文档库 最新最全的文档下载
当前位置:文档库 › 地球物理学基础复习资料(白永利)

地球物理学基础复习资料(白永利)

地球物理学基础复习资料(白永利)
地球物理学基础复习资料(白永利)

地球物理学基础复习资料

绪论

一.地球物理学的概念,研究特点和研究内容

它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学之间的

边缘学科。

地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其

运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球

自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力

学,地热学,大地测量学,大地构造物理学,地球动力学等。

研究特点:1.交叉学科地球物理学由地质学和物理学发展而来,随着学科

本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加

强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的

信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3 多解

性正演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产

生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理

场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的

物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。

地球物理学的总趋势:多学科综合和科学的国际合作。

二.地球物理学各分支所依据的物理学原理和研究的物性参数。

地震学:波在弹性介质中的传播。地震体波走时,面波频散,自由振荡的本征

谱特征

重力学:牛顿万有引力定律。地球的重力场和重力位

地磁学:麦克斯韦电磁理论。地磁场和地磁势。

古地磁学:铁磁学。岩石的剩余磁性。

地电学:电磁场理论。天然电场和大地电场

地热学:热学规律,热传导方程。地球热场,热源。

第一章太阳系和地球

一.地球的转动方式。

1.自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,有微小变化。

2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。

3.平动地球随整个太阳系在宇宙太空中不停地向前运动。

4.进动地球由于旋转,赤道附近向外凸出,日月对此凸出部分的吸引力使地

轴绕黄轴转动,方向自东向西。这种在地球运动过程中,地轴方向发生的运动即

为地球的进动。

5.章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小

的振幅在锥面内,外摆动,地球的这种运动叫章动。

二.地球的形状及影响因素。

地球为一梨形不规则回转椭球体。

影响因素:1.地球的自引力---正球体;2.地球的自转----标准扁球体;3.地球内

部物质分布不均匀--不规则回转椭球体

三.地球内部结构

地壳:地下的一个地震波速度的间断面,P波速度由界面上方的6.2km/s增至8.1km/s左右。这个间断面称为莫霍面(M面)。莫霍面以上的介质称为地壳,以下的介质称为地幔。地壳构造复杂,厚度不均,大陆厚,海洋薄。

地幔:从莫霍面到地下2900km深处这一层称为地幔。分为上地幔和下地幔。

由地壳基底至约400km深处的B层介质叫做上地幔,B层上部存在低速层,称为软流圈,低速层上部和地壳并称岩石圈。400km-1000km间的C介质叫过渡层。

软流圈和岩石圈统称构造圈。1000km-2900km为D层。下地幔比较均匀。但底部约厚200km的D''层中,速度梯度接近于零,所以该层介质不均匀。

地核:从地幔向下直至地心。2900km-4980km的E层称为外核。外核与地幔的分界面是速度间断面----古登堡面(G面)。

四.地球的演化史

原始地球被一层浓厚的气体包围,由于地球温度升高,气体的分子动能增大,地球的引力不足以吸引它们,质轻气体分子逃离地球,散逸到宇宙空间。地球幼年时代,表面没有山脉和海洋,持续约十亿年。称为第一次脱气。

地球温度升高,物质融化呈液态,在重力的作用下,密度大的铁镍物质下沉形成地核,密度小的硅酸盐物质上升成地表。由于放射性元素,地球温度越来越高,致使靠近地核的固态物质溶解为液体,地球就有了一个液态核。

地幔获得足够热量后开始产生对流。初始的海底扩张加速地内散热速度,地幔固结了,外核依然为液态。外核的对流是产生现今地磁场的原因。

地球内部的气体在高温高压下,被挤到上层有空间或是密度较小的地方,从地壳的裂隙处喷出,这就是地球的二次脱气,距今30亿年前,地球出现大规模的火山喷发,使得大量气体随火山岩浆喷出地面,形成了大气圈和水圈。

第二章放射性和地球年龄

一.放射性衰变

在自然界中,某些元素的原子核能够在不受外界条件影响下,自发地变成另外一种元素的原子核,同时发射出射线,这种现象称为放射性衰变。不依靠外力而自发衰变的元素称为天然放射性元素。

二.放射性衰变规律

每单位时间所衰变的原子数目与压力,温度等外部条件无关,只于当时存在的衰变原子的数目成正比。

半衰期:原子数衰变到原来数目的一半所需的时间。放射性衰变的时间通常为半衰期的十倍。

三.放射性平衡

在母体同位素衰变时,初始衰变产物经常也具有放射性,它们也会发生一系列衰变,最终变成稳定的元素。中间过程的每个放射性元素都有自己的衰变常数,但经过一定的时间后,这个系列会达到平衡,即各中间产物的数量保持不变。

四.主要的放射性元素

铀\钍--铅,钾----氩,铷----锶,放射性碳,氚。

地球初期情况假设

1.在地球形成初期,各种铅同位素的比值在各处都相同;

2.从某时起,地球不同区域的铀,钍,铅都各有特征的比值,这些比值只随放

射性元素的衰变而改变;

3.在以后某个时期,方铅矿和其它一些不含铀,钍的铅矿分离出来,铅同位素

的比值不再变化

4.铅与铀,钍分离或成矿的时间可以独立地测定。

第三章天然地震

一.地震分类

成因:构造地震,火山地震,陷落地震。

震源深度:浅源地震(《60km),中源地震(60--300km),深源地震(>300km)。震中距:地方震(<100km),近震(<1000km),远震(>1000km)

地震强度:弱震,有感地震,中强震,强震

二.全球地震带的分布和它与板块构造之间的关系

全球主要地震活动带:太平洋地震带,欧亚地震带,其他地震区带

我国主要地震活动带:

天山地震带,主要是指南--北天山,阿尔泰山一带地区;

南北地震带,由滇南的元江往北经西昌,松潘,海源,银川直到内蒙古嶝口;

华北地震带,指阴山,燕山一带,营口--郯城断裂带,汾渭河谷地区;

华南地震带,主要指东南沿海和海南岛北部等地区

西藏地震带,沿青藏高原周围和边境一带

台湾地震带,包括台湾及其东部海域。从地区属于环太平洋地震带,地震出现频繁且强度大。

板块的划分与全球地震带的地理分布是一致的。

板块边界类型:

1. 发散型板块边界;2汇聚型板块边界;3.转换型板块边界

全球地震带的地理分布主要由三类板块边界,也就是岩石圈板块沿三类板块边界的相对运动决定。海沟-岛弧地区地震;洋脊及转换断层的地震;大陆内部的地震(板内地震)

三.射线参数P的物理意义

1.同一条地震射线,P为常数;

2.不同的P对应不同的入射角,即对应不同形状的射线;

3 .P完全确定了地震射线的性质;

4.射线参数P只给出了入射角i和圆心距r的关系,没给出射线的坐标方程。四.频散

波速随频率或波长而变化称为频散。面波成群出现,每一群表现为一列波,每列波各自的频率具有不同的传播速度,这种现象称为面波的频散现象。由于波在层状介质中传播时相互叠加的结果,具有频散特性的面波不仅有相速度,而且具有群速度。

五.地球介质的Q值

在一个吸收介质中,地震波传播一定有频散现象发生,也就是吸收和频散总是同时存在。

为了描述地震波在地球介质中能量损耗的情况,引入参数Q值。定义为在一周期中质元所损耗的能量与原有能量的比值。Q值反映了介质损耗性质,值越大,介质品质因子越高,能量损耗越小,介质越接近完全弹性。根据Q值的变化研究波的吸收,可以得到介质的非弹性性质,从而进一步了解地球内部介质的性质。

