文档库 最新最全的文档下载
当前位置:文档库 › 高中数学讲义微专题63 立体几何中的建系设点问题

高中数学讲义微专题63 立体几何中的建系设点问题

高中数学讲义微专题63  立体几何中的建系设点问题
高中数学讲义微专题63  立体几何中的建系设点问题

O

y

x

z F

E

G

H I

J O y

x z A'C'B B'C D'

A 微专题63 立体几何解答题的建系设点问题

在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。 一、基础知识:

(一)建立直角坐标系的原则:如何选取坐标轴

1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点

2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:

(1)尽可能的让底面上更多的点位于,x y 轴上

(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件

(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应

不同。但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用

坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:

① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直

② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形

② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直

④ 勾股定理逆定理:若2

2

2

AB AC BC +=,则AB AC ⊥

(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点

(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:

x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z

规律:在哪个轴上,那个位置就有坐标,其余均为0

(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了

111,,0,,1,022H I ???? ? ?????

2、空间中在底面投影为特殊位置的点:

如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么

1212,x x y y ==(即点与投影点的横纵坐标相同)

由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的'B 点,其投影为B ,而()1,1,0B 所以()'

1,1,B z ,而其到底面的距离为1,故坐标为()'

1,1,1B

以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法:

3、需要计算的点

① 中点坐标公式:()()111222,,,,,A x y z B x y z ,则AB 中点121212,,2

22x x y y z z M +++??

???,

图中的,,,H I E F 等中点坐标均可计算

② 利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求'

A 点的坐标,如果使用向量计算,则设()'

,,A x y z ,可

直接写出()()()'

1,0,0,1,1,0,1,1,1A B B ,观察向量''

AB A B =u u u u r u u u r ,而()0,1,0AB =u u u r ,

()''1,1,1A B x y z =---u u u u r 101110101x x y y z z -==????

∴-=?=????-==??

()'1,0,1A ∴

二、典型例题:

例1:在三棱锥P ABC -中,PA ⊥平面ABC ,

90BAC ∠=o

,,,D E F 分别是棱,,AB BC CD 的中点,1,2AB AC PA ===,试建立适当的空间直角坐标系并确定各点坐标 解:PA ⊥Q 平面ABC ,PA AB PA AC ∴⊥⊥

90BAC ∠=o Q ,,PA AB AC ∴两两垂直

以,,AP AB AC 为轴建立直角坐标系

坐标轴上的点:()()()()0,0,0,1,0,0,0,1,0,0,0,2A B C P

中点::D AB 中点1,0,02??

???

:E BC 中点11,,022??

???

:F PC 中点10,,12

?? ???

综上所述:()()()11111,0,0,0,1,0,0,0,2,,0,0,,,0,0,,12

22

2B C P D E F ?????? ? ? ???

???

?

小炼有话说:本讲中为了体现某些点坐标的来历,在例题的过程中进行详细书写。这些过程在解答题中可以省略。

例2:在长方体1111ABCD A B C D -中,,E F 分别是棱1,BC CC 上的点,2CF AB CE ==,

1::1:2:4AB AD AA =,建立适当的直角坐标系并写出点的坐标

思路:建系方式显而易见,长方体1,,AA AB AD 两两垂直,本题所给的是线段的比例,如果设

1,2,4AB a AD a AA a ===等,则点的坐标都含有a ,不

便于计算。对待此类问题可以通过设单位长度,从而使得坐标都为具体的数。

解:因为长方体1111ABCD A B C D -

1,,AB AD AA ∴两两垂直

∴以1,,AB AD AA 为轴如图建系,设AB 为单位长度

112,4,1,2

AD AA CF CE ∴====

()()()()()()()11111,0,0,1,2,0,0,2,0,1,0,4,0,0,4,1,2,4,0,2,4B C D B A C D

()31,,0,1,2,12E F ??

???

