文档库 最新最全的文档下载
当前位置:文档库 › 五年级奥数计数综合排列组合教师版

五年级奥数计数综合排列组合教师版

五年级奥数计数综合排列组合教师版
五年级奥数计数综合排列组合教师版

知识结构排列组合

一、排列问题

在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.

一般地,从个不同的元素中取出()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个n元素的一个排列.

根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.

排列的基本问题是计算排列的总个数.

从个不同的元素中取出()个元素的所有排列的个数,叫做从个不同的元素的排列中取出个元素的排列数,我们把它记做.

根据排列的定义,做一个元素的排列由个步骤完成:

步骤:从个不同的元素中任取一个元素排在第一位,有种方法;

步骤:从剩下的()个元素中任取一个元素排在第二位,有()种方法;

……

步骤:从剩下的个元素中任取一个元素排在第个位置,有(种)方法;

由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘.

二、排列数

一般地,对于的情况,排列数公式变为.

表示从个不同元素中取个元素排成一列所构成排列的排列数.这种个排列全部取出的排列,叫做个不同元素的全排列.式子右边是从开始,后面每一个因数比前一个因数小,一直乘到的乘积,记为,读做的阶乘,则还可以写为:,其中.

在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.

三、组合问题

日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.

一般地,从个不同元素中取出个()元素组成一组不计较组内各元素的次序,叫做从个不同元素中取出个元素的一个组合.

从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.

从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作.

一般地,求从个不同元素中取出的个元素的排列数可分成以下两步:

第一步:从个不同元素中取出个元素组成一组,共有种方法;

第二步:将每一个组合中的个元素进行全排列,共有种排法.

根据乘法原理,得到.

因此,组合数.

这个公式就是组合数公式.

四、组合数的重要性质

一般地,组合数有下面的重要性质:()

这个公式的直观意义是:表示从个元素中取出个元素组成一组的所有分组方法.表示从个元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法恰是从个元素中选个元素剩下的()个元素的分组方法.

例如,从人中选人开会的方法和从人中选出人不去开会的方法是一样多的,即.

规定,.

五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.

在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.

六、使用插板法一般有如下三种类型:

⑴个人分个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的个空隙中放上个插板,所以分法的数目为.

⑵个人分个东西,要求每个人至少有个.这个时候,我们先发给每个人个,还剩下个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为.

⑶个人分个东西,允许有人没有分到.这个时候,我们不妨先借来个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了,因此分法的数目为.个

例题精讲

一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数

【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法

(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果

(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法

433344(:(1)3(2))【解析】7把6名实习生分配到个车间实习共有多少种不同方法【例2】6步,第一步;将第一名实习生分配到车间有7种不同方案,【解析】:完成此事共分第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有种不同方案.33CA8338 DA、 B、、 C、【例3】 8名同学争夺3项冠军,获得冠军的可能性有()88【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠

38种,每个“客”有8种可能,因此共有军看作3个“客”,他们都可能住进任意一家“店”A 不同的结果。所以选.二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列

【例1】五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有人的全排列,种【解析】:把视为一人,且固定在的右边,则本题相当于43位女生共6位同学站成一排,若男生甲不站两端,2009四川卷理)3位男生和3【例2】()位女生中有且只有两位女生相邻,则不同排法的种数是( A. 360 B. 188 C. 216 D. 96 2222CAAA=432种3 间接法 6位同学站成一排,位女生中有且只有两位女生相邻的排法有,【解析】:2342

12222=144AAAAC其中男生甲站两端的有,符合条件的排法故共有288 22323三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.

【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

【解析】:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种【例2】书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有种不同的插法(具体数字作答)

111AA=504A【解析】:9872各音乐节目,个舞蹈节目和1个曲艺节目的【例3】高三(一)班学要安排毕业晚会的4演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是:不同排法的种数为=3600【解析】某工程队有【例4】 6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工6程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这项工程的不同排法种数是种205【解析】:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的个空中,可得有=不同排法。个节目,导演最后决定添加】某市春节晚会原定【例5103个与“抗冰救灾”有关的节目,10个节目的相对顺序不变,但是赈灾节目不排在第一个也不排在最后一个,并且已经排好的.种

