文档库 最新最全的文档下载
当前位置:文档库 › 抛物线与动点及图形变换2018.11.28

抛物线与动点及图形变换2018.11.28

抛物线与动点及图形变换2018.11.28
抛物线与动点及图形变换2018.11.28

抛物线与动点及图形变换

1.如图,在矩形ABCD中,OA=5,AB=4,点D为边AB上一点,将△BCD

沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在

的直线为x轴,y轴建立平面直角坐标系.

(1)求OE的长及经过O,D,C三点抛物线的解析式;

(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度

向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长

度的速度向点C运动,当点P到达点B时,两点同时停止运动,

设运动时间为t秒,当t为何值时,DP=DQ;

(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,

是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是

平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.

2.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,

B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线

段OA上,从点O出发,向点A以1个单位/秒的速度匀

速运动;同时,点Q在线段AB上,从点A出发,向点B

以个单位/秒的速度匀速运动,连接PQ,设运动时间

为t秒.

(1)求抛物线的解析式;

(2)问:当t为何值时,△APQ为直角三角形;

(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y

轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F

的坐标;

(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否

存在t的值,使以B,Q,M为顶点的三角形与以O,B,

P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

3.如图,在平面直角坐标系中,矩

形OCDE的三个顶点分别是C(3,0),

D(3,4),

E(0,4).点A在DE上,以A为

顶点的抛物线过点C,且对称轴x=1

交x轴于点B.

连接EC,AC.点P,Q为动点,设

运动时间为t秒.

(1)填空:点A坐标为______;抛

物线的解析式为______.

(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

4.如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为

(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已

知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,

并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒

的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.

①当t为秒时,△PAD的周长最小?当t

为秒时,△PAD是以AD为腰的等腰三角形?(结果保

留根号)

②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边

的直角三角形?若存在,求出点P的坐标;若不存在,请说明理

由.

5.(2017宜宾中考)如图抛物线y=-x2+bx+c与x

轴分别交于A(-1,0),B(5,0)两点

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直X轴于点D,

链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移

m个单位,当点C落在抛物线上时,求m的值

(3)在(2)的条件下,当点C第一次落在抛物线上记

为点E,点P是地物线对称轴上一点.试探究:在抛物

线上是否存在点Q,使以点B、E、P、Q为顶点的四边

形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由

6.如图1,一抛物线与x轴交于点A(-1,0)、B(4,0)两点,与y轴交于点C(0,-2),经过点B的直线交y轴于点E(0,2).

⑴求该抛物线的解析式,

⑵如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA、EA、ED、PD .求四边形EAPD面积的最大值;

⑶如图3,连结AC,将△AOC绕点0逆时针方向旋转,记旋转中的三角形为△A/OC/,在旋转过程中,直线OC/与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.

7.已知如图,矩形OABC的长OA=3,宽0C=1,将△AOC沿AC翻折

得△APC.

⑴求∠PCB 的度数; ⑵若P ,A 两点在抛物线c bx x y ++-=234上,求b ,c 的值,并说明点C 在此抛物线上; ⑶⑵中的抛物线与矩形OABC 边CB 相交于点D ,与x 轴相交于另外一点E ,若点M 是x 轴上的点,N 是y 轴上的点,以点E 、M 、D 、N 为顶点的四边形是平行四边形,试求点M 、N 的坐标.

8.如图,已知抛物线y =-x 2+bx +c 与y 轴相交于点B,对称轴是

直线x=1

(1)求此抛物线的解析式以及点B 的坐标

(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向

运动,同时动点N 从点O 出发以每秒3个单位长度的速度沿y 轴正

方向运动,当N 点到达A 点时,M 、N 同时停止运动,过动点M 作x 轴

的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒

①当t 为何值时,四边形OMPN 为矩形

②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值若不能,请说明理由

9.如图,在等腰三角形ABC 中,AB=AC ,以底边BC 的垂直平分线和BC 所在的直线建立

10.边长为2的正方形OABC 在平面直角坐标系中的位

置如图所示,点D 是边OA 的中点,连接CD ,点E 在第

一象限,且DE ⊥DC ,DE=DC .以直线AB 为对称轴的抛

物线过C ,E 两点.

