文档库 最新最全的文档下载
当前位置:文档库 › 电源时序管理和电源电压监控管理芯片(图)

电源时序管理和电源电压监控管理芯片(图)

电源时序管理和电源电压监控管理芯片(图)
电源时序管理和电源电压监控管理芯片(图)

电源时序管理和电源电压监控管理芯片(图)

作者:金龙电子(上海)有限公司 洪琳

目前,电源时序控制和电压监测方案大都存在种种问题,例如,采用电阻或电容等分离器件搭起来实现控制的,如A,B两种电压,要求A先上电,然后B上电,则使用A处理好的电压作为B的电荷泵的激励源,这种方案对于两路还较容易实现控制,但精确性已显不足;对于两路以上则PCB会非常复杂,若再需要精确的延时控制时,就需要加上电容来实现;更加精确的延时控制还需要通过CPLD计时来实现,但这都建立在主控电压正常稳定的基础下。若主控电压稍不正常,电压引起的种种问题就会出现。

一些简单的时序控制也可以用复位芯片组成,但当要求的控制电源较多时,比较繁琐,而且灵活性不强,电源控制部分稍做改动,就需要重新改板。要实现监测保护功能的话,还需要再加监测芯片。复杂的上电顺序,可用单片机调试来实现,这就需要我们了解单片机的寄存器结构及使用等,需要调试。在自身供电电压上,很多单片机都要求比较严格,大致为3.3V 和5V,正负10%的偏差,没有一般专用时序电路那样范围大(如PowerPAC,为2.25~5.5V),另外在控制外围NMOS时,需要外加MOS驱动。市场上也有一些时序控制芯片可以控制多路电源,内置电荷泵,可以开启外围的NMOS,时序间隔采用外围阻容来调节,但一般没有监测保护功能,且定时不太精确。

PowerPAC是Lattice公司推出的一款混合信号可编程逻辑器件(PLD),它内含在系统可编程的模拟和逻辑组块,能提供经过优化的电源管理功能,这一功能对如今的多电源电子系统是至关重要的。而且芯片自身对电压供给要求非常低,在2.25~5V下,该芯片都可以稳定正常的工作,从而保证了整个板子对供电稳定性的高冗余度。该器件集成了可编程逻辑、电压比较器、参考电压及高电压的场效应管驱动器,支持单芯片可编程供电定序与监控。

PowerPAC 的构成

PowerPAC是由模拟输入、数字输入、时序控制的 PLD、时钟和定时器、模拟比较器输出、控制高压输出、逻辑输出等部分组成。

模拟输入用于各路电压的检测,为内置基准的比较器提供输入,内置电压基准可编程为1.03~5.72V范围内192个等级上的任一电压;时钟和定时器电路为内部数字电路提供时钟基准,并产生四个可编程的定时器,250 kHz的内部振荡器在芯片产生时钟(也可以根据需要由外部引入时钟),可编程定时器的定时在32μs~512ms之间灵活编程控制。

控制高压输出和逻辑输出用于控制开启MOS开关和DC/DC模块等,特别说明的是:控制高压输出可以配置成高压输出,利用内部的电荷泵,产生高达12V的电压,用于控制作为开关的小导通电阻NMOS;开启MOS开关过程长短可以编程,工程师可以根据使用现场灵活控制,开

关减少开启时对电源系统的冲击,以保证电源系统的稳定。另外高压输出端也可以配置为和逻辑输出一样的OC门输出,用于逻辑控制。

图1:PowerPAC1208器件框图

比较器输出和数字输入可和板上的相关外围电路结合起来,完成用户设计的一些特定功能。时序控制PLD是PowerPAC的主控部分,利用各种输入的检测,根据用户的控制程序,利用高压输出和逻辑输出来控制时序和实现保护,图1所示是一款PowerPAC1208的详细结构框图。

PAC-Designer 是Lattice公司免费提供的基于PC的设计工具,它具有功能强大、简单易用的特点,帮助工程师设计、综合仿真和烧写电路板上的电源管理电路。当仿真完成后,通过PowerPAC的JTAG口下载到器件中的E2CMOS中,实现 JTAG 在系统可编程能力,灵活、有效地跟踪电源。

PowerPAC在单板上的应用

该应用是介绍PowerPAC 在RPR板上的应用,该板共要求有3.3V、2.5V、 1.8V、

1.5V、 1.3V六种直流电压,另外还有两种用于QDR和DDR的总线匹配电压0.75V和1.25V,分别要求跟踪QDR和DDR的IO供电电压1.5V和

2.5V。各电压要求直接或间接从48V输入变换得到。

本板上需要控制电源的主要芯片为:网络处理器(NPU)、QDR、DDR。各芯片要求上电顺序如下:

