝雷桁架桥基础上,结合我国国情和实际情况研制而成的快速组装桥梁,于1965年定型生产,在我国得到了很大发展,广泛应用于国防、战备、交通工程、市政水利工程,是我国应用广泛的组装式桥梁。具有结构简单、运输方便、架设快捷、载重量大、互换性好、适应性强的特点。“HD200”型装配式公路钢桥增加了桁架高度,提高了承载能力,增强了稳定性能,增加了疲劳寿命,提高了可靠度。与321型钢桥相比,在相同组合情况下,强度提高了33%,刚度提高了倍。适用范围单车道桥面净宽,组合跨径,双车道桥面净宽,组合跨径。 贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16锰钢,销子采用铬锰钛钢,插销用弹簧钢制造,焊条用T505X型,桥面板和护轮木用松木或杉木。材料的容许应力按基本应力提高30%,个别钢质杆件超过上述规定时,不得超过其屈服点的85%,设计时采用的容许应力如下:木料--顺木纹弯应力、压应力及承压应力为;受弯时顺木纹剪应力为。弹性模量E=×105MPa。钢料—16锰钢拉应力、压应力及弯应力为×210=273MPa;剪应力为×160=208MPa。30铬锰钛拉应力、压应力及弯应力为×1300=1105MPa;剪应力为×1300= 585MPa。现有进口贝雷梁多系20世纪40年代的产品,材料屈服点强度为351MPa,其容许应力按×351=245MPa考虑,销子容许应力可考虑与国产销子一样。

全焊接无节点板钢桁架人行桥设计与计算

全焊接无节点板钢桁架人行桥设计与计算 摘要:本文介绍了某上承式拱形钢桁架梁人行桥的结构设计、结构有限元分析、防腐蚀设计,对人行桥的设计具有一定的参考作用。 关键字:全焊接,钢桁架,人行桥 Abstract: this paper introduces a bearing steel truss arch type on pedestrian bridge beams of the structure design, structure finite element analysis, and anti-corrosion design, the design of the pedestrian bridge to have the certain reference function. Key word: all the welding, steel truss, pedestrian bridge 前言 随着中国经济的发展,人民生活水平的提高,人们对居住环境的要求越来越高,以至于现在的居住社区里面更多的使用河流、人工湖等水景来提升整个社区的景观,同样对于连接两岸的跨河、跨湖桥梁的景观也有很高的要求,桥梁的型式也越来越新颖、独特,本文就来介绍一座以桁架结构为主体,通过桁架线形的变化来达到新颖、独特的效果的人行桥。 桥梁结构设计 本桥位于辽宁省抚顺市,一商住用地地块将詹家河其中一部分包含在内,其两岸为该地块的民建楼,该社区景观设计幽美,更有亲水景观部分,因此对跨越该河流的桥梁景观效果要求极高,经过方案比选,最终采用上承式拱形钢桁架梁结构,特别是采用无节点板焊接的型式,消除了以往钢桁架梁桥笨重、粗糙的缺点,有了一种轻灵明快的节奏感。另外为节省造价,本桥斜杆和竖向斜撑均采用型钢来降低成本。 本设计桥梁跨径为15.5m+38m+15.5m,桁架结构中心高为:中跨跨中1m、中墩支点3.43m,天桥全宽3.8m,上下弦杆在桥头采用整体钢箱进行连接,钢箱内填充铁屑砼进行梁端压重处理;斜杆倾斜角度随桥面线形的变化而不同,上下弦杆采用箱型截面,上下弦杆、横联及下弦杆斜撑均采用工字型截面,斜杆和竖向斜撑采用圆形截面型钢;主桥钢材除型钢采用Q235B以外,其余部分采用Q345qD钢;桥面铺设3cm橡胶铺装;桥台采用扩大基础,中墩采用承台接钻孔

贝雷片的基本构造和参数word精品

贝雷片的基本构造和参数 贝雷架"又称贝雷片,贝雷梁或桁架,最先在二战时由一名英国工程兵发明,以 解决战争期间桥梁快速架设的需要,并以他的名字命名。可用于公路桥梁,拼装龙门吊车,导梁,架桥机,吊篮等。贝雷桁架组合门式起重机 贝雷片介绍 贝雷片具有结构简单、运输方便、架设快捷、载重量大、互换性好、适应性强的特点。 “ 321 ”钢桥是在原英制贝雷桁架桥基础上,结合我国国情和实际情况研制 而成的快速组装桥梁,于1965年定型生产,在我国得到了很大发展,广泛应用于国防,战备、交通工程、市政水利工程,是我国应用最为广泛,最好的组装式桥梁。具有结构简单、运输方便、架设快捷、载重量大、互换性好、适应性强的特点。 “ HD200 ”型装配式公路钢桥增加了桁架高度,提高了承载能力,增强了稳定性能,增加了疲劳寿命,提高了可靠度。与321型钢桥相比,在相同组合情