(1)求抛物线的解析式;

(2)点P 从点C 出发,沿射线CB 每秒1个单位长度

的速度运动,运动时间为t 秒.过点P 作PF ⊥CD 于点

F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与△

COD 相似?

(3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

抛物线与图形的面积

抛物线与图形的面积 直角坐标系中图形面积的方法:割补法,平移等积转化法和相似法等 1.直角坐标系中有点A(-1,0)B(3,0)G(2,-3)P(m,n)(1)若四边形ABGP的面积为S,用含m、n的式子表示S 2.如果直接给出P(m,m2-2m-3),求出S与m的函数关系式,你将用 什么方法整理关系式? (2)画出直线AG,P在AG下方,若△APG的面积为y,用含m的式子表示y. 2、如图抛物线y= x2-2x-3与x轴交于A、B两点,点G(2,n)是抛物线上点。 (1)点P是直线AG下方的抛物线上一动点,当△APG的面积最大时,求点P的坐标。

(抛物线与y轴交于点C,)(3)将点P运动到与抛物线与y轴的交点时, 请在抛物线上找一点K,使△AGC的面积与△AGK的面积相等。 法1:在抛物线BG上找一点K(m,m2-2m-3),写出AG的解析式,用(2)的方法在AG上找一点D,求△AGK的面积。使△AGK的面积等于△AGC的面积(当m=0,求△AGC的面积) 法2:①将AG平移,在y轴上找C的平移点求直线解析式求交点。 ②通过将△AGC关于直线AG的轴对的图形△AGH.由45度找C的对称点H,过H作直线AG的平行线。 (4)点P是直线AG下方的抛物线上一动点,当△APG的面积最大时,求点P的坐标。(通过平行移的方法) 通过平行移的方法,求出直线与抛物线有一个交点时△=0,求出直线的解析式中的b的值。 3抛物线与y轴交于点C(0,4),与x轴交于点A、B,坐标分别为A(4,0)B(-1,0)。 (1)求该抛物线的解析式。 (2)在抛物线上找一点M,使△ABC的面积等于△AGM的面积。 (3)点Q是线段AO上的动点,过点QE∥AC,交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标。

动点问题的函数图象选择方法

动点问题的函数图象选择方法 近几年中考试题中对动点问题的函数图象考察地很频繁,一般都作为选择题最后一道呈现。解答此类题目的一般过程为:读懂题意,牢牢抓住横轴和纵轴所表示的意义,在模拟运动过程中找到分界点,确定不同时间段并分析题意建立相对应函数模型,列出对应函数关系式,由函数关系式选择图象。但在实际的做题过程中,由于是选择题,我们可以选择不同的方法快速,准确地选出答案。 一.列函数关系式法 例1.(2014年河南第8.题)如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线 AC CB BA 运动,最终回到A 点。设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图象大致是 ( ) 解析:由P 点运动过程AC CB BA 知,分为三个阶段,第一阶段AC 段, y=x(0≤x ≤1),第二阶段CB 段,y=2(1)1x -+(1≤x ≤3),这是一个在定义域内的增函数,但不 是一次函数。第三阶段BA 段,y=5+3-x(3≤x ≤5+3),所以本题选A 。 定评:分析不同阶段的运动过程,利用学习过的知识,建立函数模型,列出函数关系式,由关系式找出对应阶段的图象。这种方法要求高,没有较强的分析能力和数学素养关系式列不出来,当然这种方法耗时较多。 二.分析淘汰法 例2. (2014年兰州第15题)如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( ) 解析:由l 运动 的过程,分为两个阶段,第一阶段从O 到BD,的过程中,X 轴,Y 轴方向上都在增加,而要表示面积这两个方向上都能用上,所以这必然为开口向上增大的二次函数模式,选择增长的曲线段。第二阶段从BD 到C 的过程,面积在DC,BC 两条边上增大,而此时面积的表示与这两边没有直接的联系,但可以断定是一个增长的二次函数模式,所以本题选D. 点评:分析运动过程,大体与学习过的正比列函数,一次函数,反比例函数,二次函数A . B . C . D .