则该晚会的节目单的编排总数为

111AAA=990:【解析】11910九只路灯,现要关掉其中的三盏,但不能关掉相邻的…,9【例6】.马路上有编号为1,2,3二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种3盏不亮的灯种方5【解析】:把此问题当作一个排对模型,在6盏亮灯的个空隙中插入种.法,所以满足条件的关灯方案有10说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种【例7】 3个人坐在一排3,○个人(各带一把椅子)进行全排列有解法1、先将3*A○*○*○,在四个空【解析】:31A种,所以每个人左右两边都空位的排法有中分别放一把椅子,还剩一把椅子再去插空有413AA=24种.34解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,*○*○*○*○*再让3个人每人带一把椅3A=24种.子去插空,于是有4要求空车位置连在一起,不同的停车方.停车场划出一排12个停车位置,今有8辆车需要停放【例8】

法有多少种8种方法,要求空车位置连在一起,则在每2A辆之间及其两端的9【解析】:先排好8辆车有8118A个空档中任选一个,将空车位置插入有种方法,所以共有C种方法C. 899注:题中*表示元素,○表示空.

四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元

素;再排其它的元素。

【例1】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四

人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()高☆考♂资♀源€网

A. 36种

B. 12种

C. 18种

D. 48种

23A A?36从后两项工作出发,采取位置分析法。【解析】:方法一:33方法二:分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有种,选A. 选法,共有选法36名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种】 1名老师和4【例2.4名同学在其余4个位置上有种方法;所以共有种。【解析】:老师在中间三个位置上选一个有种,有七名学生站成一排,某甲不排在首位也不排在末位的排法有多少种3】【例7665261AA?3600A AA?A?A?36003600?667法三:【解析】法一:法二:5665高☆考♂资♀源€网☆把元素排成几排的问题可归结为一排考虑,五.多排问题单排法:再分段处理。

6个不同的元素排成前后两排,每排3 )个元素,那么不同的排法种数是()1【例】(1种D C BA、36种、120种、720种、1440(2)把人,不同的排法种数为人分成前后三排,每排515155555353555AAAAAAAAAA?A151510351015351015( D C B A)()()()个元素排在后排,1个元素要排在前排,某2个元素,其中某个不同的元素排成前后两排,每排)(384有多少种不同排法因此本题可看成前后两排可看成一排的两段,)16选共种,个不同的元素排成一排,. ☆(:【解析】

( C)答案:2个元素排在后半段的四个位置中)看成一排,某2个元素在前半段四个位置中选排2个,有种,某13(.个位置上有种,故共有种排法5个元素任排选一个有种,其余5:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的五.定序问题缩倍法(等几率法).方法.

【例1】.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是()☆

【解析】:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种

【例2】书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法

19A936AA法二:【解析】:法一:96【例3】将A、B、C、D、E、F这6个字母排成一排,若A、B、C必须按A在前,B居中,C在后的原则(A、16A63A法二::法一: B、C允许不相邻),有多少种不同的排法【解析】3六.标号排位问题(不配对问题)把元素排到指定位置上,可先把某个元素按规定排

入,第二步再排另一个元素,如此继续下去,依次即可完成.

【例1】将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个

方格的标号与所填数字均不相同的填法有()

A、6种

B、9种

C、11种

D、23种☆

【解析】:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9

种填法,选.

【例2】编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中

有且只有两个的编号与座位号一致的坐法是()

A 10种

B 20种

C 30种

D 60种

答案:B

【例3】:同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,

则4张贺年卡不同的分配方式共有( )

(A)6种(B)9种(C)11种(D)23种

【解析】:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d。

第一步,甲取其中一张,有3种等同的方式;

第二步,假设甲取b,则乙的取法可分两类:

(1)乙取a,则接下来丙、丁取法都是唯一的,

(2)乙取c或d(2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。

3?(1?2)?9种分配方式。故选(B)根据加法原理和乘法原理,一共有

【例4】:五个人排成一列,重新站队时,各人都不站在原来的位置上,那么不同的站队方式共有( )

(A)60种(B)44种(C)36种(D)24种

答案:B

六.不同元素的分配问题(先分堆再分配):注意平均分堆的算法

【例1】有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式高☆考♂资♀源€网☆

分成1本、2本、3本三组;

分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;

分成每组都是2本的三个组;

分给甲、乙、丙三人,每个人2本;

分给5人每人至少1本。

222211111CCC CCCCCC5264153524A5312312322243ACCCCCCCCC A A3366535246)4)(5 (((【解析】:1) 2) 3 )(43【例2】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).