六.弹性回跳理论

地壳运动使岩石产生应变,当应力在一个长时期内不断积累,超过一定限度时,地下岩层突然破裂,形成断层,或是沿已有断层发生突然滑动,使存储在岩石中的弹性应变能突然释放,就会形成地震。无应力状态---->应力作用变形,岩石产生相对位移---->应力超过阻力,岩块滑动或破裂形成断层,断层两侧的岩块又回到新的无应力状态。

七.P波初动。

P波刚到达地表时的地动位移。

P波初动解:从地面台站记录到P波的初动分布图出发,采用点源双力偶震源力学模型反演震源运动过程,从而求出震源参数。

八.震源参数

动力学参数:断层的传播方向和传播速度

静力学参数:断层长度和宽度,地震矩,应力降

几何参数:断层面的走向,倾向和倾角,相应力偶的取向和仰角

九.震相

将震源所发出的不同振动,不同传播路径的地震波在地震图上的特定标志称为震相。

自己分析理解

十.几种地震波的对比分析

第三章重力学和固体潮

1.重力场和重力位

如果不考虑外部天体对地球的作用,地球上单位质点所受的地球的引力和惯性离心力的矢量和称为地球在该点的重力矢量,该矢量场称为地球的重力场

地球在某点的引力位和离心位的和称为地球在该点的重力位。

地球重力位相同的点在空间构成的曲面称为重力等位面。

重力等位面得性质:1.在面上移动单位质量时,重力不做功2.两个等位面之间的位差是常数。一般等位面不平行,且在同一等位面上重力不是常量。

2正常地球场模型,正常重力场和重力异常场

质量等于地球总质量,以地球自转角速度绕其极半径为轴旋转,转动惯量与地球相同的参考椭球。

这种模型在其表面和外部空间产生的重力场称为地球的正常重力场。

真实地球与正常地球场模型的密度分布不同在该点产生的重力场的差值称为地球在该点产生的重力异常场

3影响各力的因素

1 引力:地球的形状,海拔高度,地壳内部的质量分布

2. 离心力:高度,纬度

3. 固体潮:地球自转,日,地,月三者的相对位置的变化

4.影响重力测量的因素

1 观测点值大地水准面的距离

2 地形质量。

5均衡模型

计算补偿质量在地球表层的分布,从而计算出补偿质量对观测点的重力影响。考虑与全球地形质量相对应的补偿质量对观测点重力的影响的校正称为均衡校

6.正反问题的例子

真实地球的密度与正常场地球模型的密度差称为地球的剩余密度。地球的剩余密度是重力异常场产生的原因。根据给定的地球剩余密度计算重力异常擦汗那个,称为重力异常场的正演问题。根据地面上测出的重力异常场求出地球剩余密度的分布称为重力异常的反演问题。反演的解不唯一,因此需要地质和其他地球物理资料来限制解的范围。当反演深度大的异常体时,要考虑地球表面的弯曲。

7.固体潮及其产生原因

地球整体在太阳和月亮的起潮力的作用下发生变形,这种变形称为固体潮。

地球在月球和太阳的起潮力的作用下发生变形,地球在地心和月心以及地心和日心的这两个连线上拉伸,在与它们垂直的两个平面内压缩,地球对起潮力的这种响应称为地球的固体潮。固体潮在地球内部形成潮汐应变和潮汐应力,并使地球自转角速度发生变化等等。

引潮力是作用在地球的单位质点上的日、月引力和地球绕地月(和地日)公共质心旋转所产生的惯性离心力的合力。

作用在地球表面上任一点的起潮力矢量的垂直分量使地球在该点的重力发生变化称

为地球的重力固体潮.

8 固体潮在地表产生的物理现象

1.重力固体潮

2.地倾斜固体潮

3.应变固体潮

4.井水水位固体潮

5.经纬度固体潮

6.海潮

7.地球自转角速度的变化

第四章地磁

一.地磁场的组成

地磁场是一个弱磁场,由多种不同来源的磁场叠加而成。分为来源于地球内部的稳定磁场和来源于地球外部的变化磁场。稳定磁场远大于变化磁场,是地磁场的主要部分起源于地球内部的稳定磁场称为地磁场的内源场,起源于地球外部的稳定磁场称为外源场。外源场只占内源场的1%,因此稳定场主要起源于地球内部。外源变化磁场起源于地球外部的各种电流体系。这种磁场还会在具有导电性质的地球内部感应出一个内部电流体系,它就是产生内源变化磁场的原因。

二.地磁场的基本特征

1.近似于一个均匀磁化球体或一个处于地心的磁偶极子所形成的磁场。

2.地磁场强度整体很弱,在两极处的地磁场强度最强,赤道处最弱,约为2倍关系。三.地磁场的长期变化特征

1.地磁场强度按0.05%/a衰减

2.磁偶极子以0.05%a沿经度西移

3.磁偶极子以0.02%/a沿纬度北移

4.非偶极子场以0.2%/a沿经度西移

5非偶极子场以10nT/a量级增加

6地磁场长期变化本身以0.3%a西移

1.变化磁场的分类和产生原因

平静变化:起源于电离层中比较稳定的电流体系的周期性变化,是连续出现的各种周期性的平缓变化,并且叠加在地球基本磁场之上。分为太阳日变化(日变),太阴日变化以及年变化。日变幅度最大

干扰变化:即磁扰。分为磁暴和地磁脉动。

磁暴和太阳活动与地磁相互作用存在密切联系。

分为三阶段:1.初相阶段,磁场强度增加。

2.主相阶段,磁场水平强度下降;

3.恢复相阶段,环形电流逐渐衰减,地磁场逐渐恢复。

地磁脉动:可能是由于地表以上1000km磁层内或磁层边界等离子体不稳定性以及太阳风(太阳连续不断的向外发射的等离子体)和磁层的相互作用下,磁流波沿磁力线的共振激发引起的

短周期的地磁干扰,形态,周期和振幅各异。

第五章古地磁学

1.古地磁研究的直接对象是岩石的剩余磁性

2.岩石剩余磁性,类型及其特征

岩石的磁性一般是岩石所含的铁磁性矿物在地磁场作用下产生的。

1.岩石的原生剩磁方向与形成岩石时的地磁场方向一致,而且岩石的原生剩磁具有高度的稳定性。

2.古地磁场是轴向地心偶极场。

热剩磁TRM:1.在弱磁场中,热剩磁强度比常温下获得的剩磁强度大很多;2. 对于各向同性的火成岩,热剩磁的方向与外磁场一致,其天然剩磁方向代表岩石形成时的地磁场方向;3.弱磁场中剩磁强度正比于外磁场强度;4.部分热剩磁具有可加性;

5.火成岩中的铁磁质颗粒的弛豫时间极长。

沉积剩磁:由沉积岩中的母岩风化侵蚀而来的铁磁性碎屑颗粒,在沉积过程中其磁矩沿地磁场方向排列所获得的剩磁。1.含水量超过一半,剩磁的偏角和倾角和地磁场一致;2.沉积过程中所获得剩磁是稳定的;3.剩磁强度与外磁场成正比;4.剩磁强度远小于热剩磁,稳定性也不如热剩磁。

化学剩磁:1.弛豫时间长,稳定性高,弛豫时间随铁磁性颗粒的体积增大而加长;2.在弱磁场中,剩磁强度正比于外磁场;3在同洋的外磁场的作用下,剩磁强度为热剩磁强度的几十分之一。

