文档库 最新最全的文档下载
当前位置:文档库 › 概率论 习题解答

概率论 习题解答

概率论 习题解答
概率论 习题解答

概率论第六章习题解答

1、在总体2(52,6.3)N 中随机抽取一容量为36的样本,求样本均值X 落在50.8与53.8之间的概率。 解 因为2(52,6.3)N ,所以

2、在总体(12,4)N 中随机抽取一容量为5的样本1X ,2X ,3X ,4X ,5X , (1)求样本均值与总体均值之差的绝对值大于1的概率。

(2)求概率12345{max(,,,,)15}P X X X X X >,12345{min{(,,,,)10}P X X X X X <

解 (1)总体均值为12μ=,,样本均值5114

(12,)55

i i X X N ==∑:

所求概率为

(2)1234512345{max(,,,,)15}1{max(,,,,)15}P X X X X X P X X X X X >=-≤ 51((1.5))=-Φ51(0.9332)0.2923=-=. (3) 12345{min{(,,,,)10}P X X X X X <

3、求总体(20,3)N 的容量分别为10,15的两个独立样本均值差的绝对值不超过0.3的概率。

解 设容量为10的样本均值为X ,样本容量为15的样本均值为Y , 则 3(20,

)10X :,3(20,)15Y :,331

()(0,)(0,)10152

X Y N N -+=: 4、(1)设126,,,X X X L 样本是来自总体(0,1)N ,22123456()()Y X X X X X X =+++++,

试确定常数C ,使CY 服从2χ分布。 (2)设125,,,X X X L 来自总体(0,1)N 样本,121

22

22345

()

()

C X X Y X X X +=++,试确定常数C 使Y

服从t 分布。

(3)已知()X t n :,求2(1,)X F n :

解 (1)因为126,,,X X X L 是来自总体(0,1)N 的样本,

由2(,)i i i X N μσ:知222121212()(,)N n n X X X N μμμσσσ+++++++++L :L L ) 故 123(0,3)X X X N ++:,456(0,3)X X X N ++:, 且相互独立,因此

(0,1)N :

(0,1)N : 且两者相互独立,由22212,,,n X X X L 是来自总体(0,1)N 的样本,则统计量 由2χ分布的定义知

2(2)3Y χ:,所以1

3

C =。 (2)因为设125,,,X X X L 是来自总体(0,1)N 的样本12(0,2)X X N +:,

(0,1)N :, 又有 2222345(3)X X X χ++: 且

,222345X X X ++相互独立,于是由t 分布的定义知 因此所求常数为

C =

(3) 因为()X t n :,故X

的形式,

其中(0,1)Z N :,2()Y n χ:,且Z ,Y 相互独立,按F 分布的定义知

2(1,)X F n :。

5、(1)已知某种能力测试的得分服从正态分布2(,)N μσ,随机地取10个人 参加这一测试,求他们的联合概率密度,并求这10个人得分的平均值小于μ的概率。

(2)在(1)中设62μ=,225σ=,若得分超过70就能得奖,求至少有一人得

奖 的概率。

解 设i X 表示参加测试的i 个人的得分(1,2,,10i =L ),则2(,)i X N μσ:,

22

()2()x X f x μσ--=

,0σ>,x -∞<<∞

由于1210,,,X X X L 相互独立,所以它们的联合的联合分布密度为

又 101110i i X X ==∑,1010

11

11()()()1010i i i i E X E X E X μ=====∑∑

故2

(,

)10

X N σμ:,则

(2) 因为(62,25)i X N :,若一人得分超过70就能得奖,则一人得奖的概率为

则10个人得奖可以看作是一个二项分布:(10,0.0548)b ,

设A 表示没有人得奖,则

即至少有一得奖的概率为0.4308。

6、设总体(1,)X b p :,12,,,n X X X L 是来自总体的样本。

(1)求12(,,,)n X X X L 的分布律; (2)求1n

i i X =∑的分布律;

(3)求()E X ,()D X ,2()E S

解 (1)因为12,,,n X X X L 相互独立,且有(1,)i X b p :,1,2,,i n =L , 即i X 具有分布律 1{}(1)i

i

x x i P X x p p -==-,0,1i x =,

因此12(,,,)n X X X L 分布律为 (各个样本的分布律的乘积) (2)因为12,,,n X X X L 相互独立,且有(1,)i X b p :,故1(,)n

i i X b n p =∑:,

其分布律为

7、设总体2()X n χ:,1210,,,X X X L 是来自X 的样本,求()E X ,()D X ,2()D S 。 解 因为2()X n χ:,所以2()()i E X E n χ==,2()()2i D X D n χ== 1,2,,10i =L 因为 222()()(())2i i i E X D X E X n n =+=+