【解析】:第一步将4名大学生按,2,1,1分成三组,其分法有;

个乡镇,其分法有所以满足条件得分配的方案有3第二步将分好的三组分配到.

说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.

【例3】 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A)150种 (B)180种 (C)200种 (D)280种

【解析】:人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有=60种,

若是1,1,3,

则有=90种,所以共有150种,选A

【例4】将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为() A.70 B.140 C.280 D.840

答案:( A )

【例5】将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()

(A)30种(B)90种(C)180种(D)270种

【解析】:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5

名教师分成三组,一组1人,另两组都是2人,有种方法,再将3组分到3个班,

共有种不同的分配方案,选B.

【例6】某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超

过2个,则该外商不同的投资方案有()种☆

A.16种 B.36种 C.42种 D.60种

【解析】:按条件项目可分配为与的结构,∴故选D;

【例7】(1)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种 B、240种 C、120种 D、96种

答案:.

(2)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有多少种

444CCC34812A33A答案:3

【例8】有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担

这三项任务,不同的选法种数是()

A、1260种

B、2025种

C、2520种

D、5040种

【解析】:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第

三步从另外的7人中选1人承担丙项任务,不同的选法共有种,选.

【例9】.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发

建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案

【解析】:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:

①若甲乙都不参加,则有派遣方案种;

②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有方法,所以共有;

③若乙参加而甲不参加同理也有种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另

两个城市有种,共有方法.所以共有不同的派遣方法总数为种

【例10】四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种【解析】:先取四个球中二个为一组,另二组各一个球的方法有种,再排:在四个盒中每次排3个有种,故共有种.

七.相同元素的分配问题隔板法:

【例1】:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有多少种不同的放法

【解析】:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17 2120?C份,每份至少一球,运用隔板法,共有个球分成3种。16

个班级,每个班级至少一个名额,有多少种不同分配方案7个三好学生名额分到 10】2【例【解析】:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆

至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,

故共有不同的分配方案为种

变式1:7个相同的小球,任意放入四个不同的盒子,问每个盒子都不空的放法有种

变式2:马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其

中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件

的关灯办法有种

【例3】:将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种

【解析】: 1、先从4个盒子中选三个放置小球有种方法。

2、注意到小球都是相同的,我们可以采用隔板法。为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个5个空挡中分别插入两个板。各有、、种方法。

3、由分步计数原理可得=720种

八.多面手问题(分类法---选定标准)

【例1】:有11名外语翻译人员,其中5名是英语译员,4名是日语译员,另外两名是英、

日语均精通,从中找出8人,使他们可以组成翻译小组,其中4人翻译英语,另4人翻译日语,这两个小组能同时工作,问这样的8人名单可以开出几张

4314134231134424C?CCCCC?CCCC?CC?CCCC?4554422542441555,人8,,4. 变式:有11名外语翻译人员,其中有5名会英语名会日语,另外两名英日语都精通,从中选出,组成两个翻译小组,其中4人翻译英语另4人翻译日语 ,问共有多少不同的选派方式:答案

(分类法与插空法相结合)九.走楼梯问题

级台】1 小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16【例阶,那么小明从一层到二层共有多少种不同的走法级台阶的次数::插空法解题:考虑走3 【解析】

20)有次走3级台阶(即全走级),那么有1种走法; 1

(不可能完成任务);)有21次走三级台阶。5次走级台阶:233)有两次走级台阶,则有16?C 种)两次三级台阶挨着时:相当于把这两个挨着的三级台阶放到5个两级台阶形成的空中,有a (6215C?种两次三级不挨着时:相当于把这两个不挨着的三级台阶放到5个两级台阶形成的空中,有(b)6走法。次(不可能) 4)有3

级台阶形成得空中,32级台阶放到5)有4次走3级台阶,则有2次走两级台阶,互换角色,想成把两个2115?CC?同(3走法;)考虑挨着和不挨着两种情况有种55 6)有5次(不可能)故总共有:1+6+15+15=37种。变式:欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有( )(答案: C)种(89 ) A()34种(B55种(C)种 D)144)十.排数问题(注意数字“0”

,由数字)0,12,3)其中个位数字小于十位数字的共有(组成没有重复数字的六位数,,,451】【例1(种600 D464 C300 B210A、种、种、种、种情况,分别有个,5共4,3,2,1,0:按题意,个位数字只可能是【解析】.