2

为满足上电顺序及电源监控保护的要求,以及整个板上电源的有效管理,采用了Lattice公司的电源控制专用芯片ispPAC_POWR1208来控制。由于本板上电源较多、功率较大的特点,故在设计时采用隔离电源模块先得到3.3V和2.5V的直流输出,然后按特点采用非隔离模块、LDO以及电源芯片产生所需电压。具体见图2单板电源时序和监控管理框图。

图2:单板电源时序和监控管理框图

从单板实现的框图中,可以看到,我们利用PowerPAC1208将48V输入DC/DC模块,输出3.3V 和2.5V,通过高压直接驱动NMOS作为开关,来进行时序控制。LDO和非隔离DC/DC模块则通过逻辑输出控制其开启脚,来达到综合此单板器件所需要的电源1.3V、3.3V、1.8V、1.5V、2.5V的先后时序。另外总线终端则采用专用终端芯片,使1.25V和0.75V跟随相应的2.5V

和 1.5V。

时序中的时间间隔设计见后面介绍的程序,可以用PowerPAC提供的四个定时器来定时,也可以用检测某一电压开通之后作为条件,再开通另一电压的方法实现。

PowerPAC还提供电压监测保护的功能,当检测到有电压超过相应的预先设定的阀值时,立即产生一个中断的动作,完成用户指定的中断操作,实现保护功能。这里设定的阈值基准可编程为1.03~5.72V范围内192个等级上的任一电压,拥有1%的标准电压阈值可调度。在我们的设计里,当阈值为3.3V的电压大于3.4V(3.3+3.3*5%=3.458V)或者阈值为2.5V的电压大于2.6V (2.5V+2.5V×5%=2.622V)时,产生中断,切断电源,实现保护。

PowerPAC 的编程及配置

PowerPAC的编程和配置,利用Lattice公司免费提供的基于PC的设计工具—— PAC-Designer,简单易用。先可以写出需要控制的伪代码,然后利用PAC-Designer设计出代码。仿真无错后,下载于器件中。我们利用PowerPAC1208控制时序的伪代码如图3所示。

3

图3:伪代码示意图

其中等待时间如图4所示,t1、t2、t3、t4、t5、t6为PowerPAC1208内部的250 kHz 振荡器在芯片产生时钟, 产生四个可编程的定时器:Timer1: 16.38ms、Timer2:2.048ms、Timer3:2.048ms、Timer4:262.1ms来实现的。如果有些设计需要的定时器时间超过了512ms,那么就可以双击图4中的开关,把开关配置在外部的时钟上,灵活实现各种时延要求。本板开发代码的界面如图5所示。

图4:时钟和计时器示意图

4

图5:PAC-Designer开发界面示意图

5

常见液晶驱动芯片详解

因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--SED1520 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC (3)ST7565P,支持串行或并行数据操作方式 (4)S6B0724,支持串行或并行数据操作方式 (5)T6963C,只支持并行数据操作方式 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。后面我将慢慢补上其它一些常见的. 三 12864液晶的奥秘 CD1601/1602和LCD12864都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864有带字库的,也有不带字库的;有5V电压的,也有~5V(内置升压电路);归根到底的区别在于驱动控制芯片,常用的控制芯片有ST7920、KS0108、T6963C等等。 下面介绍比较常用的四种 (1)ST7920类这种控制器带中文字库,为用户免除了编制字库的麻烦,该控制器的液晶还支持画图方式。该类液晶支持68时序8位和4位并口以及串口。 (2)KS0108类这种控制器指令简单,不带字库。支持68时序8位并口。 (3)T6963C类这种控制器功能强大,带西文字库。有文本和图形两种显示方式。有文本和图形两个图层,并且支持两个图层的叠加显示。支持80时序8位并口。 (4)COG类常见的控制器有S6B0724和ST7565,这两个控制器指令兼容。支持68时序8位并口,80时序8位并口和串口。COG类液晶的特点是结构轻便,成本低。 各种控制器的接口定义: 引脚定义

