文档库 最新最全的文档下载
当前位置:文档库 › 耦合映象中的尖峰与扭结结构

耦合映象中的尖峰与扭结结构

耦合映象中的尖峰与扭结结构
耦合映象中的尖峰与扭结结构

Pattern with kinks and pulses in coupled periodic map lattices

Weiqing Liu,1,2,3,4Ye Wu,1,2,3Wei Zou,1,2Jinghua Xiao,3and Meng Zhan1,*

1Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan430071,China

2Graduate School of the Chinese Academy of Sciences,Beijing100049,China

3School of Science,Beijing University of Posts and Telecommunications,Beijing100876,China

4School of Science,Jiangxi University of Science and Technology,Ganzhou341000,China ?Received2February2007;revised manuscript received10May2007;published27September2007?

In this paper,we reinvestigate the period doubling of kink-antikink patterns in coupled periodic logistic map

lattices.In contrast to earlier observations,we?nd an additional mode structure,a pulse.An unusual brushlike

bifurcation diagram and an oscillation of the largest Lyapunov exponent versus the coupling are observed.We

propose a mode analysis method to analyze the cases of different mode numbers for these two basic modes

?kink and pulse?.We believe that our investigations can shed improved light on the dynamics of coupled

periodic map lattices.

DOI:10.1103/PhysRevE.76.036215PACS number?s?:05.45.Ra,05.45.Pq

I.INTRODUCTION

Most of the earlier studies?1?on nonlinear dynamics have

concentrated on the temporal behavior of low-dimensional

systems.However,a variety of physical systems of interest

have many spatial degrees of freedom.Therefore,recent

studies of spatiotemporal systems?2–12?have been central

in nonlinear science and have received wide attention.One

such system is the model of coupled map lattices?CMLs?

?3–12?,which serves as a paradigm for spatially extended

nonlinear systems due to both its rich phenomenology and its

computational ef?ciency.

In this paper,we investigate the standard one-dimensional

diffusively coupled map lattice,written as

x n+1?i?=?1???f…x n?i?…+?

2

?f…x n?i?1?…+f…x n?i+1?…?,

i=1,...,L,?1?where n is the discrete time step,i denotes the lattice site, and?indicates the coupling intensity.Periodic boundary conditions are chosen throughout this paper.Without loss of generality,we take the logistic map for each lattice as f?x?

=?x?1?x??13,14?.The dynamics of the single logistic map is well known.By increasing the nonlinear coef?cient?,the dynamics undergoes a period-doubling cascade and transits to chaos at the Feigenbaum accumulation point?????=3.5699456...?.The?rst several period-doubling param-

eters are?1→2=3?for the P1to P2transition?and?2→4 =1+?6=3.44941...?for the P2to P4transition?.Beyond ??,multiband chaos appears and an inverse period-doubling cascade for the chaotic bands takes place,and at?r?3.678, two chaotic bands merge into a single-band chaotic state.

For coupled logistic map lattices?3–12?,much richer phe-nomena have been found due to the mutual interactions of the local nonlinearity???and the spatial coupling???,and several distinct patterns have been classi?ed so far?3–7?,

including frozen random patterns,pattern selection,defect

turbulence,pattern competition intermittency,fully devel-

oped turbulence,and so on.Below the value?r a frozen random pattern?5,8,10?appears,which is characterized by a

system well separated by kink and antikinks?walls?into sev-

eral isolated domains,in which the motions may be periodic

or chaotic.As?is decreased further,within the periodic parameter regime??1→2??????,the pattern gets simpler, characterized by?at regions and domain boundaries?kinks

or antikinks?.This has been termed period doubling of kink-

antikink patterns?8?.Nevertheless,before the?rst period-

doubling bifurcation point?1→2,there is only one trivial homogeneous period-1pattern available.In this regard,the pattern with kinks is the simplest but nontrivial complex pat-tern in coupled map lattices.Some important qualitative fea-tures have been addressed so far?8?:?1?The pattern is?xed in time;?2?if we start from a random initial condition,the pattern of the attractor is random in space and depends on the initial conditions;?3?the width of a kink is rather small and it increases as the coupling is increased.Obviously,a peri-odic pattern with kinks shares some essential properties with the frozen random pattern,which can be chaotic locally in some lattices,and may belong to the frozen random state, although it has also been viewed as an independent type of pattern with periodic behavior by some other researchers ?11?.

In the present work,we reinvestigate the period doubling

of the kink-antikink pattern?8?.Our results show that,even

for this simple pattern,previous observations are incomplete.

A different type of mode,a pulse,is found.Both kink and

pulse play constructive roles in the system’s dynamical be-

havior.Furthermore,we develop a mode analysis method to

characterize and even predict the pattern in a quantitative

way.

II.NUMERICAL OBSERV ATIONS

Let us consider?=3.1for a period-2logistic map.In the absence of coupling??=0?,all lattices will converge to the stable period-2states x1?and x2?,and alternate between them

*Author to whom correspondence should be addressed.

zhanmeng@https://www.wendangku.net/doc/c1160274.html,

PHYSICAL REVIEW E76,036215?2007?

in time.x 1?=?1+?????+1????3??/2?and x 2?=?1+?

+???+1????3??/2?,which can be easily calculated.x ?=1?1/?is the ?xed point of the single logistic map and is

unstable after ?1→2=3.x 1??0.55801,x 2??0.76457,and x ?

?0.67742for ?=3.1considered here.Figure 1shows snap-shots for different coupling strengths for the ?rst 200lattices only.?=0.03,0.085,0.14,and 0.20for Figs.1?a ?–1?d ?,re-spectively.x =x ?is indicated by the dashed horizontal lines in the ?gures.The whole system size L is 1000and all results are unchanged for any suf?ciently large L .In Fig.1,the parameter ?is adiabatically increased,by using the ?nal con-?guration as the initial state for the subsequent simulation with ?increasing in steps of ??=0.001.Clearly the coupled system is well self-organized to a frozen random state with

some ?at regions ?the original period-2positions x 1?and x 2?