个,合并总计300个,选.

(2)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种

【解析】:将分成四个不相交的子集,能被4整除的数集;能被4除余1的数集,能被4除余2的数集,能被4除余3的数集,易见这四个集合中每一个有25个元素;从中任取两个数符合要;从中各取一个数也符合要求;从中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有种.

十一.染色问题:涂色问题的常用方法有:(1)可根据共用了多少种颜色分类讨论;

(2)根据相对区域是否同色分类讨论;

(3)将空间问题平面化,转化成平面区域涂色问题。

S?ABCD的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有将一个四棱锥5【例

小学五年级奥数专题之排列组合题一及答案

1、7个人站成一排,若小明不在中间,共有_______________种站法;若小明在两端,共有_________________种站法。 2、4个男生2个女生共6人站成一排合影留念,有________________种不同的排法;要求2个女生紧挨着有________________种不同的排法;如果要求2个女生紧挨着排在正中间有____________________种不同的排法。 3、A、B、C、D、E、F、G七位同学在操场排成一列,其中学生B与C必须相邻,请问共有________________________种不同的排法。 4、6名小朋友A、B、C、D、E、F站成一排,若A、B两人必须相邻,一共有________________________种不同的站法;若A、B两人不能相邻,一共有________________________种不同的站法;若A、B、C三人不能相邻,一共有________________________种不同的站法。 5、10个相同的球完全分给3个小朋友,若每个小朋友至少得1个,那么共有__________________种分法;若每个小朋友至少得2个,那么共有__________________种分法。 6、小红有10块糖,每天至少吃1块,7天吃完,她共有______________________种不同的吃法。 7、5个人站成一排,小明不在两端的排法共有__________________种。 8、停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有________________________种不同的停车文案。 9、将3盆同样的红花和4盆同样的黄花摆放在一排,要求3盆红花互不相邻,共有____________________种不同的放法。 10、12个苹果分给4个人,每人至少1个,则共有____________________种分法。 11、四年级三班举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成,请问如果要求同类型的节目连续演出,那么共有____________________种不同的出场顺序。

小学奥数~排列组合

5 数的一半,即 A = 60 种,选 B . 奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握, 实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效 途径;下面就谈一谈排列组合应用题的解题策略 . 1.相邻问题捆绑法 :题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排 列. 例 1. A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的 排法种数有 A 、60 种 B 、48 种 C 、36 种 D 、24 种 解析:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A 4 = 24 种, 4 答案: D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 解析:除甲乙外,其余 5 个排列数为 A 5 种,再用甲乙去插 6 个空位有 A 2 种,不同的排 5 6 法种数是 A 5 A 2 = 3600 种,选 B . 5 6 3.定序问题缩倍法 :在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3. A, B, C , D, E 五人并排站成一排,如果 B 必须站在 A 的右边( A, B 可以不相邻)那 么不同的排法种数是 A 、24 种 B 、60 种 C 、90 种 D 、120 种 解析: B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只是 5 个元素全排列 1 2 5 4.标号排位问题分步法 :把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如此继续下去,依次即可完成. 例 4.将数字 1,2,3,4 填入标号为 1,2,3,4 的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有 A 、6 种 B 、9 种 C 、11 种 D 、23 种 解析:先把 1 填入方格中,符合条件的有 3 种方法,第二步把被填入方格的对应数字填 入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3 ×1=9 种填法,选 B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例 5.(1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务,不同的选法种数是 A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 解析:先从 10 人中选出 2 人承担甲项任务,再从剩下的 8 人中选 1 人承担乙项任务, 第三步从另外的 7 人中选 1 人承担丙项任务,不同的选法共有C 2 C 1C 1 = 2520 种,选C . 10 8 7