(整理)抛物线的概念性质几何意义

抛物线的概念、性质、几何意义 【教学内容】 抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。 【教学目标】 1、掌握抛物线的定义,动点到定点的距离等于动点到定直线的距离,则动点的轨迹是抛物线。熟练掌握顶点在原点,对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。 2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。若已知了抛物线顶点在顶点,焦点在x 轴上,则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点,焦点在y 轴上,则可设抛物线的方程为x 2=2ay (a ≠0),再由另外一个条件就可以求出抛物线标准方程了。若顶点在原点,焦点在坐标上,则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。 3、抛物线标准方程中,判别焦点在哪个轴上的方法是看方程的一次项,若一次项的变量为x ,则焦点在x 轴上;若一次项的变量为y ,则焦点在y 轴 上。另外,对于抛物线y 2=2ax (a ≠0),焦点坐标为(2a ,0),准线方程为2a x -=; 对于抛物线x 2=2ay (a ≠0)焦点坐标为(0,2a ),准线方程为2 a y -=。这一 结论对a >0及a <0均成立。 4、在抛物线中,抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来处理,这一思想方法在抛物线中有着广泛的应用。我们在学习时要引起重视。 【知识讲解】 例1、求经过定点A (-3,2)的抛物线的坐标准方程。 解:抛物线过第二象限内的点A (-3,2),应考虑开口向上及向左两种情形。 (1)若开口向左,设抛物线方程为y 2=-2px ,因为抛物线过点A (-3, 2),∴22=-2p(-3)即342=p ,则抛物线方程为x y 3 4 2-=。 (2)若开口向上,设其方程为x 2=2py ,因为抛物线过点A (-3,2), ∴22)3(2?=-p ,即292=p 综上所述,抛物线的方程为x y 342-=

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

第17课时:抛物线与几何图形(3)

第17课时:抛物线与几何图形(3) 班级_________ 姓名__________学号 学习目标:经历探索抛物线与圆有关问题的过程,体会知识之间的相互联系,综合运用所学的知识,提高分析和解决问题的能力,感受数形结合等思想方法. 探索活动: 问题一.抛物线y = 41x 2+mx +n 经过点(0,23)与(4,2 3). (1)求这条抛物线的解析式,并写出它的顶点坐标; (2)现有一半径为1,圆心P 在抛物线上运动的动圆,当⊙P 与坐标轴相切时,求圆心P 的坐标. 问题二.如图,在直角坐标系中,⊙A 的半径为4,A 的坐标为(2,0),⊙A 与x 轴交于E 、F 两点,与y 轴交于C 、D 两点,过点C 作⊙A 的切线BC 交x 轴于B . (1)求直线BC 的解析式; (2)若抛物线y =ax 2+bx +c 的顶点在直线BC 上,与x 轴的交点恰为⊙A 与x 轴的交点,求抛物线的解析式; (3)试判断点C 是否在抛物线上,并说明理由. 问题三.已知:抛物线y =ax 2+bx +c 经过原点(0,0)和A (1,-3),B (-1,5)两点. (1)求抛物线的解析式; (2)设抛物线与x 轴的另一个交点为C ,以OC 为直径作⊙M ,如果过抛物线上一点P 作⊙M 的切线PD ,切点为D ,且与y 轴的正半轴交点为E ,连结MD ,已知点E 的坐标为(0,m ),求四边形EOMD 的面积(用含m 的代数式表示); (3)延长DM 交⊙M 于点N ,连结ON ,OD ,当点P 在(2) 的条件下运动到什么位置时,能使得S 四边形PCMD =S △DON ,请求出此时点P 的坐标. 问题四.如图,已知直线y =x +6交x 、y 轴于A 、C 两点,经过A 、O 两点的抛物线 y =ax 2+bx (a <0)的顶点B 在直线AC 上. (1)求A 、C 两点的坐标; (2)求出抛物线的函数关系式; (3)以B 点为圆心,以AB 为半径作⊙B ,将⊙B 沿x 轴翻折得到⊙D ,试判断直线AC 与⊙D 的位置关系,并求出BD 的长; (4)若E 为⊙B 优弧ACO 上一动点,连结AE 、OE ,问在抛物线上是否存在一点M ,使 ∠MOA ︰∠AEO =2︰3,若存在,试求出点M 第六章 二次函数 B P E D M C O A x y