所以 102

2211()((2)10())95

i n

E S n n n ==+-+∑

8、总体2(,)X N μσ:,1210,,,X X X L 是来自X 的样本,

(1)写出1210,,,X X X L 的联合分布密度; (2)写出X 的概率密度。

解 (1)1210,,,X X X L 联合概率密度 (2)因为 ()E X μ=,2

()10

D X σ=

所以

2

2

2

5()()x X f x μσ--

=

=

一般地 2

(,)X N μσ:

,2()X f x =

9、设在总体2(,)X N μσ:中抽取一容量为16的样本,这里μ,2σ均为未知。 (1)求2

2{ 2.041}S P σ≤;其中2S 为样本方差。

(2)2()D S 。

解 (1)设1216,,,X X X L 为总体的一个样本,则由教材P143定理二知 从而 22

22{ 2.041}{1515 2.041}S S P P σσ

≤=?≤? (n-1=15)

(查表,115n -=,2

(1)30.615n α

χ-=,得0.01α=) (2)由于 22

2

1(1)1S n n χσ

--:,故

2

2

(1)(

)2(1)n S D n σ-=- (因为2()2D n χ=)

即 44

2

2

2(1)2()(1)1

n D S n n σσ-==-- 10题和11题略去

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论试题及答案

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、, 则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D)0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3(B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计期末考试试题库及答案

概率论与数理统计

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2) (1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为 8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论模拟试题(附答案)

模拟试题(一) 一.单项选择题(每小题2分,共16分) 1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立 (C) 0)(0)(==B P A P 或 (D) AB 未必是不可能事件 2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( ) (A) )1(3p - (B) 3)1(p - (C) 31p - (D) 21 3 )1(p p C - 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立 的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 4.若随机变量ξ的概率密度为)( 21)(4 )3(2 +∞<<-∞=+- x e x f x π , 则=η( ))1,0(~N (A) 2 3 +ξ (B) 2 3 +ξ(C) 2 3-ξ(D) 2 3 -ξ 5.若随机变量ηξ ,不相关,则下列等式中不成立的是( ) (A) 0),(=ηξCov (B) ηξηξD D D +=+)( (C) ηξξηD D D ?= (D) ηξξηE E E ?= 6.设样本n X X X ,,,21???取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X (B) )1,0(~N X n (C) ) (~21 2n X n i i χ∑= (D) )1(~-n t S X 7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时, 06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >, 必有概率{}P c x c e <<+ =?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且= ,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。则X 的数学期望=)(X E 4.5 。 9、设随机变量(,)X Y 的分布律为 则条件概率 ===}2|3{Y X P 2/5 . 10、设121,,X X Λ来自正态总体)1 ,0(N , 2 129285241?? ? ??+??? ??+??? ??=∑∑∑===i i i i i i X X X Y ,当常数 k = 1/4 时,kY 服从2χ分布。 二、计算题(每小题10分,共70分) 1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率 (2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率 解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则: ABC ABC ABC U U

概率论习题库

概率论习题库

一、单项选择题(每小题3分,共15分) 1.设,A B 为两个随机事件,且B A ?,则下列式子正确的是 A .)()(A P B A P =? B .()()P AB P A = C .()()|P B A P B = D .()()()P B A P B P A -=- 2. 设),(~2σμN X ,那么当σ增大时,{}-P X μσ<= A .增大 B .不变 C .减少 D .增减不定 3.设()()()()~,E X-1X 21,X P poission λλ-==????分布且则 A.1 B. 2 C .3 D .0 4.设),(~2σμN X ,其中μ已知,2σ未知,123X , X ,X ,为其样本, 下列各项 不是统计量的是 A. 321X X X ++ B. {}123min X ,X ,X C. 2 3 i 2 i 1X σ =∑ D.1X μ- 5.在0H 为原假设,1H 为备择假设的假设检验中,显著性水平为α是 A.}{00成立接受H H P B.}{11成立接受H H P C.}{10成立接受H H P D.}{01成立接受H H P 1.A 2.B 3.A 4.C 5.D 一、单项选择题(每小题3分,共15分) 1.设,A B 为两个随机事件,且A B ?,则下面正确的等式是: (A))()()(A P B P A B P -=-; (B))(1)(A P AB P -=; (C))()|(B P A B P =; (D))()|(A P B A P =。 2. 设X ~2(,)N μσ,那么概率{2}P X μ<+ (A) 随μ增加而变大; (B) 随μ增加而减小; (C) 随σ增加而不变; (D) 随σ增加而减小 3. 设1{0,0}5 P X Y ≥≥=,2{0}{0}5 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= (A) 15 ; (B) 25 ; (C) 35 ; (D) 45 4. 设总体X ,12,,,n X X X ???是取自总体X 的一个样本, X 为样本均值,则 不是总体期望μ的无偏估计量的是 (A) X ; (B) 1n i i X =∑; (C) 1230.20.30.5X X X ++; (D) 123X X X +- 5. 设总体X ~()2,N μσ,其中2σ已知, μ未知, 123, ,X X X 为其样本, 下 列各项中不是统计量的是