黏滞剩磁:属于次生剩磁,是岩石长期置于地磁场中获得的剩磁;2地磁场方向不断变化,黏滞剩磁的方向也会变化,因此黏滞剩磁给地磁研究带来干扰,需要磁清洗,消除次生剩磁。

3.古地磁的应用

地磁学方面:

测量古地磁场强度。

研究古地磁场的长期变化

古地磁场的长期平均性质

地磁场的反转

地质学方面:大陆漂移,海底扩张,古纬度,岩石年龄,研究构造运动

第六章地电场

一.地电场的概念

研究大气,海洋和固体地球电性及电场分布的一门科学,利用电法勘探中的某些方法,来研究地球内部介质及其周围的电性和电场分布规律,电法勘探的目的在于研究地质构造和寻找能源,矿产。

地电场的分类:大地电场:平静变化,干扰变化。

自然电场:氧化还原电场,产生条件是矿体本身是良导性矿体,围岩溶液具有氧化还原作用。

过滤电场:绝大多数沉积岩吸附负离子,碳酸盐类吸附正离子。它包括裂隙电场,山地电场,上升泉电场,河流电场。

接触扩散电场:

地然电场法的目的

勘察埋藏不深的金属硫矿物和部分金属氧化矿物矿床,寻找石墨和无烟煤,确定断层的位置,以解决寻找含水破碎带,确定地下水流向等水文地质问题。

大地电磁测深法的原理

依据的原理:电磁波的趋肤效应;研究的对象:低频电磁波;计算公式:卡尼亚标量阻抗表达式;测量要素:天然变化电磁场。

由于测区地下地质条件相当复杂,介质的各向异性非常明显,这就造成了大地电磁测深曲线的畸变,畸变类型:一是地表电性不均匀或地形起伏引起的曲线畸变,称电流型畸变;二是电流沿构造走向流动,引起横向电场的畸变,称感应畸变。

第六章地热学

1.热流密度

简称热流,表示单位时间内通过地球表面单位面积流出的热量,它是地球内部热状态在地表的显示,可以在地表直接测量。地球产生变化的力量来源是能量,地球能量的来源有两种:内能和外能。地球内能是指由地球本身产生的能量,主要有来自地球旋转的旋转能、地球内部的热能和地球内部的策略能三方面。

2.地球能量的来源和释放方式

主要分为地球外能和地球内能

地球外能是指由地球外部产生的能量,主要有来自太阳的太阳辐射能和日、月的引力能。

地球内能有

①:旋转能地球自转的动能,称为地球旋转能,又称地球动力能②:热能地球内部是一个巨大的热库,我们称为地球内部热能。地球内部热能的主要来源是由地球内部放射性元素衰变而产生的。③:地球重力能由地心引力导致的地球物质变位,重力分异作用等所产生并积累的能量叫做地球重力能,也称地球策略能。在一定的条件下,重力能可转换为热能,也可转化为动力能。

④:太阳辐射能太阳辐射能是地球表面最主要的能源,也是地表水和大气运动的主要动力。它能使地球表面发生风化、剥蚀而改变原来的面貌。

⑤:日、月引力能由太阳和月亮的作用力——天体引力,即日、月对地球吸引而产生的能量,我们把它叫做日、月引力能。它也是地球能量的重要来源。

河流冲蚀,搬运以及人类采矿改变区域性地壳平衡,并与之相伴产生一定的

能量。

导致地球由于地球始终要受到以上各方面的影响,所以地球的能量,也就不断地产生和积累,当能量积累达到一定的程度时,就要释放出来。当然,能量的释放形式是多种多样的,而且不同方面的能量也是可以互换的。不管地球能量以何种方式释放出来,它都要产生相应的后果。而这种后果对人类及所有生命的影响是多方面的,有时它会造成巨大的破坏力,改变地球的生态面貌,有时通过地壳运动变化,形成新的矿床资源。

地球能量释放形式

当地球能量积累达到一定的程度时,就要释放出来,释放时常伴随着一定的地质现象:

(一):地震灾害地震是地球内部能量突然释放时,局部岩石圈的破裂而产生的地质现象。(二):火山喷发当地球体的部分区域所承受的压力达到一定程度时,地下灼烈的岩浆就会沿着地壳的薄弱地带上升,喷出地表形成火山爆发。而岩浆冷凝成岩石,就造成了对周围岩石的侵入。不管岩浆喷发或侵入,都能够使地球内部积聚的部分能量得到释放,从而形成新的平衡。岩浆作用可以给人类带来灾难,也可留下美丽壮观的火山景观,形成与岩浆、热液有关的矿产资源。

(三):地壳运动在地球动力能的作用下,使构成地壳的岩石形态、位置发生变化的机械运动,我们称为地壳运动。在野外考察中,我们常常看到地质岩层出现弯曲、破裂或错断等现象,地质学中称为褶皱和断层。这些现象的发生,都是由于地球内部能量的释放造成的。地壳运动可分为垂直运动、水平运动及组合运动类型。运动的结果可形成高山深谷和海陆位置的变迁。例如,喜马拉雅山原来是一片海洋,它的崛起是由于构成地壳的两个巨大岩石体,相互水平挤压,其中的一个插入到另一个岩石体之下,将其抬升,成为今天的世界最高峰,至今这种挤压还在进行,同样喜马拉雅山的抬升也在继续进行着。

(四):大地热流大地热流也称岩石散热,是地球热能释放的主要渠道。当地球通过岩石向外释放热量时,在一定的温度和压力下,能使原来的岩石发生变质,形成新的岩石类型,如变质岩。

地球能量释放的几种主要方式通常会相互伴生,有时也会同时进行。正因为地球能量不断地释放,从而改变和破坏了地球原来的面貌,而随着地球新面貌的出现,我们也会发现和得到新的自然景观和矿床资源。

2020地球物理学基础作业05及参考答案

1. When a bell is struck with a hammer, it vibrates freely at a number of natural frequencies. The combination of natural oscillations that are excited gives each bell its particular sonority. In an analogous way, the sudden release of energy in a very large earthquake can set the entire Earth into vibration, with natural frequencies of oscillation that are determined by the elastic properties and structure of the Earth’s interior. The free oscillations involve three-dimensional defo rmation of the Earth’s spherical shape and can be quite complex. Before discussing the Earth’s free oscillations it is worth reviewing some concepts of vibrating systems that can be learned from the one-dimensional excitation of a vibrating string that is fixed at both ends. Any complicated vibration of the string can be represented by the superposition of a number of simpler vibrations, called the normal modes of vibration. These arise when travelling waves reflected from the boundaries at the ends of the string interfere with each other to give a standing wave. Each normal mode corresponds to a standing wave with frequency and wavelength determined by the condition that the length of the string must always equal an integral number of half-wavelengths (Fig. 3.16).As well as the fixed ends, there are other points on the string that have zero displacement; these are called the nodes of the vibration. The first normal (or fundamental)mode of vibration has no nodes. The second normal mode (sometimes called the first overtone) has one node; its wavelength and period are half those of the fundamental mode. The third normal mode (second overtone) has three times the frequency of the first mode, and so on.Modes with one or more node are called higher-order modes. 当用一把锤子敲击一个钟时,钟会以一系列的固有频率自由的颤动。被激 发的固有震动的联合给每个一钟独特的音响。与此相似,在一个大地震中能量 的突然释放可以使整个地球颤动,这种颤动的固有频率决定于弹性性质和地球 内部的结构。自由振荡涉及地球球面形状的三维变形,可能相当复杂。在讨论 地球的自由振荡之前,有必要回顾一下振动系统的一些概念,这些概念可以从 两端固定的一维振动的激发中学习。 弦的任何复杂的弦振动都可以用一些简单振动的叠加来表示,称为简正振动。当从两端的边界反射出的行波相互干涉以产生驻波时,就会产生这种现象。 每一个简正模态对应于一个驻波,它的频率和波长取决于长度必须等于半波长的 整数的弦(图3.16)。在弦上还存在一些除固定端外的具有零位移的其他点,这 些被称为振动的节点。第一个简正(或基本)模态振动没有节点。第二个简正 模态(有时称为第一谐波)有一个节点,它的波长和周期是基态的一半。第三 个简正模态(第二谐波)的频率是第一模态的三倍,一个或多个节点的模态称 为高阶模态。 2. Explanation of nouns (20points) surface wave(面波):沿界面及界面一定深度范围内传播的一类地震波,振幅随 深度增加而衰减,能量集中在介质分界面并沿分界面传播,包括瑞利波,勒夫 波和斯通利波。dispersion(频散):面波速度随着周期(或频率)而变化而 变化,成为面波频 散。在记录中面波是很多列波的叠加,随着到时的先后,各相位的周期逐渐改变。 第1页共7页