?divided by domain boundaries ?kinks ?.Here the word frozen means that all lattices switch to other positions in one time step and are unchanged at every second time step.The ran-domness of this pattern has also been well observed;we get different stable patterns for different initial conditions but the global structure and the detailed mode structures remain un-changed,as we will see.Both the ?at regions and the bound-aries ?encircled by the thin rectangular boxes ?get wider with the increase of ?;this ?nding is consistent with previous observations.

If we take a closer look at these patterns,surprisingly some unusual pulse structures,which are indicated by the heavy rectangular boxes,can be found.Clearly,the pulses,which stand on the same side of the peaks,are distinct from the kinks ?or antikinks ?,which connect the two different sides.However,like the kinks,the pulses also get wider with increase of the coupling ?compare Figs.1?a ?–1?d ??,i.e.,more lattices get into the disordered regions.In this paper,we refer to the particular localized coherent structure ?kink or pulse ?in space as an independent mode.Note that these two differ-ent mode patterns considered as two basic coherent struc-

tures,as illustrated in Fig.2?a ?for the kink ?front ?and Fig.2?b ?for the pulse,have been extensively studied in the pat-tern formation ?eld ?2?.

Furthermore,to show the variation of the patterns versus ?clearly,we plot the bifurcation diagram in Fig.3?a ?and characterize the patterns with the maximum Lyapunov expo-nent ?max in Fig.3?b ?.The Lyapunov characteristic exponent ?1?gives the rate of exponential divergence from perturbed initial conditions.The maximum Lyapunov exponent,the largest one in the Lyapunov characteristic exponent spec-trum,is the most important one for characterizing the sys-tem’s https://www.wendangku.net/doc/c1160274.html,ually,if it is larger than zero,the system is chaotic,whereas if it is equal to or lower than zero,the system is regular.A standard numerical computational method for ?max ?15?with the linearization equations of Eq.?1?has been utilized.Unusual global patterns with a brush-0

50

100

150

200

0.6

0.70.8

50

100

150

200

0.6

0.7

0.8

50

100

150

200

0.6

0.70.8

50

100

150

200

0.6

0.7

0.8

x(i)

(a)

(b)

(d)

(c)

i

FIG.1.Snapshots of the sites 1?200of the CML ?L =1000?un-der different couplings.Patterns emphasized in the thin rectangular boxes are kink patterns of different modes M k and those in the heavy rectangular boxes are pulse pat-terns of different modes M p .?a ??=0.03,?M k ,M p ?=?2,2?.?b ??=0.085,?M k ,M p ?=?4,3?.?c ??=0.14,

?M k ,M p ?=?6,6?.?d ??=0.20,?M k ,M p ?=?6,7?.

FIG.2.?a ?,?b ?Schematic illustrations for the kink ?front ?and the pulse,respectively.?c ??d ??e ?.Schematic diagrams of the modes for the kink pattern M k =2,and the pulse patterns M p =2and 3,respectively.The unknown sites are denoted by open circles,while the ?xed boundaries are denoted by stars.

LIU et al.

PHYSICAL REVIEW E 76,036215?2007?

like bifurcation structure and a zigzag Lyapunov exponent form are discernible.Roughly,the disordered brushlike curves ?branches ?originate and bifurcate from the several main unbroken curves ?stems ?,and break at certain cou-plings,whose values correspond to the zero-crossing transi-tion points of ?max .We should note that the roughly equal distance between these critical coupling parameters is a co-incidence for this particular parameter ?=3.1only.All these observations are regarded as signi?cant and need a theoreti-cal explanation.

III.THE MODE ANALYSIS

Let us consider the patterns in Fig.1and focus our atten-tion on the detailed mode structure of the isolated kinks and pulses.As both the kinks and the pulses are well separated by the ?at regions,we might be able to cut them from the whole system.We schematically show the isolated mode structures for the mode of the kink ?M k =2?in Fig.2?c ?.Due to the symmetry,only even modes for the kink are possible.Here the mode number M k corresponds to the number of lattices moving into the middle region of the kink mode.For example,for M k =2,shown in Fig.2?c ?,there are only two lattices ?indicated with the open circles ?,whose positions are

within x 1?and x 2?

,surrounded by the two boundary lattices ?xed to x 1?and x 2??denoted by the stars ?.This mode could approximately describe the kink structure that is highlighted by the thin box in Fig.1?a ?.Similarly,we schematically show the even mode of the pulse ?M p =2?and the odd mode of the pulse ?M p =3?in Figs.2?c ?and 2?d ?,respectively.Here M p represents the number of lattices above x ?in the mode distribution.The single mode of the pulse having three lattices ?points ?above x ?in M p =3,illustrated in Fig.2?e ?,is a good approximation to the structure emphasized with the heavy box in Fig.1?b ?.Thus,with the above notation,?M k =2,M p =2?,?M k =4,M p =3?,?M k =6,M p =6?,and ?M k =6,M p =7?could represent the isolated modes for the kinks and the pulses in Figs.1?a ?–1?d ?,respectively.

One may ask,can we predict these modes,or,in particu-lar,obtain the speci?c locations of these lattices?The answer

is yes.One reason is that now in the mode approximation the

two boundaries of the kink are ?xed at x 1?and x 2?

,the two boundaries of the pulse are ?xed to x 1?,and both the kinks and pulses have been well cut out from the whole coupled system.The other reason is that the unknowns ?the positions of the lattices within the mode ?will asymptote to the stable solutions in the isolated mode equations for proper initial settings for these unknowns.From the original coupling equations ?Eq.?1??the coupled equations for the M k mode read

x n +1?1?=f …x n ?1?…,

x n +1?i ?=?1???f …x n ?i ?…+?

2

?f …x n ?i ?1?…+f …x n ?i +1?…?,

i =2,...,N ?1,x n +1?N ?=f …x n ?N ?…,

?2?

with the two boundary lattices ?xed to x 0?1?=x 1?and x 0?N ?=x 2?

for the kink mode.N =M k +2and M k is even.The nu-merical results of the bifurcation diagrams for M k =2,4,and 6are presented in Figs.4?a ?–4?c ?,respectively,where we can see how the mode structure changes with the coupling strength.For convenience,in solving the equations we con-sider the symmetry of the mode.The different branches in each panel indicate the solution branches for the different lattices of the corresponding mode.Clearly,the number of branches in Fig.4becomes larger for larger M k ;there are M k +2branches for the M k kink mode.Two trivial branches

for x 1?and x 2?