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题 一、填空题(每小题2分,共计60分) 1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则 a )、若B A ,互斥,则=)B -A (p ; b )若B A ,独立,则 =)B A (p ; c )、若2.0)(=?B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只, (1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。 (2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。 (3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 . 4、设随机变量X 服从B (2,0. 8)的 二项分布,则{}==2X p , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- ,=+)(Y X E 8 。 5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 ,成绩超过85分的学生占比}85{≥X P 为 。 其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a ,X 的数学期望=)(X E , Y X 与的相关系数=xy ρ。 体) 16,8(N 7、设161,...,X X 及81,...,Y Y 分别是总的容 量为16,8的两个独立样本,Y X ,分别为样本均值,2 221,S S 分别为样本方

概率论与数理统计试题及答案

一.选择题(18分,每题3分) 1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ) )(A 独立; )(B 不独立; )(C 相容; )(D 不相容. 2. 已知人的血型为 O 、A 、B 、AB 的概率分别是; ;;。现任选4人,则4人血 型全不相同的概率为: ( ) )(A ; )(B 40024.0; )(C 0. 24; )(D 224.0. 3. 设~),(Y X ???<+=., 0, 1,/1),(22他其y x y x f π 则X 与Y 为 ( ) )(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为. 则射击次数的数 学期望与方差分别为 ( ) 、 )(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ) )(A 32112110351?X X X ++=μ ; )(B 32129 4 9231?X X X ++=μ ; )(C 321321 6131?X X X ++=μ ; )(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10 )(22 2 12n X i n i χμχ-= ∑=,其 拒域为(1.0=α) ( ) )(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(2 05.02n χχ≥. 二. 填空题(15分,每题3分) 1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则 =?)(B A P . 2. 设随机变量X 的分布律为??? ? ??-+c b a 4.01.02.043 21 ,则常数c b a ,,应满足的条件 ) 为 . 3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率

概率论考题(答案)

2010~2011第一学期《概率论与数理统计》答案 经管类本科 一、选择题(每小题3分,共18分) 1.对于事件B A ,,下列命题正确的是( D ) )(A 如果B A ,互不相容,则B A ,也互不相容 )(B 如果B A ?,则B A ? )(C 如果B A ?,则B A ? )(D 如果B A ,对立,则B A ,也对立 2.设B A ,为随机事件,且()()0, 1P B P A B >=,则必有( A ) ()()()A P A B P A ?= ()()()B P A B P B ?= ()()()C P A B P A ?> ()()()D P A B P B ?> 3.若随机变量X 的分布函数为)(x F ,则=≤≤)(b X a P ( B ) )()()(a F b F A - )()()()(a X P a F b F B =+- )()()()(a X P a F b F C =-- )()()() (b X P a F b F D =+- 4.设随机变量X 服从参数为3的泊松分布,)3 1,8(~B Y ,且X ,Y 相互独立, 则=--)43(Y X D ( C ) 13)(-A 15)(B 19)(C 23)(D 5. 总体2 ~(,)X N μσ, 123,,X X X 为取自总体X 的简单随机样本,在以下总体均值μ的四个无偏估计量中,最有效的是( D ) 1123111 ()236 A X X X μ∧=++ 21311()22 B X X μ∧=+ 3123131()555C X X X μ∧ =++ 4123111 ()424 D X X X μ∧=++ 6. 设12,, ,n X X X ()2n ≥为来自总体()0,1N 的简单随机样本,2S 为样本方差,则下面结论正 确的是( A )

相关文档
相关文档 最新文档