例3:如图,在等腰梯形ABCD 中,AB CD ∥,1,60AD DC CB ABC ===∠=o

,CF ⊥ 平面ABCD ,且1CF =,建立适当的直角坐标系并确定各点坐标。

思路:本题直接有一个线面垂直,所以只需在平面ABCD 找过C 的相互垂直的直线即可。由题意,BCD ∠不是直角。所

D

以可以以其中一条边为轴,在底面上作垂线即可构造出两两垂直的条件,进而可以建立坐标系

方案一:(选择BC 为轴),连结AC 可知120ADC ∠=o

∴在ADC V 中

222

2cos 3AC AD DC AD DC ADC =+-=

AC ∴=

由1,60AC BC ABC ==∠=o 可解得2,90AB ACB =∠=o

AC BC ∴⊥ CF ⊥Q 平面ABCD ,CF AC CF BC ∴⊥⊥

以,,AC CF BC 为坐标轴如图建系:

(

)

)

()10,1,0,,,0,0,0,12B A

D F ?

-???

方案二(以CD 为轴)

过C 作CD 的垂线CM CF ⊥Q 平面ABCD ,CF CD CF CM ∴⊥⊥

∴以,,CD CF CM 为坐标轴如图建系:

(同方案一)计算可得:22

CM AB =

=

()()31,0,,0,0,1,0,0,0,122A B D F ??∴--?????

?

小炼有话说:建立坐标系的最重要的条件就是线面垂直(即z 轴),对于,x y 轴的选取,如果没有已知线段,可以以垂足所在的某一条直线为坐标轴,然后作这条轴的垂线来确定另一条轴,本题中的两个方案就是选过垂足C 的直线为轴建立的坐标系。 例4:已知四边形ABCD 满足1

,2

AD BC BA AD DC BC a ===

=∥,E 是BC 中点,将BAE V 翻折成1B AE V ,使得平面1B AE ⊥平面AECD ,F 为1B D 中点

思路:在处理翻折问题时,

首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。本题在

翻折时,BAE V 是等边三角形,四边形AECD 为60o

的菱形是不变的,寻找线面垂直时,根

B

D

据平面'B AE ⊥平面AECD ,结合'B AE V 是等边三角形,可取AE 中点M ,则可证'B M ⊥平面AECD ,再在四边形AECD 找一组过M 的垂线即可建系 解:取AE 中点M ,连结'B M

'B AE QV 是等边三角形 '

B M AE ∴⊥

平面'B AE ⊥平面AECD

'B M ∴⊥平面AECD ,连结DM '',B M ME B M MD ∴⊥⊥

Q 四边形AECD 为60o 的菱形 ADE ∴V 为等边三角形

DM AE ∴⊥

',,B M MD ME ∴两两垂直

如图建系,设AB 为单位长度

'11333,0,0,,0,0,0,,0,1,,0,0,0,22A E D C B ??????????- ? ? ? ? ???????????

F 为'B D 中点 330,,F ??∴ ???

例5:如图,已知四棱锥P ABCD -的底面是菱形,对角线,AC BD 交于点,4,3,4O OA OB OP ===,且OP ⊥平面ABCD ,点M 为PC 的三等分点(靠近P ),建

立适当的直角坐标系并求各点坐标

思路:由OP ⊥平面ABCD ,可得OP 作为z 轴,在底面上可利用菱形对角线相互垂直的性质,选取,OB OC 作为,x y 轴。在所有点中只有M 的坐标相对麻烦,对于三等分点可得

1

3

PM PC =,从而转化为向量关系即可求出M 坐标

解:OP ⊥Q 平面ABCD ,OP OB OP OC ∴⊥⊥

Q 菱形ABCD OB OC ∴⊥ ,,OP OB OC ∴两两垂直

以,,OP OB OC 为坐标轴如图建系

可得:()()()()()0,0,4,3,0,0,0,4,0,0,4,0,3,0,0P B C A D --

设(),,M x y z 由1

3PM PC =可得:13

PM PC =u u u u r u u u r

()(),,4,0,4,4PM x y z PC =-=-u u u u r u u u r

M

F

A B'

E

D

C

M

A E

D

C

00443348433x x y y z z ????==??

??∴=?=????

??

-=-=????

480,,33M ??

∴ ???