?the top and the bottom horizontal lines ?are always solutions of the equations.We also ?nd that for the M k =6mode the number of branches splits from 2to 4at ??0.05,and from 4to 6at ??0.12.This ?nding is consistent with our previous observation that the width of the kink gets larger with increase in the coupling and more lattices move into the middle kink regions.For small coupling,the higher modes degenerate into the low modes ?compare the curves

in

FIG.3.?a ?Bifurcation diagram of the coupled map lattice and ?b ?the maximum Lyapunov exponent of the CML ?max vs ?

.

FIG.4.?a ?,?b ?,?c ?Bifurcation diagrams of the kink from the mode analysis for the different mode numbers M k =2,4,and 6,respectively.

PATTERNS WITH KINKS AND PULSES IN COUPLED …PHYSICAL REVIEW E 76,036215?2007?

Fig.4?.Thus we need to consider only the M k =6mode in the parameter regime 0???0.2studied here.

Similarly,we solve the mode equations for the pulse with the same form as Eqs.?2?but with the two boundary lattices

?xed to x 0?1?=x 1?and x 0?N ?=x 1?

and N being suf?ciently large ?N ?M p ?.In simulations,a special initial condition for the M p mode should be used:the initial values for the middle M p lattices have to be set larger than x ?and the others lower than x ?.In solving the equations we consider the symmetry of the mode again.We plot the bifurcation diagrams for each mode of the pulse from M p =1to 7in Fig.5.Clearly,the number of branches also gets larger for larger M p as more lattices move into the middle pulse regions;in particular,there are ?M p +1?/2branches above x ?for the odd M p ?or M p /2branches for the even M p ?owing to symmetry ?see Figs.2?d ?and 2?e ?for the schematic de?nition of the pulse mode ?.Unlike the splitting behavior of the bifurcation curves of the modes of the kink,the bifurcation curves of the modes of the pulse become broken step by step from low to high mode number.The transition parameters for the modes from 1to 7are ??0.029,0.059,0.092,0.120,0.151,0.178,and 0.204,respectively.The mechanism for this instability will be investigated below.

We plot all the bifurcation diagrams of M k =6?Fig.4?c ??and M p from 1to 7?Fig.5?in Fig.6?a ?.All of the other branches at the next time step have been added.Clearly,the pattern is similar to the original bifurcation diagram for all lattices ?Fig.3?a ??.We also calculate the maximum

Lyapunov exponent for each mode with the same standard numerical method ?15?but this time with the reference orbit of the mode equations ?Eqs.?2??.The results are shown in Fig.6?b ?.The largest values at ?xed ?for each mode are chosen and plotted in Fig.6?c ?,which is largely similar to the ?max of the coupled systems in Fig.3?b ?.We would like to emphasize that our mode analysis theory is only an ap-proximation theory,which in principle allows us to cut iso-lated spatial structures ?kinks or pulses ?surrounded by ?at regions from the whole coupled system for an independent analysis.Thus,although the main theoretical results are at-tractive,the predicted values for the thresholds of ?max ap-pear a little earlier than the real values ?comparing Fig.6?c ?with Fig.3?b ??.

Our mode analysis method not only catches the global feature of the patterns,as shown in the bifurcation ?gure and the maximum Lyapunov exponent plot in Fig.5,but also predicts the detailed structure for the lattices,given the spa-tial position and the mode number of the speci?c mode.For instance,the modes in the boxes in Fig.1have been well predicted,as exempli?ed in Fig.7?comparing the left and right columns ?.

One ?nal question still needs to be answered:What is the underlying mechanism for the instability of the pulse mode,or what kind of bifurcation is supposed to happen when the maximum Lyapunov exponent reaches zero?From the bifur-cation diagrams of the pulse modes,we know that the high lattices get lower and the low lattices get higher with in-crease of the coupling,and then the pulse mode becomes unstable and disappears completely as the critical coupling parameter is touched ?see,for example,Fig.5?a ??.Thus,a tangent bifurcation is expected.To check this point,a nu-merical experiment is performed by using the

Newton-

FIG.5.?a ?–?g ?The same as Fig.4for the pulse number M p from 1to

7.

FIG.6.?Color online ??a ?Bifurcation diagram of the model for the kink and pulse patterns for all modes M k =6and M p ?from 1to 7?.?b ?Maximum Lyapunov exponents ?MLEs ?of the pulses for each mode M p ?from 1to 6?and the kink M k =6vs ?.?c ?The largest value of the MLEs for all the kink and pulse modes obtained in ?b ?vs ?.

LIU et al.PHYSICAL REVIEW E 76,036215?2007?

Raphson algorithm ?16?to ?nd the solutions of the pulse mode equations ?Eqs.?2??.Unlike the usual brute-force ap-proach,which can get a stable solution only and has been used in Figs.4and 5,the Newton-Raphson approach can locate stable and unstable limit sets.The results are shown in Figs.8?a ?and 8?b ?for M p =1and 2,respectively.The stable solutions,which are the same as those in the bifurcation diagrams in Fig.5,are denoted by the solid points,and the newly found unstable solutions are denoted by the open ones.Remarkably,the stable branches of the pulse collide with the unstable branches at the critical parameter,and the whole stable pulse mode is annihilated.Therefore,the de-structive nature of the pulse mode through the tangent bifur-cation has been veri?ed.The unstable solution obtained has a structure that is quite different from that of the corresponding stable solution.One clear observation is that the stable pulse

solution starts from the x 1??or x 2?

?point at ?=0,whereas one of the middle unstable pulse solution curves starts from the x ?point.It is notable that,apart from the unstable branches plotted in Fig.8,several other unstable solutions have been obtained from the simulations for different initial condition settings,which are not included in the ?gure and have no signi?cant contribution to the instability of the mode.Thus,now it is easy to understand the unusual brushlike bifurcation diagram and the zigzag Lyapunov exponent pattern in Fig.3,and the signi?cant but distinct roles of the kink and pulse modes in the organization of the patterns:the effect of the kink is modest,but that of the pulse is severe.

