文档库 最新最全的文档下载
当前位置:文档库 › 高中数学学案:直线与圆锥曲线的位置关系

高中数学学案:直线与圆锥曲线的位置关系

高中数学学案:直线与圆锥曲线的位置关系
高中数学学案:直线与圆锥曲线的位置关系

高中数学学案:直线与圆锥曲线的位置关系

1. 了解直线与圆锥曲线的位置关系,会用代数方法判断其位置关系.

2. 能运用常见的数学思想方法解决直线与圆锥曲线的简单综合问题.

1. 阅读:文科选修11第60页复习题13、14、15;理科选修21第60~68页.

2. 解悟:①直线与椭圆的位置关系有哪些?如何判定?②设斜率为k(k ≠0)的直线l 与曲线C 相交于A(x 1,y 1), B(x 2,y 2)两点,则AB = W.

3. 践习:在教材空白处,完成文科选修11第60~61页复习题16、17;理科选修21第73页复习题11、12.

基础诊断

1. 直线y =kx -k +1与椭圆x 29+y 2

4=1的位置关系为 相交 .

解析:直线y =kx -k +1恒过定点(1,1).又因为点(1,1)在椭圆内部,故直线与椭圆相交. 2. 若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是 ? ??

??

-23,23 .

解析:把直线方程代入双曲线方程得? ??

??19-k 2

4x 2

=1.因为直线与双曲线相交,所以19-k 24>0,解

得-23

??-23,23.

3. 已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为 16 .

解析:由题意知抛物线的焦点为(0,1),则直线l 的方程为y =3x +1,联立???y =3x +1,

x 2=4y ,消去

x,得y 2-14y +1=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=14,所以AB =y 1+y 2+p =14+2=16.

4. 若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率为 -1

2 W.

解析:设弦的两个端点为A(x 1,y 1),B(x 2,y 2),则x 2136+y 219=1①,x 2236+y 22

9=1②,①-②得(x 1-x 2)(x 1+x 2)36=-(y 1-y 2)(y 1+y 2)

9

.因为(4,2)是弦的中点,所以x 1+x 2=8,y 1+y 2=

4,所以k =y 1-y 2x 1-x 2

=-12,即此弦所在直线的斜率为-1

2.

范例导航

考向? 直线与圆锥曲线的位置关系

例1 当实数k 为何值时,直线y =kx +2和曲线2x 2+3y 2=6有两个公共点?有一个公共点?没有公共点?

解析:由?

??y =kx +2,2x 2+3y 2

=6得2x 2+3(kx +2)2=6,即(2+3k 2)x 2

+12kx +6=0, Δ=144k 2-24(2+3k 2)=72k 2-48.当Δ=72k 2-48>0,即k>63或k<-6

3时,直线和曲线有两个公共点;

当Δ=72k 2-48=0,即k =63或k =-6

3时,直线和曲线有一个公共点;

当Δ=72k 2-48<0,即-63

3时,直线和曲线没有公共点.

已知双曲线x 2

-y 2

a =1的一条渐近线与直线x -2y +3=0垂直,则实数a = 4 W.

解析:由双曲线标准方程特征知a>0,其渐近线方程为ax±y =0,可得渐近线ax +y =0与直线x -2y +3=0垂直,所以a =4. 考向? 弦长、弦中点问题

例2 如图所示,直线y =kx +b 与椭圆x 24+y 2

=1交于A 、B 两点,记△AOB 的面积为S.

(1) 当k =0, 0

解析:(1) 设点A 的坐标为(x 1,b),点B 的坐标为(x 2,b), 由x 24+y 2

=1,解得x =±21-b 2,

所以S =1

2b|x 1-x 2|=2b 1-b 2≤b 2+1-b 2=1.

当且仅当b =2

2

时,等号成立,S 取到最大值1.

(2) 设点A(x 1,y 1),B(x 2,y 2),由????

?y =kx +b ,x 24+y 2=1得(4k 2+1)x 2+8kbx +4b 2-4=0,

Δ=16(4k 2-b 2+1). ①

AB =1+k 2

|x 1-x 2|=1+k 2

·16(4k 2-b 2+1)

4k 2+1

=2.②

因为O 到AB 的距离d =

|b|1+k 2

=2S AB

=1,所以b 2=k 2

+1.③ 将③代入②并整理,得4k 4-4k 2+1=0, 解得k 2=12,b 2=3

2,代入①式检查,Δ>0.