地球物理学基础复习资料(白永利)

地球物理学基础复习资料 绪论 一.地球物理学的概念,研究特点和研究内容 它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学之间的 边缘学科。 地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其 运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球 自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力 学,地热学,大地测量学,大地构造物理学,地球动力学等。 研究特点:1.交叉学科地球物理学由地质学和物理学发展而来,随着学科 本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加 强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的 信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3 多解 性正演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产 生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理 场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的 物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。 地球物理学的总趋势:多学科综合和科学的国际合作。 二.地球物理学各分支所依据的物理学原理和研究的物性参数。 地震学:波在弹性介质中的传播。地震体波走时,面波频散,自由振荡的本征 谱特征 重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。 古地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 一.地球的转动方式。 1.自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,有微小变化。 2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。 3.平动地球随整个太阳系在宇宙太空中不停地向前运动。 4.进动地球由于旋转,赤道附近向外凸出,日月对此凸出部分的吸引力使地 轴绕黄轴转动,方向自东向西。这种在地球运动过程中,地轴方向发生的运动即 为地球的进动。 5.章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小 的振幅在锥面内,外摆动,地球的这种运动叫章动。 二.地球的形状及影响因素。 地球为一梨形不规则回转椭球体。 影响因素:1.地球的自引力---正球体;2.地球的自转----标准扁球体;3.地球内 部物质分布不均匀--不规则回转椭球体

《应用地球物理学》主要知识点要点

一、名词 正演(问题):已知地质体求其引起的异常。(给定地球物理模型,通过数值计算或物理模拟,得出相应的地球物理场) 反演(问题):已知异常反推地质体的形状和产状。(已知异常的分布特征和变化规律,求场源的赋存状态(如产状、形状和剩余密度等) 重力勘探:重力勘探是观测地球表面重力场的变化,借以查明地质体构造和矿产分布的物探方法。 零长弹簧 零点漂移:在相对重力测量中,由于重力仪灵敏系统的弹性疲劳、温度补偿不完全等因素,仪器读数的零点值随时间而不断变化。 重力场强度:单位质量的物体在场中某一点所受的重力作用。 大地水准面:以平静海平面的趋势延伸到各大陆之下所构成的封闭曲面,作为地球的基本形状。 重力异常:由地下岩矿石密度分布不均匀所引起的重力变化,或地质体与围岩密度的差异引起的重力变化。 自由空间重力异常:对实测重力值只做正常场与高度校正。 布格重力异常:观测重力差值经过正常场校正、地形校正和布格校正之后得到异常称为布格重力异常。 均衡重力异常:布格重力异常再进行均衡校正。 重力梯级带:重力异常等值线分布密集,异常值向某个方向单调上升或下降。 三度体:x,z,y,三个方向都有限的物体。 二度体:地质体沿走向方向无限延伸。 特征点法:根据异常曲线上的一些点或特征点(如极大值点、零值点、拐点)的异常值及相应的坐标求取场源体的几何或物性参数 磁法勘探:利用地壳内各种岩矿石间的磁性差异所引起的磁异常来寻找有用矿产或查明地下地质构造的一种地球物理勘探方法 磁异常:通常把研究对象引起的磁场部分叫做磁异常,而周围环境和围岩引起的磁场同归为正常场。 磁场强度:单位正磁荷在磁场中所受的力。 磁感应强度:磁感应强度为场源在观测点的磁场强度与磁化物体所形成的附加磁场强度的和。

840-地球物理学基础

840-《地球物理学基础》考试大纲 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟。 二、试卷的内容结构 地震学 60% 地磁学 40% 三、试卷的题型结构 填空题 20% 分析题 80% 四、考察的知识及范围 1、地震学 正确理解地震烈度、震级、地震频度、震中距、震源、震中、波阵面、射线、入射角、出射角、视入射角、视出射角、费马原理、球对称介质、本多夫定律、SNELL定律、高速层、低速层、正演、反演、传播速度、质点振动的位移、质点振动的速度和加速度、面波频散、相速度和群速度等概念。 在无源的情况下,建立无限均匀弹性介质中的波动方程及其解,掌握均匀平面波,非均匀平面波以及球面波之间的关系、矢量场分解及其运算,球面波的分解。掌握平面波在介质表面的折射和反射,非均匀平面波叠加形成面波的理论基础,以及自由表面瑞利面波和勒夫面波的频散特性。

以几何地震学为基础,分析近震射线及走时方程,建立首波的形成相关概念及波阵面方程。分析球对称介质中的射线特征与走时曲线的关系,确定地球内部速度分布的公式。 地震学以观测为基础,应了解地震仪的主要组成及工作原理,掌握摆的固有运动与地面运动之间的关系。另外,掌握地方震、近震、远震的射线传播路径、以及各类震相的运动学和动力学特征,学会识别简单的震相,以及利用地震记录定性判地震类别。再次,在测震学中,震级标定和用一个台或三个以上台进行地震定位是必须掌握的内容之一。 2、地磁学 地磁场的构成、地磁标势的通解、高斯系数的确定方法、高斯分析的本质内容;主磁场的起源、分布特点、西向漂移,磁极、地磁极;地壳磁异常特征、地磁异常的正演和反演、海底磁异常特征、居里温度;影响地磁场变化的因素、变化磁场的分类、地磁指数、Sq傅里叶系数确定球谐系数、典型磁暴的发展过程。