小炼有话说:(1)底面是菱形时要注意对角线相互垂直的性质

(2)对于一条线段上的某点分线段成比例,可以利用向量关系将该点坐标计算出来

例6:如图所示的多面体中,已知正方形ABCD 与直角梯形BDEF 所在的平面互相垂直,

EF BD ∥,

,ED BD

⊥1AD EF ED ===,试建立适当的空间直角坐标系并确定各点坐标

思路:题目已知面面垂直,从而可以找到DE 与底面垂直,再由底面是正方形,可选,AD DC 为,x y 轴,图中F 点坐标相对麻烦,可以用投影法和向量法计算得到 解:Q 平面EFBD ⊥平面ABCD

又因为直角梯形BDEF ED DB ∴⊥ ED ∴⊥平面ABCD

Q 正方形ABCD AD BD ∴⊥ ,,ED DA DC ∴两两垂直

以,,DE DA DC 为轴建立直角坐标系

坐标轴上的点:

)()

(

,,A C E 底面上的点:)B

F 点两种确定方式:

可看其投影,落在BD 中点处22?? ???,且高度为1,所以F 22??

???

② 设(),,F x y z ())

,,1,EF x y z DB ∴=-=u u u r u u u r

12EF DB =u u u r u u u r Q 222210x y F z ?=?

?

???∴=?? ????

-=???

综上所述:)()())

,,0,0,1,,22A

C E B

F ??

???

例7:如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,11AA C H =⊥平

1

1

面11AA B B

,1C H =

思路:1C H ⊥平面11AA B B ,从而1C H 可作z 轴,只需在平面11AA B B 找到过H 的两条垂线

即可建系(两种方案),对于坐标只有C 坐标相对麻烦,但由11C C A A =u u u r u u u r

可以利用向量进行计

算。

解:方案一:(利用正方形相邻边垂直关系建系) 如图建系:则

)

)()1

1

,,A A B

(

)(1,B C

设(),,C x y z

,则(1

,,C C x y z =-u u u r (

1

0,A A =-u u u r

由11

C C A A =u u u r u u u r

可得:00

0x x y y z z ==????=-?=-????-==??(0,C ∴- 综上所述:

))()()

1

1

,,,,A A B B

((1

,0,C C -

方案二:(利用正方形对角线相互垂直建系)

如图建系:由1AA =计算可得1

12A H B H == ()()()112,0,0,0,2,0,0,2,0A A B -

()(12,0,0,B C -

设(),,C x y z ,则(1,,C C x y z =-u u u r ()12,2,0A A =--u u u r

由11

C C A A =u u u r u u u r 可得:22

220x x y y z z ??=-=-??=-?=-????

-==?? (2,C ∴-- 综上所述:

()()()()112,0,0,0,2,0,0,2,0,2,0,0,A A B B --((1,2,C C --

小炼有话说:本题虽然两种建系方法均可以,但从坐标上可以发现,用方案二写出的坐标相对简单,尤其是底面上的坐标不仅在轴上,而且数比较整齐。(相信所给的1AA =目的也倾向使用方案二建系)因为在解决立体几何解答题时,建系写坐标是基础,坐标是否整齐会

决定计算过程是否更为简便。所以若题目中建系有多种选择时,不妨观察所给线段长度的特点,选择合适的方法建系,为后面的计算打好基础

例8:如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,

12,5AC AA AD CD ====,且点M 和N 分别为11C D B D 和的中点。建立合适的空间直

角坐标系并写出各点坐标

思路:由1A A ABCD ⊥底面,AB AC ⊥可得1,,AA AB AC 两两垂直,进而以它们为轴建立坐标系,本题中1111,,,A B C D 均可通过投影到底面得到横纵坐标,图中D 点坐标相对麻烦,可作出底面的平面图再根据平面几何知识进行计算。 解:Q 侧棱1A A ABCD ⊥底面

∴ 11,A A AB A A AC ⊥⊥

AB AC ⊥Q 1,,AB AC AA ∴两两垂直

以1,,AB AC AA 为轴建立直角坐标系 底面上的点:()()0,1,0,2,0,0B C

由5AD CD ==可得ADC V 为等腰三角形,若P 为AC

中点,则DP AC ⊥

22

2DP AD AP =-=

()1,2,0D ∴-

可投影到底面上的点:()()()()11110,0,2,0,1,2,2,0,2,1,2,2A B C D - 因为M 和N 分别为11C D B D 和的中点

()11,,1,1,2,12M N ??