故直线AB 的方程是y =22x +62或y =22x -62或y =-22x +62或y =-22x -6

2.

已知椭圆的两焦点为F 1(-3,0),F 2(3,0),离心率e =3

2. (1) 求椭圆的标准方程;

(2) 设直线l:y =x +m,若l 与椭圆相交于P,Q 两点,且PQ 等于椭圆的短轴长,求实数m 的值.

解析:(1) 设椭圆方程为x 2a 2+y 2

b 2=1 (a>b>0),

则c =3,c a =3

2,所以a =2,b =1,

所以所求椭圆方程为x 24+y 2

=1.

(2) 由????

?y =x +m ,x 24+y 2=1,消去y 得关于x 的方程5x 2+8mx +4(m 2-1)=0,则Δ=64m 2-80(m 2

-1)>0,解得m 2<5. ①

设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=-8

5m, x 1x 2=4(m 2-1)5

,y 1-y 2=x 1-x 2,

所以PQ =(x 1-x 2)2

+(y 1-y 2)2

=2(x 1-x 2)2

=2????

??? ????-85m 2-165(m 2-1)=

2,解得m 2=158,满足①,所以m =±30

4.

考向? 由直线与圆锥曲线的位置确定参数

例3 已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的一个顶点为A(2,0),离心率为2

2,直线y =k(x -1)与椭圆C 交于不同的两点M,N.

(1) 求椭圆C 的方程;

(2) 当△AMN 的面积为10

3时,求k 的值.

解析:(1) 由题意得?????a =2,

c a =2

2,a 2=b 2+c 2,

解得b =

2,

故所求椭圆C 的方程为x 24+y 2

2=1.

(2) 设点M,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k(x 1-1),y 2=k(x 2-1), 由????

?y =k (x -1),x 24+y 22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0,

所以x 1+x 2=4k 2

1+2k 2,x 1x 2=2k 2-41+2k 2,

所以MN =(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2

.

又点A(2,0)到直线y =k(x -1)的距离d =

|k|

1+k 2

, 所以△AMN 的面积S =1

2·MN·d =|k|4+6k 21+2k 2,

由|k|4+6k 21+2k 2

=103,解得k =±1.

自测反馈

1. 过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有 3 条. 解析:由题意可得,当直线为x =0或y =1时,即直线与x 轴、y 轴垂直时,满足与抛物线y 2=4x 仅有一个公共点;当直线的斜率为k 时,直线方程为y -1=kx,将其代入抛物线方程,可得k 2x 2+(2k -4)x +1=0,所以Δ=(2k -4)2-4k 2=0,解得k =1,即直线y =x +1与抛物线y 2=4x 仅有一个公共点,故满足条件的直线有3条.

2. 已知△ABC 的顶点A(-5,0)和C(5,0),顶点B 在双曲线x 216-y 2

9=1的右支上,则sin C -sin A sin B =

4

5 .

解析:由题意得,△ABC 的顶点A(-5,0)和C(5,0),顶点B 在双曲线x 216-y 2

9=1的右支上,可得

AC =10,BA -BC =2a =8.根据正弦定理得,在△ABC 中,有sin C -sin A sin B

=BA -BC AC =810=4

5.

3. 已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为6

3,过椭圆上一点M 作直线MA,MB 交椭圆于

A,B 两点,且斜率分别为k 1,k 2,若点A,B 关于原点对称,则k 1·k 2的值为 -1

3 .

解析:因为椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为6

3,所以c =6k,a =3k,b =3k,设M(x 0,y 0),A(x 1,y 1),B(-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1

.因为点M 和点A 都有椭圆x 2a 2+y 2

b 2=1上,所

以x 20a 2+y 20b 2=1,x 21a 2+y 21

b 2=1,两式相减得y 20-y 21x 20-x 21=-b 2a 2=-13,所以k 1·k 2=y 20-y 21x 20-x 21

=-13.

4. 若O,F 分别为椭圆x 24+y 23=1的中心和左焦点,P 为椭圆上的任意一点,则OP →·FP →的最大值

为 6 .