应用地球物理学习题答案.docx

一、名词解释 1地震勘探:是以不同岩石、矿石间的弹性差异为基础,通过观测和研究地震波 在地下岩石中的传播特性,以实现地质勘查目标的一种研究方法。 2震动图:用μ~t 坐标系统表示的质点振动位移随时间变化的图形称为地震波 的震动图。 3波剖面图:某一时刻 t 质点振动位移μ随距离 x 变化的图形称之为波剖面图。 4时间场:时空函数所确定的时间 t 的空间分布称为时间场。 5等时面:在时间场中,如果将时间值相同的各点连接起来,在空间构成一个面,在面中任意点地震波到达的时间相等,称之为等时面。 6横波:弹性介质在发生切变时所产生的波称之为横波,即剪切形变在介质中传 播又称之为剪切波或 S 波。 7纵波:弹性介质发生体积形变(即拉伸或压缩形变)所产生的波称为纵波,又 称压缩波或 P 波。 8频谱分析:对任一非周期地震阻波进行傅氏变换求域的过程。 9波前面:惠更斯原理也称波前原理,假设在弹性介质中,已知某时刻 t1波前面上的各点,则可把这些点看做是新的震动源,从 t 1时刻开始产生子波向外传播, 经过t 时间后,这些子波波前所构成的包拢面就是t1+ t 时刻的新的波前面。 10视速度:沿观测方向,观测点之间的距离和实际传播时间的比值,称之为视 速度。 V* 11观测系统 :在地震勘探现场采集中,为了压制干扰波和确保对有效波进行√× 追踪,激发点和接收点之间的排列和各排列的位置都应保持一定的相对关系,这种激发点和接收点之间以及排列和排列之间的位置关系,称之为观测系统。

12水平叠加:又称共反射点叠加或共中心点叠加,就是把不同激发点不同接收 点上接收到的来自同一反射点的地震记录进行叠加。 13时距曲线:一种表示接收点距离和地震波走时的关系曲线,通常以接收点到 激发点的距离为横坐标,地震波到达该接收点的走时为纵坐标。 14同向轴:在地震记录上相同相位的连线。 15波前扩散:已知在均匀介质中,点震源的波前为求面,随着传播距离的增大, 球面逐渐扩展,但是总能量保持不变,而使单位面积上的能量减少,震动的振幅将随之减小,这称之为球面扩散或波前扩散。 二、判断题 1.视速度小于等于真速度。× 2.平均速度大于等于均方根速度。× 3.仅在均匀介质时,射线与波前面正交。× 4.纵波和横波都是线性极化波。× 5.地震子波的延续时间长度同它的频带宽度成正比。× 6.倾斜界面情况下,折射波上倾方向接收时的视速度等于下倾方向的视速度。× 7.折射波时距曲线是通过原点的直线,视速度等于界面速度。× 12.瑞雷面波是线性极化波。× 8.折射波的形成条件是地下存在波阻抗界面。× 9.对水平多层介质,叠加速度是均方根速度。√ 10.从各个方向的测线观测到的时距曲线极小点位置,一般可以确定反射界面的 大致倾向。√ 11.相遇观测系统属于折射波法的观测系统√

中科院地球物理学

中科院研究生院硕士研究生入学考试 《地球物理学》考试大纲 本“地球物理学”考试大纲适用于中国科学院研究生院固体地球物理与地球动力学等专业的硕士研究生入学考试。“地球物理学”是相关学科专业的基础理论课程,它的主要内容包括地震学、重力与固体潮、地磁学、地热学及海底扩张与板块构造等部分。要求考生对其基本概念有比较深入的了解,掌握基本原理、方法及一般应用。 一、考试内容 (一)介质弹性与波动理论基础 1.弹性介质、应力与形变 2.弹性介质中的波动传播方程 3.弹性介质中的平面波与球面波 4.界面的影响 5.射线理论 (二)地震学基础 1.断层错动和地震波激发 2.地震仪与地震观测记录,地震的烈度、能量和震级 3.地震发震时间与震源位置的基本确定方法 4.地震体波的走时、振幅与理论地震图 5.球面层中地震体波的走时和地球内部基本构造 6.各种常见震相标示规则及其射线路径 7.地震面波的波动方程、频散方程和上地幔结构 8.地球的自由振荡 (三)地球势理论基础 1.地球重力位与地球形状 2.地球重力异常与地球内部构造 3.地球的固体潮 4.地球磁场的一般性质 5.岩石磁性与古地磁 6.地磁成因 7.地磁感应与地球内部的电导性 (四)热流与地球内部温度 1.热传导、热对流与热辐射 2.大地热流

3.热流方程的简单应用 4.地球内部温度 (五)大陆漂移、海底扩张和板块构造 1.大陆漂移与洋底扩张学说 2.板块构造与运动的基本理论与方法 3.地幔对流的基本理论 二、考试要求 (一)介质弹性与波动理论基础 1、了解并掌握地震波的弹性介质理论基础:弹性力学对介质的四个基本假定,应力与形变的基本定义,应力方程的推导过程以及包括杨氏模量与泊松比在内的五个弹性常数之间的相互关系; 2、熟练推导弹性介质中的波动传播方程,掌握纵波与横波的传播特征,了解其速度与密度及相关弹性常数的相互关系; 3、掌握弹性介质中的平面波与球面波的传播特征,特别是在简谐波情况下的振动与传播特征的异同; 4、了解界面的存在对入射纵(横)波、反射纵(横)波及折射纵(横)波的影响,并且掌握平面纵(横)波转播过程中折射系数与反射系数、转换系数的推导; 5、了解地震波射线理论中的费马原理,Snell定律,射线常数、本多夫定律、首波路径、首波临界角等基本概念。 (二)地震学基础 1、了解天然地震基本成因和断层错动激发地震波的基本概念;了解地震仪与地震观测记录的基本原理;了解地震烈度、能量和震级的基本定义;掌握地震发震时间与震源位置的测定原理与基本方法; 2、对于单个水平界面、单个倾斜界面及多层界面,掌握直达波、反射波与首波的走时方程的推导过程;掌握非匀速介质中迴折波参数方程形式的走时公式的推导,了解在不同速度分布函数的形式下,走时曲线的特征;了解平面层中体波的能量与振幅的关系并掌握在平面简谐波情况下的推导,了解直达波、迴折波、反射波与首波情况下,传播过程中的能量发散过程,以及自由界面对入射平面波的能量分配过程的影响等;简单了解地震体波的振幅受到哪些因素的影响以及利用广义射线理论求解理论地震图的基本原理; 3、掌握球面层中地震体波的射线参数方程与本多夫定律等的推导,不同的速率—深度分布曲线情况下对应的地震射线及其走时方程的推导,并了解正常及特殊情况下的走时曲线特征,掌握走时反演的古登堡方法与赫格罗兹—贝特曼—威歇特方法的一般原理与推导过程; 4、了解并掌握常用地震震相的标示规则及其传播过程中的射线路径、走时及振幅特征; 5、了解地震面波与地震体波在传播过程中的异同点,掌握洛夫波与雷利波的传播特征及在一些简单模型下的波动方程和频散方程;了解地震面波的频散方程及其所反映的地球内部构造,了解并掌握群速度与相速度的基本概念及其相互关系推导与计算方法;

地球物理学基础复习资料.docx

绪论 一.地球物理学的概念,研究特点和研究内容 它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学Z间的边缘学科。 地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力学,地热学,大地测量学,大地构造物理学,地球动力学等。 研究特点:1?交叉学科地球物理学由地质学和物理学发展而来,随着学科本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3多解性止演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。地球物理学的总趋势:多学科综合和科学的国际合作。二?地球物理学各分支所依据的物理学原理和研究的物性参数。 地震学:波在弹性介质屮的传播。地震体波走时,而波频散,自由振荡的本征谱特征重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。 占地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 一?地球的转动方式。 1?自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,冇微小变化。 2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。 3?平动地球随整个太阳系在宇宙太空屮不停地向前运动。 4?进动地球曲于旋转,赤道附近向外凸出,口月对此凸出部分的吸引力使地轴绕黄轴转动,方向门东向曲。这种在地球运动过程中,地轴方向发生的运动即为地球的进动。 5. 章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小的振幅在锥面内,外摆动,地球的这种运动叫章动。 二.地球的形状及影响因索。 地球为一梨形不规则回转椭球体。 影响因素:1?地球的自引力…正球体;2?地球的自转■…标准扁球体;3.地球内部物质分布不均匀-不规则冋转椭球体