电源管理芯片引脚说明_电源管理芯片的应用

电源管理芯片引脚说明_电源管理芯片的应用 电源管理芯片概要电源管理芯片(PowerManagemenTIntegratedCircuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。 电源管理芯片基本类型主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V 的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。 电源管理芯片使用中的特性1、电源管理芯片在没有电流的情况下同样可以编程,并且电流最高可达800mA; 2、在使用的过程中,不需要外接部件,比如说二极管、感应电阻等等,可以单独使用; 3、电路在关闭模式下同样可以支持电流的通过,只需要电流达到25uA; 4、充电的时候可以设置成无涓流充电模式,能够起到省电的效果。要想让充电速度更快,采用带过温保护的恒流恒压充电,这种充电方式不用担心过热。 5、启动的时候,可以采用软启动的方式,能够有效地限制冲击电流,避免设备在启动时遭到损坏。 电源管理芯片引脚定义1、VCC电源管理芯片供电 2、VDD门驱动器供电电压输入或初级控制信号供电源 3、VID-4CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 4、RUNSDSHDNEN不同芯片的开始工作引脚。

数字芯片的驱动能力详解

数字芯片的驱动能力详解 1.芯片驱动能力基本概念 芯片驱动能力,是指在额定电平下的最大输出电流;或者是在额定输出电流下的最大输出电压。具体解释如下。 当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4。所以,灌电流有一个上限。 当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。拉电流越大,输出端的高电平就越低。这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。拉电流越大,输出端的高电平越低。然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。所以,拉电流也有一个上限。 可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。所以,拉电流与灌电流反映了输出驱动能力。(芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大)。 2.怎么通过数字芯片的datasheet看其驱动能力 以时钟buffer FCT3807例,下图是从Pericom的FCT3807的datasheet截取的。 当其输出为高电平2.4V时,其输出电流为8mA,也就是拉电流为8mA。如果输出电流大于8mA,那么其输出电平就低于2.4V了,就不能称其输出高电平,所以可以说FCT3807输出高电平的驱动能力为8mA。 同样道理,FCT3807输出低电平的驱动能力为24mA。 3.怎么通过数字芯片的驱动能力来估算输出信号的过冲等指标 仍然以Pericom的FCT3807为例,其输出为高电平时的输出阻抗为: RH= (3.3V – 3V )/ 8mA = 37.5欧姆。 其输出为低电平时的输出阻抗为: RL= 0.3V / 24mA = 12.5欧姆。 从上面的计算可以看出,3807输出为高电平和输出为低电平时的驱动能力不一样,也就是输出阻抗不一样,所以用串联匹配的方法很难做到完全匹配,常常表现为overshoot-大

DC-DC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。 图1 电压型控制的原理框图 电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传

液晶常用电源管理芯片

1200AP40 1200AP60、1203P60 200D6、203D6 DAP8A 可互代 203D6/1203P6 DAP8A 2S0680 2S0880 3S0680 3S0880 5S0765 DP104、DP704 8S0765C DP704加24V得稳压二极管 ACT4060 ZA3020LV/MP1410/MP9141 ACT4065 ZA3020/MP1580 ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430 ACT6311 LT1937 ACT6906 LTC3406/A T1366/MP2104 AMC2576 LM2576 AMC2596 LM2596 AMC3100 LTC3406/AT1366/MP2104 AMC34063A AMC34063 AMC7660 AJC1564 AP8012 VIPer12A AP8022 VIPer22A DAP02 可用SG5841 /SG6841代换 DAP02ALSZ SG6841 DAP02ALSZ SG6841 DAP7A、DP8A 203D6、1203P6 DH321、DL321 Q100、DM0265R DM0465R DM/CM0565R DM0465R/DM0565R 用cm0565r代换(取掉4脚得稳压二极管) DP104 5S0765 DP704 5S0765 DP706 5S0765 DP804 DP904 FAN7601 LAF0001 LD7552 可用SG6841代(改4脚电阻) LD7575PS 203D6改1脚100K电阻为24K OB2268CP OB2269CP OB2268CP SG6841改4脚100K电阻为2047K OCP1451 TL1451/BA9741/SP9741/AP200 OCP2150 LTC3406/AT1366/MP2104 OCP2160 LTC3407 OCP2576 LM2576 OCP3601 MB3800 OCP5001 TL5001 OMC2596 LM2596/AP1501

TFTLCD显示基本知识详解

TFT LCD显示原理详解 <什么是液晶> 我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一): 图(一) a:背景 两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。 图(六) b:TFT LCD显示原理 液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七) b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。下层的偏光板与上层偏光板, 角度也是恰好差异90度。所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。效果如图(七)中前两个图所示。 b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。 c:TFT-LCD驱动电路。 为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。最后,将驱动电路装配在TAB(自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。 d:TFT-LCD工作原理 首先介绍显示原理。液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。通过液晶层的光,则被逐渐扭曲。当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。这样,光线通过下偏振片形成亮场。加上电压以后,液晶在电场作用下取向,扭曲消失。这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。这就是TFT-LCD的简单工作原理