解析:设点P(x,y),则OP →·FP →=(x,y)·(x +1,y)=x 2+x +y 2

.又因为点P 在椭圆上,所以x 24+y 23=1,所以OP

→·FP →=x 2+x +3-34x 2=14x 2+x +3=14(x +2)2+2.又因为-2≤x ≤2,所以当x =2时,OP →·FP →取得最大值6.

1. 判定直线与圆锥曲线的位置关系时,通常是将直线方程与圆锥曲线方程联立,由方程组的解判断位置关系.

2. 设斜率为k(k ≠0)的直线l 与曲线C 相交于A(x 1,y 1),B(x 2,y 2)两点,则AB =1+k 2|x 1-x 2|1+k 2·(x 1+x 2)2-4x 1x 2=

1+1

k 2|y 1-y 2|=

1+1

k 2·(y 1+y 2)2-4y 1y 2.

3. 你还有哪些体悟,写下来:

高中数学人教版选修1-1(文科) 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程(I)卷

高中数学人教版选修1-1(文科)第二章圆锥曲线与方程 2.2.1 双曲线及其标准方 程(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)过已知双曲线-=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为() 【考点】 2. (2分)(2018·石嘴山模拟) 已知双曲线的左、右焦点分别为,以 为直径的圆与双曲线渐近线的一个交点为,则双曲线的方程为() A . B . C . D . 【考点】 3. (2分) (2019高二上·四川期中) 已知圆:(为圆心),点,点 是圆上的动点,线段的垂直平分线交线段于点,则动点的轨迹是() A . 两条直线 B . 椭圆 C . 圆 D . 双曲线 【考点】 4. (2分) (2017高二下·新疆开学考) 过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为() A . 8

B . 4 C . 4 D . 【考点】 5. (2分)(2017·常德模拟) 已知双曲线C: =1(a>0,b>0)的渐近线方程为y=± x,则双曲线C的离心率为() A . B . C . D . 【考点】 6. (2分)“”是“直线与圆相切”的() A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【考点】 7. (2分)双曲线的渐近线方程是() 【考点】 8. (2分) (2019高二下·南山期末) 直线l过点且与双曲线仅有一个公共点,这样的直线有()条. A . 1 B . 2

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线-直线与圆锥曲线的位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

圆锥曲线教学设计

圆锥曲线 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)线段(D)不存在 (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线 【设计意图】

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

2019届二轮复习 圆锥曲线 学案 (全国通用)

第九讲 圆锥曲线 一、知识方法拓展: 1、直线系方程 若直线1111:0l a x b y c ++=与直线2222:0l a x b y c ++=相交于P ,则它们的线性组合()()1112220a x b y c a x b y c λμ+++++=(,R λμ∈,且不全为0)(*)表示过P 点的直线系。当参数,λμ为一组确定的值时,(*)表示一条过P 点的直线。 特别地,当0λ=时,(*)式即2220a x b y c ++=; 当0μ=时,(*)式即1110a x b y c ++=。 对于12,l l 以外的直线,我们往往只在(*)式中保留一个参数,而使另一个为1. 又若1l 与2l 平行,这时(*)式表示所有与1l 平行的直线。 2、圆锥曲线的第二定义(离心率、准线方程等) 圆锥曲线的统一定义为:平面内到一定点F 与到一条定直线l (点F 不在直线l 上) 的距离之比为常数e 的点的轨迹: 当01e <<时, 点的轨迹是椭圆, 当 1e >时, 点的轨迹是双曲线, 当 1e =时, 点的轨迹是抛物线, 其中e 是圆锥曲线的离心率c e a = ,定点F 是圆锥曲线的焦点, 定直线l 是圆锥曲线的准线,焦点在X 轴上的曲线的准线方程为2 a x c =±。 3、圆锥曲线和直线的参数方程 圆2 2 2 x y r +=的参数方程是cos sin x r y r θ θ=?? =? ,其中θ是参数。 椭圆22 221x y a b +=的参数方程是cos sin x a y b θθ =??=?,其中θ是参数,称为离心角。