We can easily extend the above analysis of the period-2case to higher-period cases.For example,Fig.9?a ?shows a period-4pattern at one time instant at ?=3.5and ?=0.3.Clearly,both kinks and pulses of different modes,high-lighted with the boxes,are visible,although this time the situation becomes more complicated with four possible sub-branches ?boundaries ?in which the kinks and the pulses can be chosen.Figure 9?b ?displays the bifurcation diagram of the coupled systems ?Eq.?1??,and for comparison Fig.9?c ?plots our theoretical prediction result after we carefully ana-lyzed all the possible modes by the mode analysis method.Again they are in good agreement.

IV .CONCLUSION AND BRIEF DISCUSSION

In conclusion,we have studied the period doubling of kink-antikink patterns in coupled map lattices.This type of pattern is simple but complex;it takes place immediately after the period-doubling bifurcation of the map.On the ba-sis of the mode analysis,the common features of the patterns constructed by the three distinct modes,including the kink,the pulse,and the ?at,have been well uncovered.The self-organization,the evolution process,and the bifurcation be-havior have been revealed.To conclude,the dynamics of the complex patterns in periodic regimes with both kinks and

0.6

0.7

0.8

0.6

0.7

0.8

0.6

0.7

0.8

137140

143

0.60.70.8

5

10

15

0.6

0.70.8

10

15

20

0.6

0.70.8

(a)(b)

(c)

(d)

(e)

(f)

i

x(i)

FIG.7.Left column:?a ?,?b ?,?c ?Enlargements of the thin box in Fig.1?d ?,the heavy box in Fig.1?a ?,and the heavy box in Fig.1?b ?,respectively.Right column:?d ?,?e ?,?f ?Theoretical predictions of the modes M k =6,M p =2,and M p =3,

respectively.

FIG.8.?Color online ??a ?,?b ?The same as Fig.5for the pulse numbers M p =1and 2,respectively,with the Newton-Raphson al-gorithm used instead.The solid ?open ?dots represent the stable ?unstable ?solutions.Clearly,the stable and unstable solution branches collide and both are annihilated at the instability coupling parameter,re?ecting the tangent bifurcation nature.The inset in ?b ?is the enlargement of the left lower part of the two stable and unstable branches.

PATTERNS WITH KINKS AND PULSES IN COUPLED …

PHYSICAL REVIEW E 76,036215?2007?

pulses has been well described with the help of our mode analysis.

Finally,it is worthwhile to give some brief discussion.First,except for the kink and pulse solutions discussed in the paper,there exist some stable solutions to the mode equa-tions ?Eqs.?2??which have not been considered.For in-stance,there exist similar kink solutions with odd numbers of oscillators with the middle point being on the ?xed P 1solution under suf?ciently large coupling.Nevertheless,in coupled systems,a small perturbation might shift the above-mentioned odd-number kink mode to the more stable even-number kink mode,which actually makes the odd-number

kinks unobservable;this point has been con?rmed by the observation of the pattern distributions in Fig.1.Second,we have also tested the cases where the coupled logistic maps are nonidentical with small amounts of random parameter mismatch ?e.g.,the ?i ’s have been varied within ?????,?+???,?=3.1and ??=0.005?,and the global pat-terns with kinks and pulses persist.Thus,the observations with respect to the isolated mode structure appear to be ro-bust for small parameter disturbances.Third,we admit that the mode analysis method has been developed in different circumstances for completely different problems,such as the analysis of a periodic window in weakly coupled map lat-tices ?9?and the study of generalized splay states induced by weak mutual resonant interactions in coupled chaotic ?ow systems ?17,18?.In these two cases,only a single mode with three coupled nonlinear elements at extremely weak coupling has been discussed.Fourth,we would like to emphasize that,although our study appears to be a simple model study,it has the potential to impact numerous other systems.In particular,the analytical method could be bene?cial.For example,in two-dimensional complex oscillatory chemical systems de-scribed by a partial differential equation,the global period-2spiral waves with a locally period-1defect line ?19,20?have some qualitative features quite similar to the kink-pulse pat-tern studied here.The studies not only will attract general interest from researchers in the ?elds of spatiotemporal chaos and pattern dynamics,but also have many potential applica-tions in the ?elds of biology,ecology,chemistry,mathemat-ics,and engineering.

ACKNOWLEDGMENTS

This work was partially supported by the Foundation of Wu-han Institute of Physics and Mathematics under Grant No.T06S607,and the National Natural Science Foundation of China under Grants No.10575016and No.10675161.The authors thank Dr.B.S.V .Patnaik for his comments and help.We also express our thanks to both anonymous referees for constructive comments and criticisms.

?1?E.Ott,Chaos in Dynamical Systems ?Cambridge University Press,New York,1993?,and references therein;Bai-lin Hao,Starting with Parabolas—An Introduction to Chaotic Dynam-ics ?Shanghai Scienti?c and Technological Education Publish-ing House,Shanghai,1993??in Chinese ?.

?2?M.C.Cross and P.C.Hohenberg,Rev.Mod.Phys.65,851?1993?.

?3?K.Kaneko,Theory and Applications of Coupled Map Lattices ?Wiley,New York,1993?.

?4?J.P.Cruth?eld and K.Kaneko,in Directions in Chaos ,edited by H.Bai-lin ?World Scienti?c,Singapore,1987?,p.272.?5?K.Kaneko,Physica D 34,1?1989?.?6?K.Kaneko,Physica D 37,60?1989?.?7?Chaos 2,279?1992?,focus issue on coupled map lattices in chaos,edited by K.Kaneko.

?8?K.Kaneko,Prog.Theor.Phys.72,480?1984?.

?9?E.J.Ding and Y .N.Lu,J.Phys.A 25,2897?1992?.?10?F.H.Willeboordse,Phys.Lett.A 183,187?1993?.?11?F.H.Willeboordse,Phys.Rev.E 65,026202?2002?.?12?F.H.Willeboordse,Phys.Rev.Lett.96,018702?2006?.?13?R.M.May,Nature ?London ?261,459?1976?.

?14?M.J.Feigenbaum,J.Stat.Phys.19,25?1978?;21,669

?1979?.

?15?A.Wolf,J.B.Swift,H.L.Swinney,and J.A.Vastano,Physica

D 16,285?1985?.