∴- ???

综上所述:()()()()()()()11110,1,0,2,0,0,1,2,0,0,0,2,0,1,2,2,0,2,1,2,2B C D A B C D -- ()11,,1,1,2,12M N ??

- ???

例9:如图:已知PO ⊥平面ABCD ,点O 在AB 上,且EA PO ∥,四边形ABCD 为直角梯形,

P

A

D

O

1

,,2,2

AD BC BC AB BC CD BO PO EA AO CD ⊥======∥,建立适当的坐标系并求

出各点坐标

思路:由条件可得AB AD ⊥,而PO ⊥平面ABCD ,EA PO ∥可得到EA ⊥平面ABCD ,从而以,,EA AB AD 为轴建系。难点在于求底面梯形中,AB OD 的长度。可作出平面图利用平面几何知识处理。

解:PO ⊥Q 平面ABCD ,EA PO ∥ ∴ EA ⊥平面ABCD ,EA AB EA AD ∴⊥⊥

,AD BC BC AB ⊥Q ∥ AD AB ∴⊥ ,,AE AD AB ∴两两垂直,如图建系:

1

12

EA CD == ()0,0,1E ∴

Rt AOB V

中:AB ==1

cos 602

AO AOB AOB BO =

=?∠=o AD BC Q ∥ 60BOC AOB ∴∠=∠=o BC BO =Q BOC ∴V 为等边三角形

OC BC CD ∴== 60OCB ∠=o

60DOC ∴∠=o COD ∴V 为等边三角形

2OD CD ∴==

)()(

))

,0,1,0,0,3,0,B

O D C

P 在底面ABCD 投影为O 且2PO = ()0,1,2P ∴

综上所述:)()(

))

()(),0,1,0,0,3,0,,0,1,2,0,0,1B

O D C

P E

例10:已知斜三棱柱1111,90,2,ABC A B C BCA AC BC A -∠===o

在底面ABC 上的射影恰

为AC 的中点D ,又知11BA AC ⊥,建立适当的空间直角坐标系并确定各点坐标

思路:本题建系方案比较简单,1A D ⊥平面ABC ,进而1A D 作z 轴,再过D 引AC 垂线即可。难点有二:一是三棱柱的高未知,进而无法写出上底面点的竖坐标;二是1B 的投影不易在图中作出(需要扩展平面ABC )

解;第二个问题可以考虑利用向量计算得到。 解:过D 作AC 的垂线DM ,1A D ⊥Q

平面ABC

A

1

11,A D DC A D DM ∴⊥⊥,而DM DC ⊥ ∴以1,,A D DC DM 为轴建立直角坐标系

()()()0,1,0,0,1,0,2,1,0A C B -,设高为h

则()10,0,A h ,设()1,,C x y z

则()()110,2,0,,,AC AC x y z h ==-u u u r u u u u r

由11

AC AC =u u u r u u u u r 可得:00220x x y y z h z h ==????

=?=????-==??

()10,2,C h ∴

()()112,1,,0,3,BA h AC h =--=u u u r u u u u r

21111030BA AC BA AC h ∴⊥??=?-+=u u u r u u u u r

,解得3h =((113,3A C ∴

设(1

,3B x y ()11

,,0A B x y ∴=u u u u r

而()2,2,0AB =u u u r 且11

A B AB =u u u u r u u u r 22x y =?∴?=?