双曲线22 221x y a b -=的参数方程是sec tan x a y b θθ =??=?,其中θ是参数。 抛物线2 2y px =的参数方程是2 22x pt y pt ?=?=?,其中t 是参数。 过定点()00,x y ,倾斜角为α的直线参数方程为00cos sin x x t y y t α α=+??=+? ,t 为参数。(关注几 何意义)。 4、圆锥曲线的统一极坐标方程 以圆锥曲线的焦点(椭圆的左焦点、双曲线的右焦点、抛物线的焦点)为极点,过极点引相应准线的垂线的反向延长线为极轴,则圆锥曲线的统一极坐标方程为 1cos ep e ρθ = -,其中e 为离心率,p 是焦点到相应准线的距离。 二、热身练习: 1、(07武大)如果椭圆()222210x y a b a b +=>> 那么双曲线22221x y a b -=的 离心率为( ) (A (B )2 (C (D ) 54 【答案】C 【解析】圆锥曲线的离心率c e a = , 椭圆中:2 2 2 c a b =-∴222 2 34 a b e a -==,得22 4a b = 双曲线中:2222 2254c a b e a a +=== ,得e = C 。

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

直线和圆锥曲线的位置关系

聚焦考点直线和圆锥曲线的位置关系 直线与圆锥曲线的位置关系是历年高考命题的热点;试题具有一定的综合性,覆盖面大,不仅考查“三基”掌握的情况,而且重点考查学生的作图、数形结合、等价转化、分类讨论、逻辑推理、合理运算,以及运用数学知识分析问题和解决问题的能力。在近几年的高考中,每年风格都在变换,考查思维的敏捷性,在探索中求创新。 具体来说,这些问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长、弦中点问题,垂直问题,对称问题。与圆锥曲线性质有关的量的取值范围等是近几年命题的新趋向。 纵观近几年高考和各类型考试,可以发现: 1.研究直线与圆锥曲线位置关系的问题,通常有两种方法:一是转化为研究方程组的解的问题,利用直线方程与圆锥曲线方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合,迅速判断某些直线和圆锥曲线的位置关系。 2.涉及弦长问题,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用差分法较为简便。 3.充分发挥判别式和韦达定理在解题中的作用。灵活应用数形结合的思想、函数思想、等价转化思想、分类讨论思想解题。 热点透析 题型1:直线与圆锥曲线的交点个数问题

例1已知双曲线C:2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点. (2)若Q(1,1),试判断以Q为中点的弦是否存在. 解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y-2=k(x-1),代入C的方程,并整理得 (2-k2)x2+2(k2-2k)x-k2+4k-6=0 .(*) (ⅰ)当2-k2=0,即k=±时,方程(*)有一个根,l与C有一个交点 (ⅱ)当2-k2≠0,即k≠±时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k) ①当Δ=0,即3-2k=0,k=时,方程(*)有一个实根,l与C有一个交点. ②当Δ>0,即k<,又k≠±, 故当k<-或-<k<或<k<时,方程(*)有两不等实根,l与C有两个交点. ③当Δ<0,即k>时,方程(*)无解,l与C无交点.

高二数学圆锥曲线专题((文科)

高二数学(文科)专题复习(十二)圆锥曲线 一、选择题 1. 设双曲线以椭圆19 252 2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.2± B.34± ?C.2 1± D.4 3 ± 2. 过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在 3.从集合{1,2,3…,11}中任选两个元素作为椭圆方程122 22=+n y m x 中的m 和n,则能组 成落在矩形区域B ={(x ,y)| |x |<11且|y|<9}内的椭圆个数为( )?? A.43 B. 72 C. 86 D. 90 4. 设椭圆的两个焦点分别为F 1、、F2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1P F2 为等腰直角三角形,则椭圆的离心率是( ) (A) 2 (B )12 (C)2 1 5. 已知双曲线22 163 x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直 线2F M 的距离为( ) (A) ?(B ) (C) 65?(D) 5 6 6.已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A, △OAF的面积为2 2 a (O 为原点),则两条渐近线的夹角为( )

7.直线y=x +b (b ≠0)交抛物线2 12 y x =于A、B 两点,O 为抛物线的顶点,OA OB ?=0,则b =_______. 8.椭圆22 1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M与坐标原点的 直线的斜率为 2,则m n 的值为 9.过抛物线2 4y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若 12y y +=则AB 的值为 10.以下四个关于圆锥曲线的命题中: ①设A 、B为两个定点,k 为非零常数,||||PA PB k -=,则动点P的轨迹为双曲线; ②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若1 (),2 OP OA OB =+则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ?④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. ?其中真命题的序号为 (写出所有真命题的序号) 三、解答题 11.抛物线顶点在原点,它的准线过双曲线22 221(0,0)x y a b a b -=>> 的一个焦点,且抛 物线与双曲线的一个交P( 3 2 点,求抛物线和双曲线方程。 12.已知抛物线y2 =2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M.