?16?T.S.Parker and L.O.Chua,Practical Numerical

Algorithms

FIG.9.?a ?Snapshot of the coupled map lattices at ?=3.5within the period-4regime and ?=0.3.The kink and pulse modes are em-phasized with the boxes.?b ?Bifurcation diagram of the CML and ?c ?the prediction from the mode analysis.

LIU et al.PHYSICAL REVIEW E 76,036215?2007?

for Chaotic Systems?Springer-Verlag,New York,1989?,Chap.

5.

?17?M.Zhan,G.Hu,Y.Zhang,and D.H.He,Phys.Rev.Lett.86, 1510?2001?.

?18?D.H.He,G.Hu,M.Zhan,and H.P.Lu,Physica D156,314

?2001?.

?19?A.Goryachev,H.Chate,and R.Kapral,Phys.Rev.Lett.80, 873?1998?.

?20?M.Zhan and R.Kapral,Phys.Rev.E72,046221?2005?.

PATTERNS WITH KINKS AND PULSES IN COUPLED…PHYSICAL REVIEW E76,036215?2007?

液力耦合器的工作原理

液力耦合器的工作原理 (一)液力耦器的结构: 液力耦合器是一种液力传动装置,又称液力联轴器。液力耦合器其结构主要由壳体、泵轮、涡轮三个部分。 泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约 3mm 一 4mm ) ;泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 (二)液力耦合器的安装方式: 液力耦合器的输入轴与电动机联在一起,随电动机的转动而转动,是液力耦合器的主动部分。涡轮和输出轴连接在一起,是液力耦合器的从动部分,与负载连在一起。 在安装时,液力耦合器安装在电动机与负载之间,通常由于负载较大,且与其它设备有联锁,采用将电机后移方案,在改造方案中需重新做电机的基础。 (三)液力耦合器的工作原理: 电动机运行时带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在受到液压油冲击力而旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘,然后又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液压油循环流动的产生,是泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差。液力耦合器工作时,电动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。液压油在循环流动的过程中,除受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,这就是液力耦合器的工作原理。 (四)、液力耦合器的调速方法: 液力耦合器在实际工作中的情形是:电动机驱动泵轮旋转,泵轮带动液压油进行旋转,涡轮即受到力矩的作用,在液压油量较小时,当其力矩不足于克服载的起步阻力矩,所以涡轮还不会随泵轮的转动而转动,增加液压油,作用在涡轮上的力矩随之增大,作用在涡轮上的力矩足以克服负载起步阻力而起步,其液压油传递的力矩与负载力矩相等时,转速随之稳定。负载的的力矩和转速成平方比,当随着液压油量的增加,输出力矩加大,涡轮的转速随之加大,达到调节转速的目的。 油液螺旋循环流动的流速 VT 保持恒定, VL 为泵轮和涡轮的相对线速度, VE 为泵轮出口速度, VR 为油液的合成速度。涡轮高速转动,即输出和输入的转速接近相同时小,而合成速度 VR 与泵轮出口速度之的夹角很大,这使液流对涡轮很小,这将使输出元件滑动,速度降低。当将油液量加大,相对速度 VL 和合成速度 VR 都很这就使液流对涡轮叶片的推力变得直到有足够的循环油液对涡轮产生足够的冲击力,输出转速变高。 (五)液力耦合器的转换效率: 液力耦合器调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。

液力耦合器常见故障及维护

液力耦合器原理、常见故障及处理 一、常见故障及处理 油泵不上油或油压太低或油压不稳定原因1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞5.油位太低,吸6.油压表损坏7.油管路堵塞处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤5.加油至规定油位6.更换压力表7.清洗油管路2.油温过高原因1.冷却器堵塞或冷却水量不足2.风机负荷发生变动使偶合器过负荷处理1.清洗冷却器,加大冷却水量2.检查负荷情况,防止过负荷3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤器5.加油至规定油位6.更换压力表7.清洗油管路4.箱体振动原因1.安装精度过低2.基础刚性不足3.联轴节胶件损坏4.地脚螺栓松动处理1.重新安装校正2.加固或重新做基础3.更换橡胶件4.拧紧地脚螺丝 二、原理及故障排除: 1、原理: 液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液

体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。同时,工作腔中的油液从泵轮泄油孔泻入外壳,形成一个旋转油环,这样,就可通过液力偶合器的调速装置操纵勺管径向伸缩,任意改变外壳里油环的厚度,即改变工作腔中的油量,实现对输出转速的无级调节,勺管排出的油则通过排油器回到油箱。 2、故障现象及处理: (1)过热 1)、冷却器冷却水量不足,加大水量; 2)、箱体存油过多或少调节油量规定值; 3)、油泵滤芯堵塞清洗滤芯; 4)、转子泵损坏打不出油,换内外转子; 5)、安全阀溢流过多; 6)、弹簧太松上紧弹簧; 7)、密封损坏泄油换密封件; 8)、油路堵塞,清除。 (2)输出轴不转 1)、安全阀压力值太低,上紧弹簧; 2)、油路堵塞,清除;

液力偶合器和液力变矩器的结构与工作原理

液力偶合器和液力变矩器的结构与工作原 理 发布时间:2009-7-10 9:23:12 来源:点击数:5063 一、液力偶合器和液力变矩器的结构与工作原理 现代汽车上所用自动变速器,在结构上虽有差异,但其基本结构组成和工作原理却较为相似,前面已介绍了自动变速器主要由液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统、自动换挡操纵装置等部分组成。本章将分别介绍自动变速器中各组成部分的常见结构和工作原理,为自动变速器的拆装和故障检修提供必要的基本知识。 汽车上所采用的液力传动装置通常有液力偶合器和液力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。 (一)液力偶合器的结构与工作原理 1、液力偶合器的结构组成 液力偶合器是一种液力传动装置,又称液力联轴器。在不考虑机械损失的情况下,输出力矩与输入力矩相等。它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。其结构主要由壳体、泵轮、涡轮三个部分组成,如图1所示。

图1 液力偶合器的基本构造 1-输入轴 2-泵轮叶轮 3-涡轮叶轮 4-轮出轴液力偶合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力偶合器的主动部分:涡轮和输出轴连接在一起,是液力偶合器的从动部分。泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约3mm~4mm);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 2、液力偶合器的工作原理 当发动机运转时,曲轴带动液力偶合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮

10大词类和句子成分的关系 已编辑知识讲解

十大词类与八大句子成分的关系 (1)十大词类: 据英语单词所表达的含义以及在句子中的作用,把英语单词分为10个类别,就是10大词类:名词、代词、数词、动词、副词、形容词、冠词、介词、连词、感叹词。 根据部分词类具有的共同特征,又将十大词类分为两大部分: 实词:名词、代词、数词、动词、副词、形容词。特征:具有完整的词义;能够在句子中独立充当句子成分。 虚词:冠词、介词、连词、感叹词。特征:没有完整的意思;不能够在句子中独立充当句子成分,必须和实词搭配,才能充当句子成分。 注意:1.介词为虚词,不能单独充当句子成分,必须同名词、代词、短语、句子构成介词短语,才能充当句子成分。介词短语在句中常作表语、定语、状语和补足语 2.动词分为系动词,助动词,情态动词和实义动词。其中实义动词又可分为谓语动词:时态语态语气 非谓语动词 To do :可以充当主、表、宾、补、定、状 Doing: 可以充当主、表、宾、补、定、状 Done: 可以充当表、补、定、状

(2)八大句子成分: 句子成分:组成英语句子的各个部分,叫做句子成分。 英语的句子最多由八个句子成分组成,即主语、谓语、宾语、表语、定语、状语、补足语以及同位语。 ★主语: 概念:句子的主体,发出动作的人或物,表示所说的是谁或是什么。 位置:主语一般在句首,特殊句型中在句末。 构成:由名词、代词或相当于名词的词、短语或从句充当。 例:Henry is a good boy.亨利是个好孩子。He ran away.他跑掉了。The second is yours. To learn a foreign language is not easy.学习一门外语不容易。 Driving to Beijing is not difficult.开车去北京不难。 What has happened proves that our policy is right. 发生的一切证明我们的政策是对的。 Whether we’ll go depends on the weather. 我们是否去要看天气。 ★谓语: 概念:说明主语的动作、特征、状态等的句子成分,叫做谓语。 位置:谓语动词通常位于主语之后,特殊句型位于主语之前。 构成:由动词或动词短语充当。 例如:We go to school from Monday to Friday. 我们周一至周五上学。 I shall go to see him tomorrow. 明天我要去看他。 He took part in the meeting last Saturday.他上周六参加了会议。 ★宾语: 概念:动词宾语是动作的承受者。及物动词以及相当于及物动词的短语后都必须带宾语。 介词之后的宾语叫介词宾语。 位置:动词宾语位于及物动词之后;介词宾语位于介词之后。 构成:名词、名词化的形容词、代词、数词、-ing形式、动词不定式和从句等均可作宾语。 例如:The teacher asked the students to finish the homework after class. 老师让学生们课下完成作业。 He wanted to buy that T-shirt.他想买那件T恤衫。They are having a party in the garden.他们正在花园里开聚会。 I don’t know when they will arrive.我不知道他们何时到达。I know three of them . ①有的动词可接双宾语: 英语中,有些及物动词可以接两个宾语,动作的承受者,即指物的叫做直接宾语,动作是为谁做的或是对谁做的,即指人的叫做间接宾语,这两个宾语称为“双宾语”。 例:Pass me the salt, please. 把盐递给我。the salt(直接宾语),me(间接宾语) They asked me to sing them a song. 他们要我给他们唱一支歌。a song(直接宾语),them(间接宾语)。 间接宾语后置:间接宾语也可以放在直接宾语的后面,这时候需要在间接宾语之前分别加两个介词:for或to.具体用哪一个介词,主要取决于句子的谓语动词。 例:I’ll lend you something to read. →I’ll lend something to read to you. 我要借点什么东西给你看。 I hope you will do me a favor.→I hope you will do a favor for me.我希望你能帮我做一件事。 以下这类双宾语动词如果间接宾语后置,要求在间接宾语之前加“to”。 give, show, send, bring, offer, read, pass, lend, leave, hand, tell, return, write, pay, throw, allow, wish, teach, promise, award等。 以下这类双宾语动词如果间接宾语后置,要求在间接宾语之前加“for”。 make, buy, do, fetch, get, paint, save, spare, order, cook, sing,等。 双宾语的注意事项 在下面情况下用to或for引起的短语比用间接宾语好 当直接宾语是人称代词时I’ll send it to you tomorrow. 比较(I’ll send you the book.)我明天给你送来。

液力耦合器原理word版

液力耦合器的模型与工作原理 液力耦合器是一种利用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以改变。理想状态下,当压力趋于无穷大时,输出转速与输入转速相等,相当于钢性联轴器。当压力减小时,输出转速相应降低,连续改变介质压力,输出转速可以得到低于输入转速的无级调节。液力耦合器的功控调速原理与效率 根据液力耦合器的上述特点,可以等效为图1所示的模型 功率控制调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。因此,我们不能简单地认为液力偶合器调速是"丢转",而实际是丢功率。设原传动功率为PM1,输出功率为PM2,损耗功率则为 液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越大,特别是恒转矩负载,由于原传动输入功率不变,损耗功率将转速损失成比例增大。对于风机泵类负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率降低,损耗功率相对小一些,但输出功率是按转速的立方率减小,调速效率仍然很低。液力耦合器的调速效率曲线如图2所示,平均效率在50%左右。 1 / 1

斩波内馈与变频调速的对比 斩波内馈与串级调速的对比 电磁滑差离合器的功控调速原理与效率 液力耦合器的模型与工作原理 斩波内馈调速与其它交流调速的技术性能对比 (注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