况下,强度提高了33% ,刚度提高了 2.3倍。适用范围单车道桥面净宽4.2M , 组合跨径9.14-76.2M,双车道桥面净宽7.4M,组合跨径9.14-57.91M 。应用贝雷片可用于公路桥梁,拼装龙门吊车,导梁,架桥机,吊篮等?贝雷桁架组合门式起重机,采用装配式公路钢桥构件拼装龙门架,而且其跨距与立柱高度可调,以适应不同的工作场地,广泛应用于公路、铁路、市政、建筑、水利等建设项目、桥梁施工预制场起吊移运预制构件、桥墩旁运装大梁等现场施工作业。构造贝雷片由上、下弦杆、竖杆及斜杆焊接而成,上下弦杆的端部有阴阳接头,接头上有杵架连接销孔。贝雷片的弦杆由两根10号槽钢(背靠背)组合而成,在下弦杆上,焊有多块带圆孔的钢板,在上、下弦杆内有供与加强弦杆和双层桁架连接的螺栓孔,在上弦杆内还有供连接支撑架用的四个螺栓孔,其中间的两个孔 是供双排或多排桁架同节间连接用的。靠两端的两个孔是跨节间连接用的。多排贝雷片作梁或柱使用时,必须用支撑架加固上下两节贝雷片的接合部。 在下弦杆上,设有4块横梁垫板,其上方有凸榫,用以固定横梁在平面上的位置,在下弦杆的端部槽钢腹板上还设有两个椭圆孔,供连接抗风拉杆使用。贝 雷片竖杆均用8#工字钢制成,在竖杆靠下弦杆一侧开有一个方孔,它是供横梁夹具固定横梁使用的。贝雷片的材料为16Mn,每片架重270kg。 "321"钢桥是装配式公路钢桥,其最大特点是:构件轻巧,拆装方便,适应性强,用简单的工具和人力就能迅速建成。适用于汽车-10级、汽车-15级、汽 车-20级、履带-50级、挂车-80级等5种载荷。桥面行车道净宽3.7m,可在 9m到63m范围内组合成多种跨径简支粱桥,可构造连续梁桥 参数 贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16锰钢,销子采用

钢桁架桥计算书-毕业设计

目录 1.设计资料 (1) 1.1基本资料 (1) 1.2构件截面尺寸 (1) 1.3单元编号 (3) 1.4荷载 (4) 2.内力计算 (7) 2.1 荷载组合 (7) 2.2内力 (8) 3.主桁杆件设计 (10) 3.1验算内容 (10) 3.2截面几何特征计算 (11) 3.3刚度验算 (14) 3.4强度验算 (15) 3.5疲劳强度验算 (15) 3.6总体稳定验算 (16) 3.7局部稳定验算 (17) 4.挠度及预拱度验算 (18) 4.1挠度验算 (18) 4.2预拱度 (18) 5.节点应力验算 (19) 5.1节点板撕破强度检算 (19) 5.2节点板中心竖直截面的法向应力验算 (20) 5.3腹杆与弦杆间节点板水平截面的剪应力检算 (21) 6.课程设计心得 (22)

1.设计资料 1.1基本资料 (1)设计规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86); (2)工程概况 该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。 (3)选用材料 主桁杆件材料采用A3钢材。 (4)活载等级 采用公路I级荷载。 1.2构件截面尺寸 各构件截面对照图