电源芯片引脚定义

电源管理芯片引脚定义 1、VCC 电源管理芯片供电 2、VDD 门驱动器供电电压输入或初级控制信号供电源 3、VID-4 CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 4.RUN SD SHDN EN 不同芯片的开始工作引脚。 5、PGOOD PG cpu内核供电电路正常工作信号输出。 6、VTTGOOD cpu外核供电正常信号输出。 7、UGATE 高端场管的控制信号。 8、LGATE 低端场管的控制信号。 9、PHASE 相电压引脚连接过压保护端。 10、VSEN 电压检测引脚。 11、FB 电流反馈输入即检测电流输出的大小。 12、COMP 电流补偿控制引脚。 13、DRIVE cpu外核场管驱动信号输出。 14、OCSET 12v供电电路过流保护输入端。 15、BOOT 次级驱动信号器过流保护输入端。

16、VIN cpu外核供电转换电路供电来源芯片连接引脚。 17、VOUT cpu外核供电电路输出端与芯片连接。 18、SS 芯片启动延时控制端,一般接电容。 19、AGND GND PGND 模拟地,地线,电源地 20、FAULT 过耗指示器输出,为其损耗功率:如温度超过135度时高电平转到低电平指示该芯片过耗。 21、SET 调整电流限制输入。 22、SKIP 静音控制,接地为低噪声。 23、TON 计时选择控制输入。 24、REF 基准电压输出。 25、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC丧失过压保护功能。 26、FBS 电压输出远端反馈感应输入。 27、STEER 逻辑控制第二反馈输入。 28、TIME/ON 5 双重用途时电容和开或关控制输入 29、RESET 复位输出V1-0v跳变,低电平时复位。 30、SEQ 选择PWM电源电平轮换器的次序:SEQ接地时5v输出在之前。 SEQ接REF上,5v各自独立。SEQ接v1上时输出在5v之前。

电源管理芯片工作原理和应用

电源管理芯片工作原理和应用 本文主要是关于电源管理芯片的相关介绍,并着重对电源管理芯片进行了详尽的阐述。 电源管理芯片电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。 基本类型 主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。 应用范围 电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。 当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。 提高性能 所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。 首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,

Power Management-电源管理IC

Yuming电子知识系列 Power Management Power Management 电源管理 IC Yuming Sun Jul, 2011 Jul2011 yuming924@https://www.wendangku.net/doc/c013377323.html,

CONTENTS 础知识 ?基础知识 ?LDO Regulator ?Switching Regulator (DC-DC) ?Charge Pump(电荷泵) Ch P ?W-LED Driver ?Voltage Reference (电压参考/基准源) Voltage Reference( ?Reset IC (Voltage Detector) ?MOSFET Driver ?PWM Controller

基础知识

Portable Device

便携电子产品常用电源

电力资源-电源管理IC-用电设备 IC :5、3.3、2.5、1.8、1.2、0.9V 等;电力用电电 源管马达:3、6、12V ;LED 灯背光;资源 设备理 IC LCD 屏:12、-5V ;AC Rectifier/PWM IC )AC :110、220V DC C t 升降压DC DC Ch P 等整流:PWM IC (3843或VIPER12)、开关电源DC 或电池 DC Converter :LDO 、升降压DC-DC 、Charge Pump 等。Reset IC 或电压检测:如808、809。电池管理:保护IC 、充电管理(4054Fuel Gauge 等。电池管理保护、充电管理)、g 等DC 或电池AC Inverter/逆变:for CCFL …… (比喻:电荷-水、电流-水流、电容-水桶、电压-水压。)

(仅供参考)常用电源管理IC系列

型号(规格)器件简介相同型号 LM2940CT-1515V低压差稳压器 LP2950ACZ-3.3 3.3V低压差微功耗稳压器LP2950ACN-3.3(SIPEX) LP2954I/AI 5.0V低压差微功耗稳压器AS2954BM3-5.0(SIPEX) LM123K(NS)5V稳压器(3A) LM323K(NS)5V稳压器(3A) LM117K(NS) 1.2V to37V三端正可调稳压器(1.5A) LM317LZ(NS) 1.2V to37V三端正可调稳压器(0.1A) LM317T(NS) 1.2V to37V三端正可调稳压器(1.5A) LM317K(NS) 1.2V to37V三端正可调稳压器(1.5A) LM133K(NS)三端可调-1.2V to-37V稳压器(3.0A) LM333K(NS)三端可调-1.2V to-37V稳压器(3.0A) LM337K(NS)三端可调-1.2V to-37V稳压器(1.5A) LM337T(NS)三端可调-1.2V to-37V稳压器(1.5A) LM337LZ(NS)三端可调-1.2V to-37V稳压器(0.1A) LM150K(NS)三端可调1.2V to32V稳压器(3A) LM350K(NS)三端可调1.2V to32V稳压器(3A) LM350T(NS)三端可调1.2V to32V稳压器(3A) LM138K(NS)三端正可调1.2V to32V稳压器(5A) LM338T(NS)三端正可调1.2V to32V稳压器(5A) LM338K(NS)三端正可调1.2V to32V稳压器(5A) LM336Z-2.5(NS) 2.5V精密基准电压源KA336Z-2.5(FSC) LM336Z-5.0(NS) 5.0V精密基准电压源KA336Z-5.0(FSC) LM385Z-1.2(NS) 1.2V精密基准电压源 LM385Z-2.5(NS) 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ(NS)精密可调2.5V to36V基准稳压源LM431ACZ(FSC)