五年级奥数题型-并附上100道奥数练习题

五年级奥数题型训练及答案(附上100道奥数练习题) 工程问题 1、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套 2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁 ------------------------------------------------------------------------------ 应用题 3.实验室中培养了一种奇特的植物,它生长得非

常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤 分数应用题 4.实验小学六年级有学生152人.现在要选出男生人数的1/11 和女生5人,到国际数学家大会与专家见面.学校按照上述要求选出若干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人 5、汽车若干辆装运一批货物。如果每辆装吨,这批货物就有2吨不能运走;如果每辆装4吨,装完这批货物后,还可以装其他货物1吨.这批货物有多少吨 6、一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1/5,那么原来的分数是多少

7、一个生产队共有耕地208亩,计划使水浇地比旱地队多62亩,那么水浇地和旱地各应是多少亩 8、有红黄两种玻璃球一堆,其中红球个数是黄球个数的倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个。 9.一个机床厂,今年第一季度生产车床198台,比去年同期的产量2倍多36台,去年第一季度生产多少台 10、同院三家的灯泡,一家是一个15瓦的,一家是一个25瓦的,一家是两个15瓦的,这个月共付电费元,按瓦数分配,各家应付电费多少 11.排列组合将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生与必须相邻.请问共有多少种不同的排列方法

小学奥数~排列组合

奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法种数是52 5 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列 数的一半,即5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务, 第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110 872520C C C =种,选C .

五年级奥数.计数综合.排列组合(ABC级)

一、 排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P . 根据排列的定义,做一个m 元素的排列由m 个步骤完成: 步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法; 步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; …… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方 法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+L ()()() ,即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1, 共有m 个因数相乘. 二、 排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????L ( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫 知识结构 排列组合

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

小学奥数--排列组合教案

小学奥数-----排列组合教案 加法原理和乘法原理 排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从 A 地到 B 地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有 4 班,汽车有 3 班,轮船有 2 班。那么从 A 地到 B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有 3 条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。加法原理:完成一件工作共有N类方法。在第一类方法中有m 1 种不同的方法, 在第二类方法中有m 2种不同的方法,……,在第N类方法中有m n 种不同的方法, 那么完成这件工作共有N=m 1+m 2 +m 3 +…+m n 种不同方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完成第 二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件工作 共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N 步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。 运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。 【例题一】每天从武汉到北京去,有 4 班火车,2 班飞机,1 班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法? 【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机,三类乘坐洗车.

小学数学五年级奥数3--排列组合(一)

排列组合(一) 例1:探究“排列” 从1、2、3、4、5中挑两个数字组成一个两位数,共可组成多少个不同的两位数? 乘法原理:排列原理: 例2:探究“组合” 从1、2、3、4、5中挑选两个数字,有多少种选法? 乘法原理:组合原理: 例3:排队问题 有6个年龄互不相同的人,3人一排,站成两排。 (1)如果可以随便站,那么一共有多少种排法? (2)如果第一排的每一个人都比第二排的小,那么一共有多少种排法?

例4:圆圈连线 如图,在一个圆周上有9个点,以这些点为顶点或端点,一共可以画出()条线段;()个三角形;()个四边形。 练习1:从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数? 练习2:甲、乙、丙、丁四个人站成一排照相,一共有多少种不同的排法? 练习3:学生会召集各班正、副班长,学习委员开会。五(2)班参加会议的班干部到会堂后,发现还有11个空座位,那么他们一共有多少种不同的坐法?

练习4:从1、2、3、4、5中任意取三个数字,从6、7、8、9中任取两个数字,一共可以组成多少个没有重复数字的五位数? 练习5:在一个圆周上有7个点,那么以这些点为顶点或者端点,一共可以画出多少条线段?多少个三角形?多少个四边形? 练习6:一个圆周上有10个点,任意两点用线段连接,那么这些线段在圆内最多有多少个交点? 练习7:学校举行四、五、六年级的足球比赛,其中四年级共有8个班,五年级共有7个班,六年级共有6个班。比赛按年级分成3个小组,先各小组都进行单循环赛,然后再由各组的前两名共6个班进行单循环赛,决出冠亚军。一共需要比赛多少场?