各构件截面尺寸统计情况见表1-1: 表1-1 构件截面尺寸统计表 1.3单元编号 (1)主桁单元编号

(2)桥面系单元编号 (3)主桁纵向联结系单元编号 (4)主桁横向联结系单元编号 1.4荷载 (1)钢桥自重 按A3钢材程序自动添加。 (2)桥面板自重

钢桁架人行景观桥设计

钢桁架人行景观桥设计 摘要:简单介绍了广州市大观路-中海康城人行景观桥的设计方案,并进行了结构受力分析,该桥方案设计时强调的是景观效果,因此对结构分析和施工要求较高。该文介绍了此桥的景观设计及施工特点,为类似的景观桥梁提供了借鉴作用。 关键词:钢桁架桥;人行天桥;结构设计 1 前言 拟建的大观路-中海康城人行天桥位于广州市天河区广东奥林匹克体育中心西侧的大观南路上。第16届亚运会组委会提出了本天桥需突出景观效果的要求。在设计风格、材质、颜色等方面需与奥林匹克体育场保持一致,能很好的融入奥林匹克体育中心建筑群中;同时又可作为行人横跨大观路的交通连接工程,在亚运会赛事期间能够缓解一部分奥体中心的人流压力。 2 天桥总体布置 为减少对行车的干扰,本天桥采用一跨跨越大观南路。主桥采用下承式简支钢桁架梁结构,上部结构由桥面板、桥面系、主桁和支座4部分组成。主桁架长42m,全宽6.68m,其中人行净宽3.5m。两端梯道采用现浇砼板结构,钢桁架通过牛腿支承在梯道上。桁架上弦杆呈弧形,沿梯道栏杆至地面,主桥桁架旋转下至外侧绿化带接人行道边缘,立面造型呈现完整圆顺的曲线,整个天桥的空间造型宛如美丽的贝壳现状。 桥面板采用6mm厚波形钢板,高度为50mm,桥面板上设C20细石防水混凝土、环氧砂浆和大理石铺装。桥面板整体架设于17个钢横梁上。 桥面系由横梁、次横梁、纵梁构成。其传力体系为:桥面系荷载直接通过桥面板传至横梁,节点处横梁把该横梁荷载通过节点传至桁架杆件。桥面系横梁共17道,每道间距为2.6m,采用钢板焊接的箱型截面,横梁尺寸为300x200mm (高x宽),钢板厚16mm。每两个横梁之间还设有一道次横梁,次横梁共16道,断面为工字钢,型号为280x122x8.5mm。纵梁为2道,布置在横梁的受压区,以增加横梁的稳定性。 图1 天桥效果图图2 天桥横断面图

贝雷梁拼装结构力学参数

贝雷梁拼装结构力学参数 贝雷梁拼装结构力学参数 贝雷梁现有进口与国产两种规格,国产贝雷梁其桁节用16 锰钢,销子采用铬锰钛钢,插销用弹簧钢制造,焊条用T505X 型,桥面板和护轮木用松木或杉木。材料的容许应力按基本应力提高30%,个别钢质杆件超过上述规定时,不得超过其屈服点的85%,设计时采用的容许应力如下: 木料——顺木纹弯应力、压应力及承压应力为16.2MPa;受弯时顺木纹剪应力为2.7 MPa。弹性模量E=98.5×105MPa。 钢料——16 锰钢拉应力、压应力及弯应力为1.3×210=273 MPa;剪应力为1.3×160=208 MPa 。 30 铬锰钛拉应力、压应力及弯应力为0.85×1300=1105 MPa;剪应力为0.45 ×1300=585 MPa。 现有进口贝雷梁多系20 世纪40 年代的产品,材料屈服点强度为351 MPa,其容许应力按0.7×351=245 MPa 考虑,销子容许应力可考虑与国产销子一样。 构件重量如下表(单位:kg): 其它构件容许荷载如下: 进口贝雷梁的桁架销子双剪状态容许剪力550KN;弦杆螺栓容许剪力 150KN,容许拉力80KN;摆动滚子最大容许荷载210KN。国产贝雷梁的栓滚

最大容许荷载250KN,平滚每一滚子最大荷载60KN;其余可参考进口贝雷的数值。 桁架片力学性质见下表: 另有计算简化成单杆系可采用:Ix =685.12×10-8m4 ,y=0.0028m,截面积A=146.45×10-4m。 桁架容许内力表:

注: 1、进口贝雷截面面积等是按4ft 槽钢查国外钢结构资料得出; 2、进口贝雷桁片惯矩(英制单位)转引自“贝雷桁片手册”(载1964 年公路设计资料第五期),其桁片断面率系由惯矩计算得出; 3、国产与进口桁片容许弯矩系单排单层的数值,各由其容许应力计算得出。如规定的容许应力与前述不同,应另行计算; 4、三排单层贝雷的容许弯矩可按单排单层的乘以3 再乘以不均匀系数0.9;双排双层的可按单排单层的乘以4 再乘0.9;三排双层的可按单排单层的乘以8 再乘0.8; 5、表列国产贝雷的力学性质未计入加强弦杆。

关于贝雷梁承载的讨论

关于贝雷桁架的承载能力讨论(也是对它的认知) 1、使用贝雷桁架,应遵循哪个合法文件 答:现行管理中,贝雷桁架梁的物理几何指标都依据交计发[1998]23号文的规定,以其为合法性指标。 2、应遵循的合法文件中,规定指标是多少是哪类指标 答:交计发[1998]23号文的规定是按允许强度控制的,不需要额外考虑安全系数。允许抗弯强度为,允许抗剪为。 3、法规中对贝雷桁架的检算模型是什么形式 答:交计发[1998]23号文中,将贝雷桁架梁的检算力学模型如图1所示。 图1、法规中的贝雷桁架梁力学检算模型 4、文件中规定的指标,检算是的贝雷桁架梁那个部位施工中如何布置 答:交计发[1998]23号文的检算位置,是指竖向支撑杆I8工字钢与斜向连接杆I8工字钢的的连接板的剪切破坏(撕裂强度),将其认定贝雷桁架梁的最薄弱位置,其最低检算控制指标为。贝雷桁架梁压坏照片见图2。 图2、贝雷桁架梁压坏照片 实际上,竖向支撑杆I8工字钢与斜向连接杆I8工字钢的的连接板不是最薄弱部位。贝雷桁架结构如图3所示。 如果按其允许抗剪能力控制,下面支撑点放在贝雷桁架的任何位置都能满足这个要求。 图3、贝雷桁架结构简图 5、贝雷桁架梁哪个杆件是真正的薄弱部位贝雷桁架梁薄弱杆件的破坏形式是什么指标为多少