2019年中国地质大学853地球物理学基础考试大纲

中国地质大学研究生院 硕士研究生入学考试《地球物理学基础》考试大纲 一、试卷结构 简述题和论述题 二、考试大纲 1、地球的起源、运动与内部结构 考试内容:太阳系组成与演化、地球的转动与轨迹、地球的内部结构和地球内部的物质组成等方面内容。重点包括太阳系组成与演化、太阳系天体轨道特征、自转特征和质量与密度特征、地球的转动与轨迹、地球内部主要层圈结构(地壳、上地幔、过渡带、下地幔、内核及外地核)及其物理特征、地壳物质组成及洋壳和陆壳的区别以及上地幔、过渡带、下地幔、地核的物质组成及推测方法等问题。 2、地球的形状、密度及重力场 考试内容:地球重力、大地水准面与地球形状、正常重力场与重力异常、地壳均衡与重力均衡异常和潮汐作用与固体潮等方面的内容。重点包括地球重力场、地球的重力位、地球重力变化、重力等位面、大地水准面、地球的基本形状——标准椭球面、垂线偏差与高程异常、正常重力场、各种校正与重力异常、地壳均衡概念、均衡异常、潮汐作用、起潮力、重力固体潮等问题。 3、地球的磁场 考试内容:地球磁场及其构成、岩石磁性、地磁场起源假说、地球的变化磁场和古地磁学与地磁场变迁等方面内容。重点包括地磁要素、地磁要素发布特点、地磁偶极子场、基本磁场、磁异常、地球变化磁场三大类岩石磁性特征、自激发电机假说、地磁场成因的基本解释、地磁平静变化与扰动变化特征、岩石剩余磁性及其成因、古地磁学研究内容及方法、地磁极的漂移、地磁极的倒转等问题。 4、地球的电磁感应和电性结构 考试内容:地球电磁感应的物理基础、电磁感应与地球内部的电导率和地球深部电性结构特征等方面内容。重点包括地球电磁感应的物理基础、地球内部电磁场的来源、球体问题与平面问题、基本方程——麦克斯韦方程组、谐波场方程、趋肤深度、天然场源电磁感应、人工场源电磁感应、地球内部的电导率分特征。 5、地球内部热状态与地热场特征 考试内容:热场概念与岩石热物理特征、地球内部的热源与大地热流、地球内部的温度分布和地球的热历史等方面内容。重点包括地热场与热流密度概念、岩石热导率/比热/热扩散率/生热率、岩石热传递形式、地球原始温度、放射性生热、其它热源、大地热流值及其分布特征、地壳-地幔-地核温度分布规律、地球的热能源与耗损、地球的增温与约束等问题。 6、地球内部的地震波场 考试内容:地震与介质的弹性性质、地震波及其特征、地震体波的传播、地震面波及其特征、

勘探地球物理学基础--习题解答

《勘探地球物理学基础》习题解答 第一章 磁法勘探习题与解答(共8题) 1、什么是地磁要素?它们之间的换算关系是怎样的? 解答:地磁场T 是矢量,研究中令x 轴指向地理北,y 轴指向地理东,z 轴铅直向下。地磁场 T 分解为:北向分量为X ,东向分量为Y ,铅直分量为Z 。 T 在xoy 面内的投影为水平分量H ,H 的方向即磁北方向,H 与x 的夹角(即磁北与地理北的夹角)为磁偏角D (东偏为正),T 与H 的夹角为磁倾角I (下倾为正)。X 、Y 、Z ,H 、D 、I ,T 统称为地磁要素。它们之间的关系如图1-1。 图1-1 地磁要素之间的关系示意图 各要素间以及与总场的关系如下: 222222T H Z X Y Z =+=++, c o s X H D =, sin Y H D =? cos H T I =?, s i n Z T I =?, t a n /I Z H =, a r c t a n (/I Z H = tan /D Y X =, a r c t a n (/D Y X = 2、地磁场随时间变化有哪些主要特点? 解答:地磁场随时间的变化主要有以下两种类型:(1)地球内部场源缓慢变化引起的长期变化;(2)地球外部场源引起的短期变化。 其中长期变化有以下两个特点: 磁矩减弱:地心偶极子磁矩正在衰减,导致地磁场强度衰减(速率约为10~

20nT/a)。 磁场漂移:非偶极子的场正在向西漂移。(且是全球性的,但快慢不同,平均约0.2o/a)。 短期变化有以下两个特点: 平静变化:按一定的周期连续出现,平缓而有规律,称为平静变化。地磁场的平静变化主要指地磁日变。 扰动变化:偶然发生、短暂而复杂、强弱不定、持续一定的时间后就消失,称为扰动变化。地磁场的扰动变化又分为磁暴和地磁脉动两类。 3、地磁场随空间、时间变化的特征,对磁法勘探有何意义? 解答:在实际磁法勘探中,一般工作周期较短,主要关心的是地磁场的短期变化,即地磁日变化、磁暴以及地磁脉动。 在高精度磁测中,地磁日变化是一种严重干扰,一般在地面磁测、航空磁测过程中设有专用仪器进行地磁日变观测,以便进行相应的校正,称为日变改正。但在海上磁测时,为了提高测量精度必须提出相应的措施,消除其日变干扰场。 在强磁暴期间,应该暂停野外磁测工作,避免那些严重的地磁扰动覆盖在地质体异常之上。 地磁脉动可以在具有高电导率的地壳层中产生感应大地电磁场,可以作为磁测的激发场。通过测量其大地电流,可以确定地壳层的电导率及其厚度等,以解决某些地质、地球物理问题。 4、了解各类岩石的磁性特征对磁法勘探的有什么意义? 解答:磁法勘探是以地壳中不同岩(矿)石间的磁性差异为基础,通过观测和研究天然磁场及人工磁场的变化规律,用以查明地质构造和寻找有用矿产的地球物理勘探方法。因此,在磁法勘探前必须了解各类岩(矿)石的磁性参数,以分析总结工作区是否具备磁法勘探的工作前提,为工作方法的选择提供依据;另外,了解工作区各类岩(矿)石的磁性差异、差异大小、分布规律以及成因也是磁法勘探工作的布置和磁测成果资料的解释的重要依据。

地球物理学基础-2016-复习内容综述

《地球物理学基础》复习内容 2016年4月 一、绪论 1.地球物理勘探的概念; 地球物理勘探简称物探,它是以地下物质(岩石或矿体)的物理性质(密度、磁性、电性、弹性、放射性等)差异所引起的物理现象为研究对象,用不同物理方法和仪器,探测天然或人工地球物理场的变化。通过对上述变化的分析、研究,来推断和解释地质构造、矿产分布及人文因素在地下的各种分布情况(古墓、管线、污染范围等)。 2. 主要的地球物理勘探方法 重力勘探、磁法勘探、电法勘探、地震勘探、放射性勘探等。目前在煤田勘探中应用最多的是地震勘探、电法勘探、磁法勘探等。 3. 物探方法能取得成果的前提 探测目标与周围的岩石或土壤等应有明显的物性差异;勘查对象应具有一定的规模和合理的深度;探测地质体异常应能从干扰因素中识别与提取(探测的信号有足够高的信噪比)。 4. 正问题、正演、反问题、反演、反演结果的多解性 (1)正问题与正演 已知地质体的赋存状态(形状、产状、物性参数),已知探测方法以及采集参数,求观测结果(异常)。这个问题叫做正问题,求解正问题的过程叫正演。 (2)反问题与反演