苏教版小学数学五年级下册专题练习题(排列组合)

五(下)数学兴趣班(6)(排列组合1) 班级姓名得分 1、由数字1、 2、 3、4可以组成多少个没有重复数字的三位数? 2、用0~9这十个数字可以组成多少个没有重复数字的四位数和四位偶数? 3、5个同学排成一排照相。问: (1)共有多少种排法? (2)如果某人不坐在两端,共有多少种排法? (3)如果某两人座位相邻,共有多少种排法?https://www.wendangku.net/doc/c015980067.html, 4、幼儿园里6名小朋友去坐3把不同的椅子(每人只能坐一把),有多少种不同 的坐法? 5、幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同 的坐法? 6、四名甲队队员,三名乙队队员站成一排,任何两名乙队队员不靠在一起,有 多少种不同的排法?

7、5个人排成一排,其中甲不站在两边,乙不站在中间,共有多少种排法? 8、用0、1、2、3这四个数字组成三位数,其中:新课标第一网 (1)有多少个没有重复数字的三位数? (2)有多少个不相等的三位数? (3)有多少个没有重复数字的三位偶数? (4)有多少个没有重复数字,且为3的倍数的三位数? 9、某沿海城市管辖7个县,这7个县的位置如图。 要求任意两个相邻的县染不同的颜色, 共有多少种不同的染法? 10、上午第一节到第四节准备上数学、语文、体育、英语各一节。如果限定数学 只能在前两节上,而体育不能在前两节。有多少种排课方式? 11、从1、3、5中任意取两个数字,从0、2、4任意取两个数字,共可组成多少 个没有重复数字的四位数?其中偶数有多少个? 12、用1、2、3、4、5这五个数码可以组成120个没有重复数字的四位数,将他 们从小到大排列起来,4125是第几个?

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

小学奥数专题排列组合

排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法 分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)

一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元 素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示.

五年级奥数:加法、乘法原理

加法原理 在日常生活与实践中,我们经常会遇到分组、计数的问题。解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。 什么叫做加法原理呢?我们先来看这样一个问题: 从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法? 我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。 我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总 和。即N = m 1 + m 2 + … + m n (N代表完成一件工作的方法的总和,m1,m2, … m n 表示每一类完成工作的方法的种数)。这个规律就乘做加法原理。 例题与方法: 例1 书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?

例3、4 x 4的方格图中(如下图),共有多少个正方形? 例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法? 练习与思考: 从甲城到乙城,可乘汽车,火车或飞机。已知一天中汽车有2班,火1. 车有4班,甲城到乙城共有()种不同的走法。 一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2. 备____种不同的车票。 3.下面图形中共有____个正方形。 4.图中共有_____个角。 5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。如果从书架上任取一本书,有____种不同的取法。 6.平面上有8个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_____条直线。

小学奥数排列组合

小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一.计数专题:④排列组合 一.进门考 1.有四张数字卡片,用这四张数字卡片组成三位数,可以组成多少个? 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法? 3.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法? 4.从1到500的所有自然数中,不含有数字4的自然数有多少个? 5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米? (2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱? 58 7 6

6*.按1,2,3,4的顺序连线,有多少种不同的连法? 二.授新课 ①奥数专题:乘法原理 专题简析 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。 排列公式: 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边 从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 组合公式: 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .12)112321m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()().

奥数(排列与组合)

排列组合应用题的教学设计 致远高中朱英2007.3 解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。 引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动: (1)选其中一人为负责人,共有多少种不同的选法。 (2)每组选一名组长,共有多少种不同的选法4 评述:本例指出正确应用两个计数原理。 引例2 (1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?评述:本例指出排列和组合的区别。 求解排列组合应用题的困难主要有三个因素的影响: 1、限制条件。 2、背景变化。 3、数学认知结构 排列组合应用题可以归结为四种类型: 第一个专题排队问题 重点解决: 1、如何确定元素和位置的关系 元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。 例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法? 分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案34(种),而有的同学则做出容易错误的答案43(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了! 法一:元素分析法(以信为主) 第一步:投第一封信,有4种不同的投法; 第二步:接着投第二封信,亦有4种不同的投法; 第三步:最后投第三封信,仍然有4种不同的投法。 因此,投信的方法共有:34(种)。 法二:位置分析法(以信箱为主) C(种); 第一类:四个信箱中的某一个信箱有3封信,有投信方法1 4第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,