段码LCD液晶屏驱动方法

TFT液晶屏:https://www.wendangku.net/doc/c013377323.html, 段码LCD液晶屏驱动方法 段码LCD液晶屏驱动方法 首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛。但在控制上LCD较复杂,因为LCD 电极之间的相对电压直流平均值必须为0,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。 LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态,为什么? 下面我们一起细细道来: 第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。 第二步,驱动方式:根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。 段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子:

8种常见电源管理IC芯片介绍

8种常见电源管理IC芯片介绍 在日常生活中,人们对电子设备的依赖越来越严重,电子技术的更新换代,也同时意味着人们对电源的技术发展寄予厚望,下面就为大家介绍电源管理技 术的主要分类。 电源管理半导体从所包含的器件来说,明确强调电源管理集成电路(电源管 理IC,简称电源管理芯片)的位置和作用。电源管理半导体包括两部分,即电源管理集成电路和电源管理分立式半导体器件。 电源管理集成电路包括很多种类别,大致又分成电压调整和接口电路两方面。电压凋整器包含线性低压降稳压器(即LDO),以及正、负输出系列电路,此 外不有脉宽调制(PWM)型的开关型电路等。因技术进步,集成电路芯片内数字电路的物理尺寸越来越小,因而工作电源向低电压发展,一系列新型电压 调整器应运而生。电源管理用接口电路主要有接口驱动器、马达驱动器、功率场效应晶体管(MOSFET)驱动器以及高电压/大电流的显示驱动器等等。 电源管理分立式半导体器件则包括一些传统的功率半导体器件,可将它分为 两大类,一类包含整流器和晶闸管;另一类是三极管型,包含功率双极性晶体管,含有MOS 结构的功率场效应晶体管(MOSFET)和绝缘栅双极型晶体管(IGBT)等。 在某种程度上来说,正是因为电源管理IC 的大量发展,功率半导体才改称 为电源管理半导体。也正是因为这么多的集成电路(IC)进入电源领域,人们 才更多地以电源管理来称呼现阶段的电源技术。 电源管理半导体本中的主导部分是电源管理IC,大致可归纳为下述8 种。 1、AC/DC 调制IC。内含低电压控制电路及高压开关晶体管。 2、DC/DC 调制IC。包括升压/降压调节器,以及电荷泵。

常用LCD驱动IC集锦

本文主要是介绍一些常用的LCD驱动控制IC的型号,同时附上datasheet,方便学习或正在使用的LCD的朋友能够更好地编写LCD的驱动程序。 因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 下载:《KS0066 数据手册》(英文) 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--《SED1520 数据手册》(英文) 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 下载:《ST7920 数据手册》(英文) (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC 下载:《KS0108 数据手册》(英文) (3)ST7565P,支持串行或并行数据操作方式 下载:《ST7565P 数据手册》(英文) (4)S6B0724,支持串行或并行数据操作方式 下载:《S6B0724 数据手册》(英文) (5)T6963C,只支持并行数据操作方式 下载:《T6963C 数据手册》(英文) 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c 驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 下载:《RA8835 数据手册》(英文) 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。