词性句子成分结构讲解

词性 adj. / a. 形容词 表示人或事物的性质、状态,和特征的程度好坏,与否. 形容词用来修饰名词或代词如:big,happy adv. / ad. 副词 是指在句子中表示行为或状态特征的词,用以修饰动词、形容词、其他副词或全句,表示时间、地点、程度、方式等概念。如:clearly,happily Clearly he didn,t say so.显然他没有这样说。(句子副词) prep. 介词 是一种用来表示词与词,词与句之间的关系的词。在句中不能单独做句子成分。 用在名词代词等之前,合起来表示动作、行为的时间,处所,方向,方式,目的,对象等的词。 如:in, at,for,to conj. 连词 连词是用来连接词与词、词组与词组或句子与句子、表示某种逻辑关系的虚词。连词可以表并列、承接、转折、因果、选择、假设、比较、让步等关系。如:when,beacuse,so num. 数词 表示数目多少或顺序多少的词叫数词,数词分为基数词和序数词。表示数目多少的数词叫基数词;表示顺序的数词叫序数词。如:one,two,first int. 感叹词 表示说话时表达的喜怒哀乐等情感的词。 如:what,how,haurray vt. 及物动词(后面要加宾语)行为动作的词如:do,finish,play vi. 不及物动词(后面不加宾语)表示行为动作的词如:appear n. 名词 表示人,事物,地点,现象及其他抽象概念等名称的词。 如:pig,cow,man pron. 代词 代指代替名词的一类词。 如:he,she,hers,his,things art = 冠词,article 位于名词或名词词组之前或之后,在句子里主要是对名词起限定作用的词。 如:a,an,the 英语句子成分和英语句子结构讲解及练习

自动变速箱与液力变矩器工作原理

自动变速箱 自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 和手动挡相比,自动变速箱在结构和使用上有很大不同。手动挡主要通过调节不同齿轮组合来更换挡位,而自动变速箱是通过液力传递和齿轮组合的方式来达到变速的目的。其中液力变扭器是自动变速箱最具特点的部件,它由泵轮、涡轮和导轮等构件组成,泵轮和涡轮是一对工作组合,泵轮通过液体带动涡轮旋转,而泵轮和涡轮之间的导轮通过反作用力使泵轮和涡轮之间实现转速差并实现变速变矩功能,对驾驶者来说,您只需要以不同力度踩住踏板,变速箱就可以自动进行挡位升降。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。为了满足行驶过程中的多种需要(如泊车、倒车)等,自动变速箱还设有一些手动拨杆位置,像P挡(停泊)、R挡(后挡)、N挡(空档)、D挡(前进)等。 从性能上说自动变速箱的挡位越多,车在行驶过程中也就越平顺,加速性也越好,而且更加省油。除了提供轻松惬意的驾驶感受,自动变速箱也有无法克服的缺陷。自动变速箱的动力响应不够直接,这使它在“驾驶乐趣”方面稍显不足。此外,由于采用液力传动,这使自动挡变速箱传递的动力有所损失。 手自一体自动变速箱 手自一体变速箱的出现其实就是为了提高自动变速箱的经济性和操控性而增加的设置,让原来电脑自动决定的换挡时机重新回到驾驶员手中。同时,如果在城市内堵车情况下,还是可以随时切换回自动挡。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。 动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。 不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。 有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。 至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT 上离合器的功能,但第二条则是离合器无法实现的。

句子结构中连词的用法

句子结构中连词的用法 高考英语短文改错命题的一个重要方面就是考查连接手段,连词使用不当会造成上下句不衔接。英语中的词与词、句与句之间必须使用并列或从属连词。 ●难点磁场 1.(★★★★★)It was about noon we arrived at the foot of the mountain. 78. ________ 2.(★★★★)The food was expensive and the service was good. 84. ________ 3.(★★★★★)It looks as if my parents treat me as a visitor and a guest. 84. ________ 4.(★★★★★) felt that they helped me understand what the world works. 89. ________ 5.(★★★★)She was smiling but nodding at me. 92. ________ ●案例探究 1.If the book you want is out, you may ask for it to be called back for you, and whether you pay the cost of sending a post card, the librarian will write to you. 解析:此题为五星级题。whether 改为If 。此题考查if 与whether 作为连词的区别。此处为if 引导的条件状语从句,表示“如果……”;如用whether ,则表示“是否”,语意不通。 在下列情况下一般只用whether :引导介词后的宾语从句、主语从句、表语从句、同位语从句或在whether to do, whether …or not …中。 e.g.Whether we ’ll go camping tomorrow depends on the weather. I asked him whether he would go or not. 2.I live in Beijing, where is the capital of China. 解析:此题为四星级题。此题考查定语从句中的非关系代词、副词的用法。where 改为which 。这是一个非限制性定语从句,从句中缺少主语,主语应由关系代词来充当,所以应将关系词where 改为which 。此句应改为:I live in Beijing, where there are lot of places of interest.先行词在定语从句为地点状语,所以应用关系副词where 。如: e.g.This is a house that / which I visited yesterday. This is a house where I spent a happy childhood. 3.It is a very important exam but I can ’t afford to fail it … 解析:此题为五星级题。此题考查并列句之间的关系,在此两句为因果关系,所以根据句意,but 改为so 。 ? ??it.about little knows he so young is He much. knows he but young is He e.g. 4.When I was on the stage the next day, I felt so nervous as I shook like a leaf. (NMET2000) 解析:此题为四星级题。考查so …that 引导的结果状语从句。把as 改为that,结果状语从句一般由so that ,so …that ,such …that 引导。 e.g.The box is so heavy that nobody can move it. It is such a heavy box that nobody can move it. He got up later so that missed the first bus. ●锦囊妙计 在连接手段上应侧重考虑:

英语常见的基本句式和句型结构

英语常见的基本句式和句型结构 要学好英语,首先要了解句式结构。 英语中有四种基本的句式:陈述句、祈使句、疑问句和感叹句。 陈述句 陈述句是对事实、安排或观点进行“声明”或陈述。陈述句可以是肯定句,也可以 是否定句。陈述句以句号(.)结尾。 I'll meet you at the train station.(我们在火车站见面吧。) The sun rises in the East.(太阳从东方升起。) I thought you might have invited her over.(我以为你可能已经邀请她过来了。)祈使句 祈使句是发出命令(有时是要求)的一种句式。祈使句中一般没有主语,you是 隐含的主语。祈使句以句号(.)或感叹号(!)结尾。 Open the door.(把门打开。) Be kind to our sister.(对姊妹要和善。) Look out!Danger!(小心!危险!) 疑问句 疑问句就是提出问题的句式。疑问句中,助动词位于主语前面,而主语后则跟着 主动词(例如:Are you coming..?)。疑问句以问号结尾。 How long have you lived in Japan?(你在日本住了多久?) When does the bus leave?(公交什么时候开走的?) Do you like these animals?(你喜欢这些动物吗?) 感叹句 感叹句通过感叹号(!)对一个陈述(陈述句或祈使句中)进行了强调。 What nice music it is!(多棒的音乐!) How clever the girl is!(这女孩那么聪明!) I can't believe you said that!(我真不敢相信你会那么说!) 说完了句式,我们再来看一下基本的句型结构: 简单句