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

中考数学抛物线及三角形面积专题复习题.doc

2019-2020 年中考数学抛物线与三角形面积专题复习题 抛物线与三角形面积问题涉及代数、几何知识,有一定难度。本文通过举例来谈这类题的解法。 一、顶点在抛物线y=ax2 +bx+c 的三角形面积的一般情况有: (1)、以抛物线与x 轴的两交点和抛物线的顶点为顶点的三角形,其底边的长是抛物线与x 轴两交点间的距离,高的长是抛物线顶点的纵坐标的绝对值。其面积为: S = |x 1-x 2 | · ||=··|| (2)、以抛物线与 x 轴、 y 轴的三个交点为顶点的三角形。其底边的长是 抛物线与 x 轴两交点间的距离,高的长是抛物线与y 轴上的截距 ( 原点与 y 轴交点构成的线段长 ) 的绝对值。其面积为: S =· |x1-x2|· |c|=··|c| (3)、三角形三个顶点在抛物线其他位置时,应根据图形的具体特征,灵 活运用几何和代数的有关知识。 二、1.求内接于抛物线的三角形面积。 例1.已知抛物线的顶点 C(2,),它与 x 轴两交点 A、B 的横坐标是方程x2-4x+3=0 的两根,求 ABC的面积。 解:由方程 x2 -4x+3=0,得 x1=1, x 2=3, ∴AB=|x 2-x 1|=|3-1|=2. ∴ S ABC × × = 2= . 例 2.已知二次函数 y= x2+3x+2 的图像与 x 轴交于 A、B 两点,与 y 轴交于D点,顶点为 C,求四边形 ACBD的面积。 解:如图 1,S 四边形ACBD=S ABC+S ABD

=×× | |+ ××|2|= . 例 3.如图:已知抛物线 y=x2-2x+3 与直线 y=2x B,抛物线与 y 轴相交于 C 点,求ABC的面积。 相交于A、 解:由 得点 A 的坐标为( 1,2),点 B 的坐标为( 3,6);抛 物线与 y 轴交点 C 的坐标为 ( 0, 3)如图 2,由 A、B、C三点的坐标可知, AB= =2 , BC= =3 ,AC= =。 2 2 2 ∵ AC +BC=AB, ∴ ABC为直角三角形,并且∠BCA=90, ∴ S ABC= ·× × 3 。 AC BC= =3 2.求抛物线的解析式 例4.已知抛物线 y=x2+bx+c 与 x 轴交于点 A、B,其对称轴为直线 x=-2 ,顶点为 M,且 S AMB=8,求它的解析式。 解:∵对称轴为直线x=-2, ∴-=-2, ∴ b=4, ∴y=x 2+4x+c, ∵ S AMB ·· | |= · | |=8 , = ∴c=0, ∴ y=x 2+4x. 例5.设二次函数 y=ax2+bx+c 的图像与 x 轴交于点 A、B,与 y 轴交于点 C,若AC=20, ∠ACB=90°, S ACB=150,求二次函数的解析式。