MAX1631电源管理芯片

MAX1631工作流程 MAX1631工作流程: 1, 插上电源适配器,16V电压输出一路至待机电路高端MOS管Q16,Q18的D 极,另一路通过10Ω电阻来到MAX1631的22脚,这时芯片不工作. 若22脚无16V供电,注意检修10Ω电阻是否开路或阻值变大. 当1631的23脚接到为高电平(3.3V-5V)的总开启信号后,芯片开始待机.待机时21脚产生VL电压5V,9脚输出基准电压2.5V 若23脚无3.3V,请检修与该脚相连的元件:如电阻,二极管,控制芯片等 VL5V电压分成2路分别给芯片自身及其它芯片作为待机电压 一路给1.8v/1.5v产生电路(MAX1845)作为其待机电压, 二路通过D15(复合二极管,表面像是三极管)给了芯片BST端(18,25脚) ,作为内部高低端驱动器的激励供电. 当VL < 5v时,芯片本身有损坏或外围负载有短路.(比如MAX1845芯片坏) 当VL > 5V时,芯片本身有损坏或外接电容虚焊或人为弄掉.(IBM R31的通病) 当VL = 5V,而9脚 < 2.5V时,为芯片损坏, 当VL = 5V,待机时9脚 = 2.5V,但在按下开关时为0V,说明3M或5M负载有短路. 只有VL5V正常后,9脚2.5V才会正常. 这时19脚,24脚都有5V直流电压输出(工作时为低端驱动器脉冲方波输出 当(7),(28)接收到3.3V或5V高电平(3M_ON,5M_ON开启信号)且保持不变时,芯片开始正常工作,内部的四个驱动器输出方波脉冲去推动外部所接的4个场效应管导通工作,输出3.3V和5V 当(7),(28)无高电平时,请根据线路找到相连的芯片或元件.IBM的开启信号控制芯片是PMH4和TB62501.其他品牌的由IO芯片或H8或M38867系列芯片控制.检修时要先检修该芯片的工作条件(供电,时钟) 6, 5M输出电压经变压器L3,和D32升压变为15V(VDD15),输出给光驱,USB的电压调整MOS管的控制极,以及TB62501的25脚. 当输出电压或负载电流发生变化,其变化会通过9脚REF2.5V经CSH、CSL、FB 引脚反馈给芯片内部,内部自动调整方波幅度及脉宽大小,最终达到3.3V、5V 电压的稳压输出.当负载过压或过流时,其反馈会让芯片自动切断输出,最终达到保护负载及电源本身的目的。. 注: MAX1631与1632除第4,5脚定义不同外,其他定义顺序完全相同. jMAX1631的4,5脚为内部电压检测电路. MAX1632的4,5脚为线性稳压电路,5脚输入19V,4脚输出12V给PCMCIA芯片供电,相当于在芯片内部集成了一个三端稳压器. 在检修MAX1632电路时要测这两个测试点.

液晶屏驱动1622芯片资料

文件型号YM1622 文件类型服务文件 版本02.3 段式液晶显示模块使用手册 YM1622 深圳市耀宇科技有限公司地址:深圳市南山区西丽北路八十号南粮综合楼三楼 邮编:518055电话:(0755)26700011 26622385 26701033 26622308传真:(0755)26701033 https://www.wendangku.net/doc/c013377323.html, E-mail:yaoyulcm@https://www.wendangku.net/doc/c013377323.html, szyaoyu@https://www.wendangku.net/doc/c013377323.html,

一.概述 YM1622是一种段式的液晶显示器。它主要采用动态驱动原理由行驱动—控制器和列驱动器两部分组成了。此显示器可采用了COB的软封装方式,通过导电橡胶和压框连接LCD或金属管脚连接LCD,使其寿命长,连接可靠,抗震;或者热压胶纸连接。 二.特性 1.操作电压 2.4V-5.2V 2.内置32KHz RC 振荡器 3.掉电Power down 4.内置32×8 位显示RAM;最大可显示256段,且可多级联用。 5.3线串行接口 6.一个8 阶时基和看门狗定时器WDT 7.读/写地址自动增加 三.硬件说明 1.引脚特性 引脚号引脚名称级别引脚功能描述 1 /CS H/L片选信号,低电平有效 读信号,数据在/RD的上升沿被读入MCU 2 RD* H/L 写信号,数据在/WR的上升沿被写入LCM 3 WR H/L 4 DATA H/L 串行输入/输出信号 电源(负) 5 VSS 0V 7 VLCD* LCD驱动正电压.LCD驱动电压=VLCD-VSS 电源(正) 8 VDD +5V 9 /IRQ*H/L 时基和看门狗定时器WDT溢出标志 10 BZ,/BZ* H/L 2KHz or 4KHz音频输出 注: 1)*的引脚可以不使用,以具体的接口图为准. 2)引脚顺序以具体的接口图为准.