圆锥曲线第二定义学案

圆锥曲线第二定义练习学案 1.过抛物线x 4y 2=的焦点F 作直线交抛物线于A (11y x ,)、B (22y x ,),若6x x 21=+,求|AB|的长。 2. 设椭圆22 22b y a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴的弦的长度等于F 1到准线l 1的距离,求椭圆的离心率。 3. 双曲线13 y x 2 2 =-的右支上一点P ,到左焦点F 1与到右焦点F 2的距离之比为2:1,求点P 的坐标。 4.点P 在椭圆 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______ 5. 抛物线上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到轴的距离为 6. 椭圆内有一点,F 为右焦点,在椭圆上有一点M ,使 之值最小,则点M 的坐标为_______ 7. 已知椭圆)0b a (1b y a x 22 22>>=+,21F F 、分别是左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率e 的取值范围。 8. 已知点A (32,-),设点F 为椭圆112 y 16x 2 2=+的右焦点,点M 为椭圆上一动点,求|MF |2|MA |+的最小值,并求此时点M 的坐标。 9.椭圆x 2/25+y 2 /9=1上有一点P ,如果它到左准线的距离为5/2,那么P 到右焦点的距离是 。 10. F 2是椭圆x 2/a 2+y 2/b 2=1(a >b>0)的右焦点,P(x 0,y 0)是椭圆上任一点,则|PF 2|的值为: A. ex 0-a B. a-ex 0 C. ex 0-a D.e-ax 0 11.过抛物线y 2=4x 的焦点的一条直线交抛物线于A 、B 两点,若线段的中点的横坐标为3,则|AB|= 。 12. 已知椭圆方程为x 2/b 2+y 2/a 2=1(a>b>0),求与这个椭圆有公共焦点的双曲线,使得以它 们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标。 13. 已知椭圆x 2/4+y 2/3=1内有一点P(1,-1),F 为右焦点,椭圆上有一点M ,使|MP|+2|MF|值最小,求点M 的坐标

高考数学一轮 圆锥曲线的综合问题(学案)

§9.8圆锥曲线的综合问题 ★知识梳理★ 1.直线与圆锥曲线C 的位置关系: 将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0. (1)交点个数: ①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。 (2) 弦长公式: 2.对称问题: 曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。 3.求动点轨迹方程: ①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。 ★重难点突破★ 重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题 重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能 ①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求. 2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用 问题1:已知点1F 为椭圆15 92 2=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形, ||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6 ★热点考点题型探析★ 考点1直线与圆锥曲线的位置关系 题型1:交点个数问题 [例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线2 8y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+, 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点21,F F 的距离的和为 常数(大于21F F )的动点的轨迹叫椭 圆即a MF MF 221=+ 当2a ﹥2c 时,轨迹是椭圆, 当2a =2c 时,轨迹是一条线段 21F F 当2a ﹤2c 时,轨迹不存在 平面内到两定点21,F F 的距离的差的绝 对值为常数(小于21F F )的动点的轨 迹叫双曲线即122MF MF a -= 当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在 标准 方 程 焦点在x 轴上时: 122 22=+b y a x 焦点在y 轴上时:122 22=+b x a y 注:根据分母的大小来判断焦点在哪一 坐标轴上 焦点在x 轴上时:122 22=-b y a x 焦点在y 轴上时:122 22=-b x a y 常数 c b a ,,的关 系 2 22b c a +=,0>>b a , a 最大, b c b c b c ><=,, 222b a c +=,0>>a c c 最大,可以b a b a b a ><=,, 渐近线 焦点在x 轴上时: 0x y a b ±= 焦点在y 轴上时:0y x a b ±= 抛物线:

图形 x y O F l x y O F l 方程 )0(22 >=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

(江苏专用)2020年高考数学二轮复习 专题14圆锥曲线学案

专题14圆_锥_曲_线 回顾2020~2020年的高考题,在填空题中主要考查了椭圆的离心率和定义的运用,在解答题中2020、2020、2020年连续三年考查了直线与椭圆的综合问题,难度较高.在近四年的圆锥曲线的考查中抛物线和双曲线的考查较少且难度很小,这与考试说明中A级要求相符合. 预测在2020年的高考题中: (1)填空题依然是以考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. (2)在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程的求解. 1.若椭圆x2 5 + y2 m =1的离心率e= 10 5 ,则m的值是________. 解析:当m>5时,10 5 = m-5 m ,解得m= 25 3 ; 当m<5时,10 5 = 5-m 5 ,解得m=3.