图形折叠及动点问题

图形折叠及动点问题得相关计算 1.如图,在△ABC中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE得中点,则折痕DE得长为( ) A、1 2 B.3 C.2 D.1 2.如图,在直角坐标系中,ABCD得四个顶点得坐标分别为A(0,8),B(-6,8),C(-6,0),D(0,0),现有动点P在线段CB上运动,当△ADP为等腰三角形时,P点坐标为__________、 3.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点D,E分别在边AB,AC 上,将△ADE沿直线DE翻折,点A得对应点在边AB上,连接A′C,如果A′C =A′A,那么BD=__________、 4.如图,在矩形纸片ABCD中,AB=5,AD=2,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边得交点),再将纸片还原,则四边形EPFD为菱形时,x得取值范围就是__________、5.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D就是边BC得中点,点E就是边AB上得任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF得长取最小值时,BF得长为__________、 6.如图,矩形ABCD中,AB=3,BC=4,点E就是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′得长为 __________. 7.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC得对应边GI与边CD交于点H,折痕为EF,则AE=__________时,△EGH为等腰三角形、 8.如上图已知在△ABC中,AB=AC=5,BC=6,将△ABC沿射线BC方向平移m 个单位得到△DEF,顶点A、B、C分别与D、E、F对应.若以点A、D、E为顶点得三角形就是等腰三角形,且AE为腰,则m得值就是__________. 9.如图,矩形ABCD中,AB=1,AD=2,点E就是边AD上得一个动点,把△BAE 沿BE折叠,点A落在A′处,如果A′恰在矩形得对称轴上,则AE得长为 __________、 10.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD 为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E、若△DEB′为直角三角形,则BD得长就是__________. 题型五第15题图形折叠及动点问题得相关计算 1.D【解析】∵△A′DE由△ADE翻折而成,∴AE=A′E,∵A′为CE得 中点,∴AE=A′E=1 2 CE,∴AE= 1 3 AC, AE AC = 1 3 ,∵∠C=90°,DE⊥AC,∴DE∥BC,

难点探究专题:抛物线与几何图形的综合(选做)

难点探究专题:抛物线与几何图形的综合(选做) ——代几结合,突破面积及点的存在性问题 ◆类型一二次函数与三角形的综合 一、全等三角形的存在性问题 1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题: (1)求抛物线的解析式; (2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由. 二、线段(或周长)的最值问题及等腰三角形的存在性问题 2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标; (3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标. ◆类型二二次函数与平行四边形的综合 3.如图,抛物线y=ax2+2ax+c(a >0)与y轴交于点C,与x轴交于A,B 两点,A点在B点左侧.若点E在x轴上,点P在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有() A.1个B.2个C.3个D.4个 4.如图,抛物线y= 1 2x 2+x- 3 2与x 轴相交于A,B两点,顶点为P. (1)求点A,B的坐标; (2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存

在,求出符合条件的点E 的坐标;若不存在,请说明理由; (3)坐标平面内是否存在点F ,使得以A ,B ,P ,F 为顶点的四边形为平行四边形?直接写出所有符合条件的点F 的坐标. ◆类型三 二次函数与矩形、菱形、正方形的综合 5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为 ________. 第5题图 第6题图 6.如图,抛物线y =ax 2-x -3 2与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________. 7. (2016·新疆中考)如图,对称轴为直线x =7 2的抛物线经过点A(6,0)和B(0, -4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式; (3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形. 8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点. (1)建立适当的平面直角坐标系, ①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式; (2)求△OAE 与△OCE 面积之和的最大值.

题型四_几何图形的折叠与动点问题

题型四几何图形的折叠与动点问题 试题演练 1. 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折 叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则x的取值围是__________. 2. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________. 3. (’15模拟)如图,在边长为4的正方形ABCD中,M为BC的中点,E、F分别为AB、CD 边上的动点.在点E、F运动的过程中始终保持△EMF为直角三角形,其中∠EMF=90°. 则直角三角形的斜边EF的取值围是________. 4. 如图,在边长为2的菱形ABCD中,∠A=60°,点P为射线AB上一个动点,过点P作 PE⊥AB交射线AD于点E,将△AEP沿直线PE折叠,点A的对应点为F,连接FD、FC,若△FDC为直角三角形时,AP的长为________.