(13B ∴

综上所述:()()()(((1110,1,0,0,1,0,2,1,0,3,3,3A C B A C B -

高中数学(文科)立体几何知识点总结

l立体几何知识点整理(文科)l // m l //m m 直线和平面的三种位置关系:一.αl 1. 线面平行 方法二:用面面平行实现。l//l //αl符号表示: 2. 线面相交βl lαAα方法三:用平面法向量实现。符号表示:

n 为平若面线在面内3. 的一个法向量,ln n l ll //且。,则l αα符号表示: 二.平行关系:线线平行:1.方法一:用线面平行实现。3. 面面平行:l mβl //l方法一:用线线平行实现。l'l // ml m'αl // l 'm m // m'm//且相交l , m且相交l ' , m'方法二:用面面平行实现。//l βl // mlγm m α方法二:用线面平行实现。 方法三:用线面垂直实现。 l // l, m l // m //m //若。,则l l , m且相交mβ方法四:用向量方法:m l l // m。若向量和向量共线且l、m不重合,则α 2.线面平行: 方法一:用线线平行实现。1/11

l C A方法三:用向量方法: Bα l m l m ,则的数量积为和向量若向量0。三.垂直关系:

夹角问题。三.线面垂直:1.异面直线所成的角:一)(方法一:用线线垂直实现。(0 ,90 ]范围:(1) ACl ABl 求法:(2)P n l ABAC A方法一:定义法。AθO AC, ABα:平移,使它们相交,找到夹角。步骤1 方法二:用面面垂直实现。)常用到余弦定理步骤2:解三角形求出角。( 余弦定理:βl lm a c222c ab l m, l m cosθ2ab bα )计算结果可能是其补角( 面面垂直:2.方法二:向量法。转化为向量 方法一:用线面垂直实现。 C的夹角βl lθl:)(计算结果可能是其补角 BA AB ACαcos AB AC方法二:计算所成二面角为直角。 线面角)(二线线垂直:3. 上任取一点(1) 定义:直线l ,作(交点除外)P方法一:用线面垂直实现。 内,则连结AO AO 为斜线PA 在面于O,PO l l m PAO 图中(与面)为直线l l所成的角。的射影,m

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结 一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 E'D' F' C'侧面 A'B' l 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的 底面侧棱 关系: 斜棱柱 ED FC ① 底面是正多形 棱柱正棱柱 棱垂直于底面 直棱柱 其他棱柱 AB ②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形 长方体底面为正方形正四棱柱侧棱与底面边长相等正方体 1.3棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的 D1 C1 平方和;【如图】 2222 ACABADAA 11 A1 D B1 ②(了解)长方体的一条对角线 AC 与过顶点A 的三条 1 C AB 棱所成的角分别是,,,那么

第1页

222 coscoscos1, 222 sinsinsin2; ③(了解)长方体的一条对角线A C与过顶点A的相邻三个面所成的角分别是,,, 1 则 222 coscoscos2, 222 sinsinsin1. 2.侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻 边的矩形. 3.面积、体积公式:S ch 直棱柱侧 直棱柱全底,V棱柱底 Sch2SSh (其中c为底面周长,h 为棱柱的高)1.5圆柱 2.1圆柱——以矩形的一边所在的直线为旋转轴,其 余各边旋转而形成的曲面所围成的几何体叫圆柱. 母线A' B' O' C' 轴 轴截面 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和AOC 侧面B 母线长为邻边的矩形. 底面2.4面积、体积公式: S圆柱侧=2rh;S 圆柱全= 2 2rh2r,V 圆柱=S底h= 2 rh(其中r为底面半径,h为圆柱高) 1.6棱锥 3.1棱锥——有一个面是多边形,其余各 S 顶点侧面面是有一个公共顶点的三角形,由这些高 面所围成的几何体叫做棱锥。 侧棱正棱锥——如果有一个棱锥的底面 是正多边形,并且顶点在底面的射影是 底面的中心,这样的棱锥叫做正棱锥。 3.2棱锥的性质:底面 斜高DC ①平行于底面的截面是与底面相似的正 O AB H 多边形,相似比等于顶点到截面的距 离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:SOB,SOH,SBH,OBH为直角三角形) 3.3侧面展开图:正n棱锥的侧面展开图是有n个全等的等腰三角形组成的。