电源驱动芯片uc3842引脚图及引脚功能

电源驱动芯片uc3842引脚图及引脚功能 电流型脉宽调制器UC3842 的主要优点:单端输出,可直接驱动双极型功率管或场效应管;管脚数量少,外围电路简单;电压调整率可达0.01%;工作频率更可高达500 kHz;启动电流小于 1 mA,正常工作电流为12 mA;欠压锁定,带滞后;锁存脉宽调制,可逐周限流;并可利用高频变压器实现与电网隔离。它适用于无工频变压器的低于250w的小功率开关电源,其工作温度为0~+70℃,最高输入电压为36 V,具有最大电流为1 A的拉、灌输出电流。 UC3842外形图 UC3842引脚图和内部电路方框图

UC3842各引脚功能简介如下: ---1脚COMP是内部误差放大器的输出端,通常此脚与2脚之间接有反馈网络,以确定误差放大器的增益和频响。 ---2脚FEED BACK是反馈电压输入端,此脚与内部误差放大器同向输入端的基准电压(一般为+ 2.5V)进行比较,产生控制电压,控制脉冲的宽度。 ---3 脚ISENSE是电流传感端。在外围电路中,在功率开关管(如VMos管)的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压,此电压送入3 脚,控制脉宽。此外,当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率开关管。 ---4脚RT/CT是定时端。锯齿波振荡器外接定时电容C和定时电阻R的公共端。 ---5脚GND是接地。 ---6脚OUT是输出端,此脚为图滕柱式输出,驱动能力是±lA。这种图腾柱结构对被驱动的功率管的关断有利,因为当三极管VTl截止时,VT2导通,为功率管关断时提供了低阻抗的反向抽取电流回路,加速功率管的关断。 ---7脚Vcc是电源。当供电电压低于+16V时,UC3824不工作,此时耗电在1mA以下。输入电压可以通过一个大阻值电阻从高压降压获得。芯片工作后,输入电压可在+10~+30V之间波

电源管理芯片引脚定义

电源管理芯片引脚定义 1 VCC 电源管理芯片供电 2 VDD 门驱动器供电电压输入或初级控制信号供电源 3 VID0- 4 CPU与cpu供电管理芯片VID信号连接引脚,主要指示芯片的输出信号, 使两个场管输出正确的工作电压。 4 RUN SD SHDN EN 不同芯片的开始工作引脚 5 PGOOD PG cpu内核供电电路正常工作信号输出 6 VTTGOOD cpu外核供电正常信号输出 7 UGATE 高端场管的控制信号 8 LGATE 低端场管的控制信号 9 PHASE 相电压引脚连接过压保护端 10 VSEN 电压检测引脚 11 FB 电流反馈输入即检测电流输出的大小 12 COMP 电流补偿控制引脚 13 DRIVE cpu 外核场管驱动信号输出 14 OCSET 12v供电电路过流保护输入端 15 BOOT 次级驱动信号器过流保护输入端 16 VIN cpu外核供电转换电路供电来源芯片连接引脚 17 VOUT cpu外核供电电路输出端与芯片连接 18 SS 芯片启动延时控制端,一般接电容 19 AGND GND PGND 模拟地地电源地 20 FAULT 过耗指示器输出,为其损耗功率:如温度超过135.c时由高电平转到低电平指示该芯片过耗. 21 SET 调整电流限制输入 22 SKIP 静音控制,接地为低噪声 23 TON 计时选择控制输入 24 REF 基准电压输出 25 OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连vcc丧失过压保护功能。 26 FBS 电压输出远端反馈感应输入 27 STEER 逻辑控制第二反馈输入 28 TIME/ON 5 双重用途定时电容和开或关控制输入 29 RESET 复位输出vl-0v跳变,低电平时复位 30 SEQ 选择pwm电源电平转换器的次序 SEQ接地时5v输出在3.3v之前 SEQ 接REF上,3.3v 5v 各自独立 SEQ 接vl上时 3.3v输出在5v之前 31 RT 定时电阻 32 CT 定时电容 33 ILIM 电流限制门限调整 34 SYNC 振荡器同步和频率选择,150khz操作时,sync连接到gnd 300khz时 连接到ref上,用0-5v驱使sync 使频率在340-195khz

常见液晶驱动芯片详解

本文主要是介绍一些常用的LCD驱动控制IC的型号,方便学习或正在使用的LCD的朋友能够更好地编写LCD的驱动程序。 因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD 模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--SED1520 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库(2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC (3)ST7565P,支持串行或并行数据操作方式 (4)S6B0724,支持串行或并行数据操作方式 (5)T6963C,只支持并行数据操作方式 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c驱动控制芯片