已知探测方法、采集参数和观测结果(地球物理异常),需要推断地质体的赋存状态(形状、产状、空间位置)和物性参数(密度、磁性、电性、弹性、速度等)。这样的问题叫做反问题,求解反问题的过程叫做反演。(3)反演结果的多解性 由于地球物理场的等效性(由于各种因素的影响,不同的地质状况可能会观测得到非常接近的数据),使得反演的结果具有多样性,这多由地质因素引起。 5. 煤矿采区三维地震勘探目前主要解决什么地质问题 主要地质任务是解决构造问题,解释煤层中的大中小断层(一般要求落差大于5米的断层要准确,落差3-5米断层要解释)、褶曲、陷落柱等,常常也要求给出煤层厚度等值线、底板等高线图。 二、电法勘探部分: 1. 影响岩土介质电阻率的主要因素 (1)导电矿物含量及其连通情况; (2)介质的结构、构造、孔隙度; (3)岩矿石的含水饱和度及含水矿化度; (4)温度、压力等。 2. 均匀大地电阻率的测定方法 为了测定均匀大地的电阻率,通常的做法是在地表设置如图所示的四极电路,利用下面一组公式计算其电阻率。

地球物理学基础2017期末考试复习

一、名词解释、翻译、单位 1.大地水准面(3)(geoid):与平均海平面(静止海水面)重合并向大陆延伸所形成的不规 则的封闭曲面,它是重力等位面,反映了地球内部实际的质量分部。 2.参考椭球(2)(reference ellipsoid):把形状和大小与大地体相近,且两者之间相对位置确 定的旋转椭球称为参考椭球,是地球具有区域性质的数学模型,仅具有数学性质而不具物理特性。 3.地球椭率(1)(earth ellipticity):地球椭圆体的扁度称为地球扁率。以赤道半径(长半轴a) 和极半径(短半轴b)的差与赤道半径的比值。 4.自由空气异常(free air gravity anomaly):自由空气异常是指经地形校正、自由空气校正(高 度)、潮汐校正后的重力观测值与相应参考椭球体面上的正常重力值之差。它反映实际地球的形状和质量分布与大地椭球体的偏差。大范围的负自由空气异常表明地壳深部存在着质量亏损,反之,则存在质量盈余。 5.布格重力异常(2)(Bouguer gravity anomaly):对观测值经过地形校正、布格校正(高度 (自由空气)校正与中间层(布格板)校正)、潮汐校正和正常场(纬度)校正后获得的重力值。反映地壳内各种偏离正常地壳密度的地质体,既包含各种局部剩余质量的影响,也包含地壳下界面起伏而在横向上对上地幔质量亏损(山区)或盈余(海洋区)的影响。 从大范围来看,布格重力异常在大陆山区应为大面积的负值区,且山越高负值的绝对值越大;而海洋区则反之。 6.地形校正(2)(topographic/terrain correction):重力测量中,每个测点上为消除地形起伏 产生的重力影响所进行的校正。经过地形校正后的重力值就相当于观测点周围完全是平坦地形的重力值。 7.质量亏损(1)(mass deficiency):相对于临近物质密度较小而引起的负布格重力异常的现 象。 8.绝对重力测量(1)(absolute gravity measurement):绝对重力测量是用绝对重礼仪直接测 定地面上某点的绝对重力加速度的技术和方法。 9.重力加速度梯度(1)(gravitational acceleration gradient):重力加速度沿铅垂或水平方向 的导数,表示重力场强度g在垂直或水平方向上的变化率。单位:厄缶 10.正常重力(位)(1)(normal gravity):地球从总体上说处于流体平衡状态,大地水准面 接近于旋转椭球体面。所以假定:一个旋转椭球作为真实地球的理想模型,称为地球椭球。 它产生规则的重力场称为正常重力场。正常重力——椭球表面上正常地球重力场的数学表达式。其计算公式称为正常重力公式。 11.重力均衡(1)(Isostasy):它阐明地壳的各个地块趋向于静力平衡的原理,即在大地水准 面以下某一深度处常有相等的压力,大地水准面之上山脉(或海洋)的质量过剩(或不足)由大地水准面之下的质量不足(或过剩)来补偿。运用地壳均衡学说可以研究地球内部构造,如上地幔的起伏;还可用于大地测量学中研究大地水准面形状,推估重力异常和计算垂线偏差等。 12.地壳均衡(1)(Isostasy):从地下某一深度起,相同截面所承载的质量趋于相等。这个概 念称为地壳均衡,地面上大面积的地形起伏,必然在地下有所补偿。 13.A iry模式(Airy-Heiskanen model):将地形所增减的质量补偿于山根与反山根,因而均衡面 不是同一个深度而有一定起伏的曲面。 14.Pratt模式(Pratt-Hayford model):将地形所增减的质量均匀地补偿于海面与补偿深度之间, 所以地形高低不同的柱体,其密度是各不相同。 15.引潮力(1)(Tide-generating Force(Tidal Force)):月球对地球上单位质量的物体的引力, 以及地球绕地月公共质心旋转时所产生的惯性离心力,这两种力组成的合力称为月球在地

最新魏东平地球物理学基础-期末考试试题

精品文档 精品文档 2004-2005年度《地球物理学基础》课程期末考试试题 (2004年12月30日上午10:00—12:00) (课堂开卷,但禁止参考印刷与复印材料,仅准使用手写材料) 1、 名词解释(每小题2分,共20分): (1) 大地水准面 (2) 布格异常 (3) 固体潮汐 (4) 地磁场基本要素 (5) 剩余磁性 (6) 黄道平面与白道平面 (7) 高斯系数 (8) 地心纬度与地理纬度 (9) 地磁场倒转 (10) 地球发电机模型 2、 3、 有一跳远运动员,在赤道上以与水平面成30o 起跳,能跳9米,问此人在两极以同一角度和同一初速 跳,能跳多远? (5分) 4、 5、 求:一条线密度为λ半径为a 、无限延伸的均匀圆柱在离轴线a r >地方的引力。(5分) 6、 7、 地球物质在地球外面所产生的引力位V 必须满足拉普拉斯方程: 0sin 1)(sin sin 1)(122222222 =??+????+????=?λθθθθθV r V r r V r r r V 这里r 为与地心的距离,θ为地心余纬度,λ为向东计算的经度。其解答可以写成: ?? ????+---=∑∑∑∞==∞=212)(cos }sin cos {)()(cos )(1n n m m n m n m n n n n n n P m S m C r a P r a J r GM V θλλθ上式中G 为万有引力常数,M 为地球质量,a 为地球赤道半径,)(cos θn P 为勒让德多项式,)(cos θm n P 为缔合勒让德函数,n J 为n 级带谐系数,m n C 和m n S 称为n 级m 阶的田谐系数。 (1)如果考虑对于旋转轴对称的问题,推导其中与地球形状直接有关的重要参数2J : 22Ma A C J -= 上式A 、C 分别为相对于x 、z 轴的转动惯量。(10分) (2)进一步推导如下的克莱罗(Clairaut )扁球体方程:)sin 1(2φα-=a r ,其中地球扁率 GM R J 22322ωα+=,R 为平均地球半径,ω为地球旋转角速度,φ为地心纬度。(10分) 8、 9、 假定岩石层的密度为ρ保持不变,其均衡补偿深度为T 。试对一个深度为d ,密度为w ρ的海洋水柱 体,求普拉特(Pratt )均衡假说中的密度变化及爱里 (Airy )均衡假说中的山根深度。(10分) 10、简要介绍古地磁学的基本原理与工作方法。(10分)