二年级奥数简单的排列组合教

第三讲排列组合问题 例题精讲 在日常生活中,我们经常会碰到许多排列组合问题。 例1从晓明家到博迪教育共有三条路可走,从博迪教育到西湖有两条路可走,那么从晓明家到西湖有多少路可走? 分析:对这种问题的题目分析,可以先画一个简单的示意图: 可以这样想,从晓明家到博迪如果走①,那到鼓楼后,可有甲、乙两条路可走,如果走②、③的话,到博迪后,分别有两条路可以走,所以从晓明家到西湖共有3×2=6(条)路可走。 例2 幼儿园有3种不同颜色(红、黄、蓝)的上衣,4种不同颜色(黑、白、灰、青)的裙子,请问可以搭配出多少套衣服? 分析:按照次序思考,如果穿红色上衣,就会有四种颜色的裙子可以搭配,同样,如果是黄色、蓝色上衣,同样也有四种颜色的裙子可以搭配,因此 可供搭配的种类有3×4=12(种)。所以,总共有12种搭配方法。

例 3 小红昨天去文三路上一家火锅店吃火锅,她准备在牛肉、羊肉和鱼丸中挑选一个肉类,青菜、生菜、香菜、白菜和菠菜中挑选一个蔬菜,在蘑菇、香菇和金针菇中挑选一个菌类,那总共有多少种不同的搭配方法? 分析:肉类三选一,是3;蔬菜五选一,是5;菌类三选一,是3,相乘是45. 例3 从杭州到北京共有5个车站(包括杭州和北京)。每个汽车站售票处要为这条线路准备多少不同的车票? (杭州-上海-苏州-南京-北京) 分析:我们将车站编号为A,B,C,D,E.那么A号站到其他车站的车票共有4种,即A→B,A→C,A→D,A→E。同样,B号站到其他车站的票号也有4种,即B→A,B→C,B→D,B→E。(这里A→B和B→A的车票是不一样的,出发站和终点站不一样)所以每个站都必须准备4种不同的车票。所以总有车票的数量是:4×5=20(种)

奥数:排列组合的基本理论和公式

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。 (一)两个基本原理是排列和组合的基础: (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。 3 C表示从5个元素中取出3个,总共有多少种不同的取5

法。这是组合的运算。例如:从5个人中任选三个人去参加 比赛,共有几种选法?这就是从5个元素中取出3个的组合 运算。可表示为3 C。其计算过程是35C=5!/[3!×(5-3)!] 5 叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6, (5-3)!=2!=2×1=2,所以3 C=5!/[3!×(5-3)!]=120/(6×2)=10 5 针对上面例子,就是从5个人中任选三个人去参加比赛,共有10几种选法。 排列组合公式: 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如 9!=9×8×7×6×5×4×3×2×1。 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现

小学五年级奥数试题类型归纳

一、找规律(周期问题)、数列问题 1.有10个连续奇数,第5个数与第8个数的和为56,求第一个数是 _________。(五年级) 2.下图是按一定的规律排列的数学三角形,请你按规律填上空缺的数字。 1 2 4 3 6 9 4 8 12 16 5 10 15 () 25 6 12 18 () 30 36 (五年级) 3.金逸国际电影院放置了30排座位,第一排有26个座位,往后每排都比前 一排多2个座位,这个剧场一共有个座位。(五年级) 4.10个3的连乘的积减去5,所得差的个位数字是(五年级) 5.已知等差数列首项是5,第8项是26,这个等差数列的公差是_______。(六 年级) 二、定义新运算 6.定义运算※为a※b=a×b-(a+b),如果3※(5※x)=3,则x=_______。(五 年级) 7.规定:6﹡2=6+66=72 2﹡3=2+22+222=246 1﹡4=1+11+111+1111=1234. 求:7﹡5=______。(五年级) 三、逻辑推理题 8.警察抓住4名盗窃犯A、B、C、D,下面是他们的答话: A说:“是B干的。” B说:“是D干的。” C说:“不是我干的。” D说:“B在说谎。” 后来证实,这四个人中只有一个人说的是真话,那么罪犯是谁_______。(五年级) 9.A、B、C、D四个同学猜测他们之中谁被评为十佳少年。 A说:如果我被评上,那么B也被评上。 B说:如果我被评上,那么C也被评上。 C说:如果D没被评上,那么我也没评上。 实际上,他们四人之中有一人没被评上,交且A、B、C说的都是正确的。可知没被评上十佳少年。(五年级) 四、植树问题 10.在100米的路段上植树,问:至少要植_______棵树,才能保证至少有2 棵之间的距离小于10米。(五年级) 五、数字问题 11.把一个三位数的百位和个位上的数字互换,得到一个新的三位数,新、旧 两个三位数都能被4整除。这样的三位数共有_______个。(五年级) 12.一个小于200的奇数,它的各位数字之和为奇数,且它可以表示为两个两 位数之积。那么这个数是_______。(五年级) 13.有一个两位数,它的两个数字之和的5倍恰好等于它自身,那么这个两位