4、点阵数320×240,通用的采用RA8835驱动控制IC 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。后面我将慢慢补上其它一些常见的. 三 12864液晶的奥秘 CD1601/1602和LCD12864都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864有带字库的,也有不带字库的;有5V电压的,也有~5V(内置升压电路);归根到底的区别在于驱动控制芯片,常用的控制芯片有ST7920、KS0108、T6963C等等。 下面介绍比较常用的四种 (1)ST7920类这种控制器带中文字库,为用户免除了编制字库的麻烦,该控制器的液晶还支持画图方式。该类液晶支持68时序8位和4位并口以及串口。 (2)KS0108类这种控制器指令简单,不带字库。支持68时序8位并口。 (3)T6963C类这种控制器功能强大,带西文字库。有文本和图形两种显示方式。有文本和图形两个图层,并且支持两个图层的叠加显示。支持80时序8位并口。

电源管理芯片LDO和DC-DC的区别

DC/DC和LDO的区别 LDO :LOW DROPOUT VOLTAGE 低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中。也就是输出电压必需小于输入电压。 优点:稳定性好,负载响应快。输出纹波小 缺点:效率低,输入输出的电压差不能太大。负载不能太大,目前最大的LDO 为5A(但要保证5A的输出还有很多的限制条件) DC/DC:直流电压转直流电压。严格来讲,LDO也是DC/DC的一种,但目前DC/DC多指开关电源。 具有很多种拓朴结构,如BUCK,BOOST。等。。 优点:效率高,输入电压范围较宽。 缺点:负载响应比LDO差,输出纹波比LDO大。 DC / DC 和LDO的区别是什么? DC/DC 转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成。DC/DC 转换器为转变输入电压后有效输出固定电压的电压转换器。DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。根据需求可采用三类控制。PWM控制型效率高并具有良好的输出电压纹波和噪声。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。 LDO是low dropout voltage regulator的缩写,整流器. DC-DC,其实内部是先把DC直流电源转变为交流电电源AC。通常是一种自激震荡电路,所以外面需要电感等分立元件。 然后在输出端再通过积分滤波,又回到DC电源。由于产生AC电源,所以可以很轻松的进行升压跟降压。两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。 1.DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC 转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。 2.LDO:低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流。它的外围器件也很少,通常只有一两个旁路电容。新型LDO可达到以下指标:30μV 输出噪声、60dB PSRR、6μA 静态电流及100mV 的压差。LDO 线性稳压器能够实现这些特性的主要原因在于内部调整管采用了P 沟道场效应管,而不是通常线性稳压器中的PNP 晶体管。P 沟道的场效应管不需要基极电流驱动,所以大大降低了器件本身的电源电流;另一方面,在采用PNP 管的结构中,为了防止PNP 晶体管进入饱和状态降低输出能力,必须保证较大的输入

常见液晶屏主芯片资料

产品名称产品说明技术资料典型应用 LXD01812 三星液晶屏专用 SN0209033PZP-1 LG.Philips液晶屏专用 LM170E01 LXD91810 三星液晶屏专用 LXD91812 三星液晶屏专用 TFP7433ZP-6 HT现代液晶屏专用 AU30803 AU友达液晶屏专用 AU0071 AU友达液晶屏专用 CM1012A-ET AU友达液晶屏专用 FPD87326 LG液晶屏专用 LM150X06(20P) FPD87342 LG液晶屏专用 LM150X08(20P) LXD91811 三星液晶屏专用 LTM150XH-L01、 LXD91814 三星液晶屏专用 AD30601 ACER AD3032 AD LPD91821 三星液晶屏专用 AD8567 AU友达液晶屏专用 NT7168F-00010 AU30707 AU0071TAIWAN 台湾友达AU屏专用 5420CR 三星液晶屏专用 F29C51001T 七喜液晶驱动板专用 AT49LV001NT Philips液晶驱动板专用

24C16 各种LCD驱动板、A/D板专用 M6759 液晶驱动板A/D板专用MCU SM89516 液晶驱动板A/D板专用MCU ADP3421 笔记本主板供电专用IC GMZAN3L 液晶驱动板芯片 GM2121 液晶驱动板芯片 GM2116 液晶驱动板芯片 GM2110 液晶驱动板芯片 RTD2023 液晶驱动板芯片 RTD2013 液晶驱动板芯片 RTD2013B 液晶驱动板芯片 RTD2013B 液晶驱动板芯片 RTD2011 液晶驱动板芯片 RTD2022 液晶驱动板芯片 GM2121 液晶驱动板芯片 GM2221 液晶驱动板芯片 S9050-100 液晶驱动板芯片sage GMZAN1-A 液晶驱动板芯片 GMZAN2 液晶驱动板芯片 GMZAN3SL 液晶驱动板芯片 GMZAN3XL 液晶驱动板芯片

相关文档
相关文档 最新文档