地球物理学基础复习资料

地球物理学基础复习资料

地球物理学 地震学:波在弹性介质中的传播。地震体波走时,面波频散,自由振荡的本征谱特征 重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。古地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 地球内部结构 地壳:地下的一个地震波速度的间断面,P波速度由界面上方的6.2km/s增至8.1km/s左右。这个间断面称为莫霍面(M面)。莫霍面以上的介质称为地壳,以下的介质称为地幔。地壳构造复杂,厚度不均,大陆厚,海洋薄。

二.放射性衰变规律 每单位时间所衰变的原子数目与压力,温度等外部条件无关,只于当时存在的衰变原子的数目成正比。 半衰期:原子数衰变到原来数目的一半所需的时间。放射性衰变的时间通常为半衰期的十倍。 三.放射性平衡 在母体同位素衰变时,初始衰变产物经常也具有放射性,它们也会发生一系列衰变,最终变成稳定的元素。中间过程的每个放射性元素都有自己的衰变常数,但经过一定的时间后,这个系列会达到平衡,即各中间产物的数量保持不变。四.主要的放射性元素 铀\钍--铅,钾----氩,铷----锶,放射性碳,氚。 地球初期情况假设 1.在地球形成初期,各种铅同位素的比值在各处都相同;

2.从某时起,地球不同区域的铀,钍,铅都各有特征的比值,这些比值只随放射性元素的衰变而改变; 3.在以后某个时期,方铅矿和其它一些不含铀,钍的铅矿分离出来,铅同位素的比值不再变化 4.铅与铀,钍分离或成矿的时间可以独立地测定。 第三章天然地震 一.地震分类 成因:构造地震,火山地震,陷落地震。 震源深度:浅源地震(《60km),中源地震(60--300km),深源地震(>300km)。 震中距:地方震(<100km),近震(<1000km),远震(>1000km) 地震强度:弱震,有感地震,中强震,强震 二.全球地震带的分布和它与板块构造之间的关系

2017地球物理学基础作业06及参考答案

1. 参考椭球-reference ellipsoid地球椭率-earth ellipticity 地形校正-terrain correction自由空气异常-free-air anomaly semi-diurnal tide-半日潮进动-precession 颤动-wobble geoid-大地水准面 Chandler wobble-钱德勒摆动solid tide-固体潮 A simple way to measure the height of the marine tide might be to fix a stake to the sea-bottom at a suitably sheltered location and to record continuously the measured water level(assuming that confusion introduced by wave motion can be eliminated or taken into account).The observed amplitude of the marine tide,defined by the displacement of the free water surface,is found to be about70%of the theoretical value.The difference is explained by the elasticity of the Earth.The tidal deformation corresponds to a redistribution of mass,which modifies the gravitational potential of the Earth and augments the elevation of the free surface.This is partially counteracted by a bodily tide in the solid Earth,which deforms elastically in response to the attraction of the Sun and Moon.The free water surface is raised by the tidal attraction,but the sea-bottom in which the measuring rod is implanted is also raised.The measured tide is the difference between the marine tide and the bodily Earth-tide. 测量海洋潮汐高度的一个简单方法大概就是在海底一个适宜的受保护的位置固定一个桩来连续地记录测量地水位(假设由波浪运动引起地误差可以被消除或考虑在内)。由自由水面的位移所确定的海洋潮汐的观测振幅约为理论值的70%。这种差异可由地球是一个有弹性体来解释。潮汐变形对应于质量的重新分布,这改变了地球的重力势并增加了自由表面的高度。这些形变被发生在固体地球内部的固体潮所部分抵消,固体潮是固体地球对太阳和月球的吸引力的响应而产生的弹性变形。自由水面由于引潮力而上升,但是埋入测量棒的海底也随之上升。实测得到的潮汐是海洋潮汐与地球固体潮之差。 2.Explanation of nouns(35points) 正常重力:在国际参考椭球体上通过正常重力公式计算的只与纬度有关的理论重力值。 Isostasy(地壳均衡):从地下某一深度起,相同截面所承载的质量趋于相等。Pratt模式:是将地形所增减的质量均匀地补偿于海面与补偿深度之间,所以地形高低不同的柱体,其密度是各不相同。 Airy模式:是将地形所增减的质量补偿于山根与反山根,因而均衡面不是同一个深度而有一定起伏的曲面。 固体潮:地球整体在太阳和月亮等天体引潮力作用下的地面变形。 Love数:h是固体潮潮高和海洋平衡潮潮高之比,k是地球质量的重新分布所致的力位变化与引潮力位之比。 Shita数:地壳的水平位移与平衡海潮的水平位移之比。 3.An idealized mountain-and-root system,as in the figure,is in isostatic equilibrium. The densities in kg m–3are as shown.Express the height H of the point A above the horizontal surface RS in terms of the depth D of the root B below this surface.(10points)

电法勘探复习

《电法勘探》知识点 ?电阻率法 何为电法勘探 电法勘探的地球物理学基础是地壳中多数岩矿石之间存在的电学性质的差异,它是通过观测和研究由电性质差异引起的人工或天然电磁场的空间和时间分布规律及其变化特点,从而达到查明地下地质构造或矿产分布的一组勘探方法的总称。 矿物如何按导电机理进行划分 按导电机理将矿物分为金属导体,半导体,固体电解质 影响岩石和矿石电阻率的因素 1 岩石和矿石电阻率与成分和结构的关系 岩石和矿石电阻率与所含水分的关系,含盐分越多(矿化度越高)电阻率值越低,含水量大的岩石电阻率较低,而含水量小或干燥岩石的电阻率较高。 3 岩石和矿石电阻率与温度的关系,一般表现为温度升高,电阻率降低。 三大岩类的电阻率如何变化 火成岩与变质岩的电阻率值较高,通常在102~105 .m范围内变化;沉积岩电阻率值一般较低 何为非各向同性系数如何表征这 各向同性指物体的物理、化学等方面的性质不会因方向的不同而有所变化的特性,即某一物体在不同的方向所测得的性能数值完全相同,亦称均质性。 针状和片状结构的岩石和矿石电阻率具有明显的方向性,即非各向同性。 为了表征层状岩石的非各向同性程度和平均的导电性,定义其非各向同性系数λ和平均电 阻率ρm 分别为: 岩石和矿石标本电阻率的测定方法有哪些 露头法、电测井、(岩芯)标本测定法 电法勘探进行正演问题数值模拟时,一般会采取哪几种方法每种方法的特点是什么 已知地电模型和场源分布,求解场的分布规律,称为电法勘探的正演问题。在学习电法勘探时,我们经常先对一些典型的地质模型进行正演模拟,从而建立地质模型与场分布特征之间的关系。因此,正演问题是学习电法勘探的重要基础。 解电阻率法正演问题有两个途径:一是通过物理模拟,即通过模型实验直接测量得到某种介质和场源条件下稳定电流场的分布情况;二是通过数学模拟途径,即寻求满足表边界条件下

相关文档
相关文档 最新文档