5. 如图,正方形ABCD的边长为2,∠DAC的平分线AE交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值为________. 6. 如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当 点D的对应点D′落在矩形的对角线上时,DE的长为________. 7. 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,对应点为点E, 若BG=10,则折痕FG的长为________. 8. 如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜 边AC上的一点,且AE=AB,沿△DEC的一个角平分线折叠,使点C落在DE所在直线上,则折痕的长度为________. 9. (’15模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点E是AB边上一动点, 过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的点F处,当△BCF为等腰三角形时,AE的长为________.

抛物线与图形面积

抛物线与图形面积 面积是平面几何中一个重要的概念,关联着平面图形中的重要元素――边与角。由动点生成的面积问题,是抛物线与直线结合的常见形式。有以下方法:图形割补、等积变形、等比转化。 应当学会这样的一种对待问题的态度,即把问题看做是精密研究的对象,而把解答问题看作是设计和发明的目标。 1.已知直线y=2x+4与x轴、y轴分别交于A,D两点,抛物线y=﹣x2+bx+c经过点A,D,点B 是抛物线与x轴的另一个交点. (1)求这条抛物线的解析式及点B的坐标; (2)设点M是直线AD上一点,且S△AOM:S△OMD=1:3,求点M的坐标; (3)如果点C(2,y)在这条抛物线上,在y轴的正半轴上是否存在点P,使△BCP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由. 2.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB. (1)求该抛物线的解析式; (2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等?若存在,求点Q的坐标;若不存在,说明理由; (3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由. 3.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x 轴的垂线交直线AB于点C,作PD⊥AB于点D. (1)求a、b及sin∠ACP的值; (2)设点P的横坐标为m; ①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值; ②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.

动点问题的函数图像

动点问题得函数图像复习指要 【典例分析】 例1(2014?贵阳,第9题,3分)如图,三棱柱得体积为10,其侧棱AB上有一个点P从点A开始运动到点B停止,过P点作与底面平行得平面将这个三棱柱截成两个部分,它们得体积分别为x、y,则下列能表示y与x之间函数关系得大致图象就是() A.B.C.D. 考点:动点问题得函数图象. 分析:根据截成得两个部分得体积之与等于三棱柱得体积列式表示出y与x得函数关系式,再根据一次函数得图象解答. 解答:解:∵过P点作与底面平行得平面将这个三棱柱截成两个部分得体积分别为x、y,∴x+y=10, ∴y=﹣x+10(0≤x≤10), 纵观各选项,只有A选项图象符合. 故选A. 点评:本题考查了动点问题得函数图象,比较简单,理解分成两个部分得体积得与等于三棱柱得体积就是解题得关键. 例2 (2014年?河南省,第8题,3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s得速度沿折线AC→CB→BA运动,最终回到点A,设点P得运动时间为x(s),线段AP得长度为y(cm),则能够反映y与x之间函数关系得图象大致就是()

A.B. C.D. 考点:动点问题得函数图象. 分析:这就是分段函数:①点P在AC边上时,y=x,它得图象就是一次函数图象得一部分; ②点P在边BC上时,利用勾股定理求得y与x得函数关系式,根据关系式选择图象; ③点P在边AB上时,利用线段间得与差关系求得y与x得函数关系式,由关系式选择图象. 解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它得图象就是一次函数图象得一部分.故C错误; ②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=, 则其函数图象就是y随x得增大而增大,且不就是线段.故B、D错误; ③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象就是直线得一部分. 综上所述,A选项符合题意. 故选:A. 点评:本题考查了动点问题得函数图象.此题涉及到了函数y=得图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题. 例3(2014?广西桂林,第12题,3分)如图1, 在等腰梯形ABCD中,∠B=60°,PQ同时从B 出发,以每秒1单位长度分别沿BADC与BCD 方向运动至相遇时停止,设运动时间为t(秒), △BPQ得面积为S(平房单位),S与t得函数图 象如图2所示,则下列结论错误得就是() A.当t=4秒时,S=43 B.AD=4 C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD得面积 考点:动点问题得函数图象. 分析:根据等腰梯形得性质及动点函数图象得性质,综合判断可得答案. 解答:解:由答图2所示,动点运动过程分为三个阶段:

历年中考数学动点问题题型方法归纳

x A O Q P B y 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) y M C D 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学难点探究专题复习抛物线与几何图形的综合(选做)

难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题 ◆类型一二次函数与三角形的综合 一、全等三角形的存在性问题 1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题: (1)求抛物线的解析式; (2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点△D,使得ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由. 二、线段(或周长)的最值问题及等腰三角形的存在性问题 2.(凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;

4.如图,抛物线y=x2+x-与x轴相交于A,B两点,顶点为P. (3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标. ◆类型二二次函数与平行四边形的综合 3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B 两点,A点在B点左侧.若点E在x轴上,点P在抛物线上,且以A,C,E,P 为顶点的四边形是平行四边形,则符合条件的点P有() A.1个B.2个C.3个D.4个 13 22 (1)求点A,B的坐标; (2)在抛物线上是否存在点△E,使ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由; (3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

二次函数与几何图形面积

专题3: 二次函数中的面积计算问题 例1. 如图,二次函数 图象与 轴交于A,B两点(A在B的左边),与 轴交于点C,顶点为M , 为直角三角形, 图象的对称轴为直线 ,点 是抛物线上位于 两点之间的一个动点,则 的面积的最大值为() A. B. C. D.

练习:1、如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由. 例2.如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式; (2)求△CAB的铅垂高CD及S△CAB ;

(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使 S△PAB= S△CAB,若存在,求出P点的坐标;若不存在,请说明理由. 练习:2、如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕点O逆时针方向旋转90°得到△COD(点A转到点C的位置),抛物线y=ax 2+bx+c(a≠0)经过C、D、B三点. (1)求抛物线的解析式; (2)若抛物线的顶点为P,求△PAB的面积; (3)抛物线上是否存在点M,使△MBC的面积等于△PAB的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

22.3抛物线与几何图形的综合(专题)

22.3抛物线与几何图形的综合(专题) 姓名学号评价 一.解答题(共4小题) 1.(2016?枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B. (1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标; (3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标. 2.(2016?临沂模拟)已知:如图,抛物线y=ax2+3ax+c(a>0)与y 轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值; (3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P 为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由. 3.(2016?广州一模)如图,在平面直角坐标系xOy中,抛物线 y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=﹣x+3恰好经过B,C两点 (1)写出点C的坐标;

(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标; (3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标. 4.(2016?沈丘县二模)如图,抛物线y=﹣x2+mx+n与x轴交于A、 B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2). (1)求抛物线的表达式; (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由; (3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

中考数学专题训练—几何图形动点问题分类

中考数学专题训练—几何图形动点问题分类 类型一 圆的动点问题 1.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于 3 4A 、B 两点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线; (2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围); (3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由. 第1题图 (1)证明:如解图,连接QP ,

∵y =-x +3交坐标轴于A ,B 两点, 3 4∴A (4,0),B (0,3), ∴OA =4,OB =3,AB =22OB OA =5,∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t 4∴ =,AQ AB AP AO 又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q 的半径,∴AB 为⊙Q 的切线; 第1题解图①

(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t , ∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===, MA AC PA QA 4 5又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴ =,∴m ==-t +4;7t 4-m 4516-35t 4354 ②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t , 第1题解图② AC =4-m ,∴=, t 4-m 45∴m =-t +4; 5 4

相关文档
相关文档 最新文档