高中数学《立体几何(文科)》练习题

高中数学《立体几何》练习题 1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为 ( ) A.12 B.24 C.62 D.122 2.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是 ( ) A .若//,,m n m n αβ⊥⊥,则αβ⊥ B .若//,,m n m n αβ⊥⊥,则//αβ C .若//,,//m n m n αβ⊥,则α⊥β D .若//,,//m n m n αβ⊥,则//αβ 3.如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论错误.. 的是 A .P D DC 11⊥ B .平面⊥P A D 11平面AP A 1 C .1AP D ∠的最大值为090 D .1PD AP +的最小值为22+ 4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m 3. 5.若某几何体的三视图如图所示,则此几何体的体积等于 . 6.如图是一个几何体的三视图,则该几何体的体积是____________

7.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知 1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛水的体积是原来的 . 8.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB = 12 PD. (1)证明:PQ ⊥平面DCQ ; (2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.[来 9.如图所示的多面体中,ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3 BAD π ∠=. (1)求证://BCF AED 平面平面. (2)若,BF BD a A BDEF ==-求四棱锥的体积。 10.在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点. (1) 求证:PC AD ⊥; (2) 求证://FG 平面BCP ; S F C B A D E

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

高中文科数学立体几何知识点总结材料

立体几何知识点整理(文科) 一. 直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量l和向量m共线且l、 m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l l

方法二:用线面平行实现。 βαβαα //,////??? ? ???且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。

高中数学竞赛_立体几何【讲义】

第十二章立体几何 一、基础知识 公理1 一条直线。上如果有两个不同的点在平面。内.则这条直线在这个平面内,记作:a?a. 公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。 公理3 过不在同一条直线上的三个点有且只有一个平面。即不共线的三点确定一个平面. 推论l 直线与直线外一点确定一个平面. 推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面. 公理4 在空间内,平行于同一直线的两条直线平行. 定义 1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离. 定义 2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外. 定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直. 定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直. 定理2 两条直线垂直于同一个平面,则这两条直线平行. 定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直. 定理 4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离. 定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角. 结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角. 定理4 (三垂线定理)若d为平面。的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b. 定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行 定理6 若直线。与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b. 结论2 若直线。与平面α和平面β都平行,且平面α与平面β相交于b,则a//b. 定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等. 定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交. 定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β. 定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b. 定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角. 它的取值范围是[0,π]. 特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α⊥β. 定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直. 定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内. 定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直. 定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1、棱柱的结构特征 1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 「斜機柱 ①校*L曲査十底雨>直棱 柱]一IF 皱ft 他械柱… 底面是四边形底面是平行四边形 棱柱四棱柱平行六面体侧棱垂直于底面底面是矩形 直平行六面体'长方体 底面是正方形棱长都相等 正四棱柱正方体 性质: I、侧面都是平行四边形,且各侧棱互相平行且相等; n、两底面是全等多边形且互相平行; 川、平行于底面的截面和底面全等;

2 1.3棱柱的面积和体积公式 S 直棱柱侧ch ( c 是底周长,h 是咼) S 直棱柱表面=c ? h+ 2S 底 V 棱柱=S 底? h 2、棱锥的结构特征 2.1棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共 顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2) 正棱锥:如果有一个棱锥的底面是正多边形, 并且顶 点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2正棱锥的结构特征 I 、平行于底面的截面是与底面相似的正多边形, 相似比 等于顶点到截面的距离与顶点到底面的距离之比;它们面积 的比等于截得的棱锥的高与原棱锥的高的平方比; 截得的棱 锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱 锥的高的立方 比; n >正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S 正棱椎 (c 为底周长,h'为斜高) 2 1 体积:V 棱椎-Sh ( S 为底面积,h 为高) 3 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 2 -a 的正方体问题。 P O H C

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中文科数学立体几何知识点大题

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??????=?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ????? (三) 面面平行:6方法一:线线平行?面面平行 βααβ//',','//' //??? ???????且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////??? ???=?A m l m l m l , 方法三:8线面垂直?面面平行 βαβα面面面面//?? ??⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?? ???⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 αα⊥??? ? ?????=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥??? ????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥?? ???⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

相关文档
相关文档 最新文档