答案:3或25 3 2.若抛物线y2=2x上的一点M到坐标原点O的距离为3,则M到该抛物线焦点的距离为________. 解析:设M的坐标为(x,±2x)(x>0),则x2+2x=3,解得x=1,所求距离 为1+1 2 = 3 2 . 答案:3 2 3.双曲线2x2-y2+6=0上一个点P到一个焦点的距离为4,则它到另一个焦点的距离为________. 解析:双曲线方程化为y2 6 - x2 3 =1.设P到另一焦点的距离为d,则由|4-d|=26 得d=4+26,或d=4-26(舍去).答案:26+4 4.(2020·江苏高考)在平面直角坐标系xOy中,若双曲线x2 m - y2 m2+4 =1的离心 率为5,则m的值为________. 解析:由题意得m>0,∴a=m,b=m2+4, ∴c=m2+m+4,由e=c a =5得 m2+m+4 m =5, 解得m=2. 答案:2 5.已知椭圆x2 a2 + y2 b2 =1(a>b>0)的左、右焦点分别为F 1 、F 2 ,离心率为e,若椭圆 上存在点P,使得PF 1 PF 2 =e,则该椭圆离心率e的取值范围是________. 解析:∵PF 1 PF 2 =e,∴PF 1 =ePF 2 =e(2a-PF 1 ),

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

高二数学(文科)圆锥曲线题型汇总

高二数学(文科)圆锥曲线题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高二数学(文)圆锥曲线复习 1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为 ( ) A .x 2+y 2=l B .x 2-y 2=1 C .y 2 =4x D .x=0 2.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b -=>>和抛物线2 2y px = ()0p >的离心率分别是123,,e e e ,则 ( ) A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥ 3. 已知直线)0(1122 22>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。 (1)若椭圆的离心率为3 3 ,焦距为2,求椭圆的标准方程; (2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]2 2 ,21[∈e 时,求椭圆的长轴长的最大值。

1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为 ( C ) A .x 2+y 2=l B .x 2-y 2=1 C .y 2 =4x D .x=0 2.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b -=>>和抛物线2 2y px = ()0p >的离心率分别是123,,e e e ,则 ( C ) A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥ 3. 已知直线)0(1122 22>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。 (1)若椭圆的离心率为3 3 ,焦距为2,求椭圆的标准方程; (2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]2 2 ,21[∈e 时,求椭圆的长轴长的最大值。 解:(1).2,3,22.3 3,3322=-=====c a b a c a c e 则解得又即Θ .12 32 2=+∴y x 椭圆的标准方程为 …………3分 (2)由,0)1(2)(,1,122222222 22=-?+-?+?? ???+-==+ b a x a x b a y x y b y a x 得消去………4分 由.1,0)1)((4)2(2 2 2 2 2 2 2 2>+>-+--=?b a b b a a a 整理得…………5分 222112212122222 2(1) (,,),(,),,.a a b A x y B x y x x x x a b a b -+==++设则 .1)()1)(1(21212121++-=+-+-=∴x x x x x x y y …………7分 .01)(2,0),(21212121=++-=+∴⊥x x x x y y x x O OB OA 即为坐标原点其中Θ .02.012)1(222222 222222=-+=++-+-∴b a b a b a a b a b a 整理得 …………9分 2 222222211 12,e a e a a c a b -+=-=-=代入上式得Θ, ).11 1(2122e a -+=∴ …………11分 222 12111341[,],1,2,22422431e e e e ∈∴≤≤∴≤-≤∴≤≤-Q 2222 717313,,1,3162 a a b e ∴≤+≤∴≤≤+>-适合条件 由此得.26642≤≤a .6,623 42故长轴长的最大值为≤≤∴a

相关文档
相关文档 最新文档