答:由于贝雷桁架梁是焊接的桁架刚结构,竖杆与斜杆的连接板不是最薄弱位置,也不是剪切破坏的控制点,实践中也没有这个连接板剪切破坏(撕裂)的案例。贝雷桁架承载能力预压试验如图4所示。 图4、贝雷桁架竖杆受压屈溃试验图 贝雷桁架梁的竖向I8工字钢是薄弱杆件,I8工字钢的y轴极弱,常常发生受压屈溃失稳现象。 通过对贝雷桁架梁荷载检验,竖向I8工字钢y轴最大支撑能力360kN。 6、贝雷桁架梁支撑在哪个部位,所获得的承载能力最大 答:由于竖向I8工字钢常是受压失稳,支撑点放在贝雷桁架梁中部两片轴销节点处,所获得的支撑能力最大,最大能力可达620kN。 7、如果提高贝雷桁架的承载能力,最好加强哪个杆件如何加强 答:由于竖向I8工字钢是薄弱杆件,常破坏形式是受压失稳。因此,加强竖向I8工字钢的竖向刚度是主要措施,特别是提高I8工字钢y轴的刚度EI更为有效。 通过检算,若能将I8工字钢换成H8型型钢柱,贝雷桁架梁承载能力比现行结构可提高一倍! 8、普通型贝雷桁架梁检算控制指标 表1:贝雷桁架物理几何指标(根据交计发[1998]23号文)型号几何特性容许内力 单排单层 Ix(cm4)W(cm3)弯矩(k N·m) 剪力(k N) 不加强型

贝雷梁支架结构计算方案

重庆外环高速公路北段 XX 标段 X X 2 号 桥 贝雷梁支架结构计算方案 编制: 复核: 审核: 批准: XX集团二公司重庆外环高速公路 XX标段工程项目经理部

2007年10月31日 跨XX铁路平台、支架设计计算书 一、计算依据 1、《公路桥涵施工技术规范》(JTJ041-2000) 2、《设计施工图》 3、《路桥施工计算手册》(周水兴等编著人民交通出版社) 4、《路桥施工手册--桥涵》(交通部第一公路工程总公司编制) 5、《钢结构-原理与设计》(夏志斌姚谏等编著中国建筑工业出版社) 6、《基本资料》 7、《竹编胶合板国家标准》(GB/T13123-2003) 8、《公路桥涵地基与基础设计规范》(JTJ024-85) 二、工程概述 XX2#桥的跨XX铁路现浇箱梁为40+55+40m,为单箱三室结构,箱梁高均为2.3m,桥面宽16.75m,底腹板宽为:11.85m,即两边翼缘板宽分别为2.45m,翼板变截面为0.15~0.5m, 顶板和底板厚度分别为0.25、0.2m。混凝土标号为C55。根据现场实际需要,所设支架的净空为16.3m。 三、支架设计 跨铁路部分箱梁采用贝雷架施工平台式门洞结构进行承重,门洞的净空设置为16.3m。门洞支墩基础采用Φ150cm桩基础,采用C25砼浇注,支墩采用100*100cm方形钢筋混凝土墩身,立柱高平均约17m,支柱顶横梁采用贝雷片组(并设置I50工字钢牛腿和加设相应的斜支撑)。纵向主承重梁采用贝雷梁拼装搭设,横向采用通长Φ48*3.5钢管和交叉撑进行加固,间距1.3m/道。上部支架采用Φ48*3.5钢管、扣件搭设或碗扣支架搭设。立杆横向间距和贝雷片间距相同。立杆纵向间距分别为0.9m/道、0.6 m/道、0.3m/道(实腹板处),立杆横向间距普通段为0.9m/道(箱梁两端为0.6m/道),横杆步距为1.2m/道(箱梁两端实腹段步距为0.6m/道)。立杆上下口采用可调顶托,上口采用I10工字钢(或双[8槽钢)作为纵向分配梁,其上采用10*10方木作为底模板横肋,间距为0.3m、0.4m(翼板处);立杆下口在普通段采用[8槽钢(平放即可)作为横向连接梁。在梁两端实腹板处采取I10工字钢作为纵向分配梁

相关文档