小学奥数之排列组合问题.讲课教案

计 数 问 题 教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 知识点拨: 例题精讲: 一、 排 列 组 合 的 应 用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所 以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。 【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数? 【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式, 一共可以组成255420P =?=(个)符合题意的三位数。 【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数? 【解析】 可以分两类来看: ⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有44432124P =???=(种)放法,对应24个不同的五位数; ⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可

五年级奥数测试卷及答案上

五年级奥数测试卷 一、填空 1、在不大于100的自然数中,被13除后商和余数相同的数有多少个,分别是()。答:14的倍数都可以。有8个。 0,14,28,42,56,70,84,98 2、a、b是两个不相等的自然数,如果它们的最小公倍数是72,那么a与b的和可以有()种不同的值。 答:不妨设A>B 72的约数有:1、2、3、4、6、8、9、12、18、24、36、72。共12个 72=2*2*2*3*3 当A=72时,有11种B; 当A=36时,有2种B;8、24 当A=24时,有2种B;9、18 当A=18时,有1种B;8 当A=12时,无; 当A=9时,有1种B;8 共计11+2+2+1+1=17种,所以有17种A+B的值。 这类题的解法是: 1.找出这个最小公倍数的所有因数,用这个最小公倍数与这些因数组合(除它本身外)。 2.在这些因数中找出不是倍数关系且积不小于这个最小公倍数的两个数的所有组合,去除最小公倍数不是72的组合。 3.把1和2找出的组数个数相加即可。 如本题的个数即为11+7=18个 3、有一个七层塔,每一层所点灯的盏数都等于上一层的2倍,一共点了381盏灯。求顶层点了()盏灯。 答:因为381是一个奇数,而每一层都是上一层的2倍,所以顶层一定是一个奇数,如果顶层是1盏灯,那么1+2+4+8+16+32+64不够,顶层是3盏的话,3+6+12+24+48+96+192=381. 4、有这样一个百层球垛,这个球垛第一层有1个小球,第二层有3个小球,第三层有6个小球,第四层有10个小球,第五层有15个小球,……第一百层有()个小球。这一百层共有()个小球。 答:第一层:1;第二层:3;第三层:6;第四层:10;第五层:15 规律:第一层:1;第二层:1+2=3;第三层:1+2+3=6;第四层:1+2+3+4=10;第五层:1+2+3+4+5=15 根据等差数列公式:Sn=(a1+an)×n/2 第100层小球个数:1+2+3+……+100=(1+100)×100/2=5050 100层共有小球个数:1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+ (100) =1×(1+1)/2+2×(2+1)/2+3×(3+1)/2+……+100×(100+1)/2 =1/2×[(1+12)+(2+22)+(3+32)+……+(100+1002)] =1/2×[(1+2+3+……+100)+(12+22+32+……+1002)] =100×(100+1)×(100+2)/6=171700 证明过程:根据(n+1)3=n3+3n2+3n+1,得(n+1)3-n3=3n2+3n+1,

小学奥数排列组合常见题型及解题策略备选题1

小学奥数排列组合常见题型及解题策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、 3 C 8 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与 排列. A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的【例1】,,,, 排法种数有 A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3

相关文档
相关文档 最新文档