液力耦合器的结构组成及工作原理

液力耦合器的结构组成及工作原理 来源:互联网作者:匿名发表日期: 2010-4-5 9:12:15 阅读次数: 141 查看权限:普通文章 液力耦合器主要由:壳体(housing)、泵轮(impeller)、涡轮(turbine)三个元件构成。在发动机曲轴1 的凸缘上,固定着耦合器外壳2。与外壳刚性连接并随曲轴一起旋转的叶轮,组成耦合器的主动元件,称为泵轮了。与从动轴5相连的叶轮,为耦合器的从动元件,称为涡轮4。泵轮与涡轮统称为工作轮。在工作轮的环状壳体中,径向排列着许多叶片。涡轮装在密封的外壳中,其端面与泵轮端面相对,两者之间留有3~4mm 间隙。泵轮与涡轮装合后,通过轴线的纵断面呈环形,称为循环圆。在环状壳体中储存有工作液。 液力耦合器的壳体和泵轮在发动机曲轴的带动下旋转,叶片间的工作液在泵轮带动一起旋转。随着发动机转速的提高,离心力作用将使工作液从叶片内缘向外缘流动。因此,叶片外缘处压力较高,而内缘处压力较低,其压力差取决于工作轮半径和转速。 由于泵轮和涡轮的半径是相等的,故当泵轮的转速大于涡轮时,泵轮叶片外缘的液力大于涡轮叶片外缘。于是,工作液不仅随着工作轮绕其轴线做圆周运动,并且在上述压力差的作用下,沿循环圆依箭头所示方向作循环流动。液体质点的流线形成一个首尾相连的环形螺旋线。 液力耦合器的传动过程是:泵轮接受发动机传动来的机械能,传给工作液,使其提高动能,然后再由工作液将动能传给涡轮。因此,液力耦合器实现传动的必要条件是工作液在泵轮和涡轮之间有循环流动。而循环流动的产生,是由两个工作轮转速不等,使两轮叶片的外缘产生液力差所致。因此,液力耦合器在正常工作时,泵轮转速总是大于涡轮转速。如果二者转速相等,液力耦合器则不起传动作用。 汽车起步前,可将变速器挂上一挡位,启动发动机驱动泵轮旋转,而与整车驱动轮相连的涡轮暂时仍处于静止状态,工作液便立即产生绕工作轮轴线的圆周运动和循环流动。当液流冲到涡轮叶片上时,其圆周速度降低到零而对涡轮叶片造

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理 (一)液力变矩器的结构 液力变矩器以液体作为介质,传递和增大来自发动机的扭矩 液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。各件用铝合金精密铸造或用钢板冲压焊接而成。泵轮与变矩器壳成一体。用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。所有工作轮在装配后,形成断面为循环圆的环状体。 (二)液力变矩器的工作原理 导涡泵 液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成了液力偶合器,它能传轴,并不增扭。 变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到阻碍,可使涡轮受到反作用力F2,由于F1、F2都作用于涡轮,所以使涡轮所受扭矩得到增大。 涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。 导轮下端装有单向离合器,可增大其变扭范围。 (三)锁止式 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作

轴向移动的压盘,它通过花键套与涡轮连接(如图2.3).压盘背面(如图2.3右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。 自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。当车速较低时,锁止控制阀让液压油从油道B进入变矩器,使锁止离合器压盘两侧保持相同的油压,锁止离合器处于分离状态,这时输入变矩器的动力完全通过液压油传至涡轮,如图2.4所示。 当汽车在良好道路上高速行驶,且车速、节气门开度、变速器液压油温度等因素符合一定要求时,电脑即操纵锁止控制阀,让液压油从油道C进入变矩器,而让油道B与泄油口相通,使锁止离合器压盘左侧的油压下降。由于压盘背面(图中右侧)的液压油压力仍为变矩器压力,从而使压盘在前后两面压力差的作用下压紧在主动盘(变矩器壳体)上,如图2.5所示,这时输入变矩器的动力通过锁止离合器的机械连接,由压盘直接传至涡轮输出,传动效率为100%. 另外,锁止离合器在结合时还能减少变矩器中的液压油因液体摩擦而产生的热量,有利用降低液压油的温度。有些车型的液力变矩器的锁止离合器盘上还装有减振弹簧,以减小锁止离合器在结合时瞬间产生的冲击力。 第二节行星齿轮变速器的工作原理 液力变矩器虽能在一定范围内自动、无级地改变转矩比和转速比,但存在传动

雅思写作-逻辑连接词、句式结构、词组与句子搭配

PART 1 逻辑连接词 1.1 让步 1. Although(更书面)= though(更口语) =even if (即使,更偏假设性)=even though(虽然,更偏事实性)+句子 注:不能与but连用。 Devoted though we are to prosperity and freedom, we cannot shake off the judgmental strand of justice.用倒装 2. No matter how/what/who等= 疑问句+ever No matter who/Whoever you are, you must keep the law. 注意:疑问句+ever 可以引导名词性从句 Whoever(≠ no matter who)comes will be welcome. 3. …, as long as… You can do what you want, as long as you like. 4. 名词/表语/动词+ as(though)倒装,。。。,表“纵使” Object as/though you may, I’ll go。 Small as atoms are, they are made up of still smaller units。 Lover of towns as I am, I realize that I owe a debt to my early country life. 5. Whether…or…正反两方面,。。。表“不论。。。与否” Whether you believe it or not, it's true. You'll have to attend the ceremony whether you're free or busy. 6. Be原型+主语+表语(n, adj)= whether+主语+be动词+表语(n, adj)。不论。一文学性强的虚拟语气,表让步。 Be it historical tradition, faith and culture, or social system, values and level of development, those countries or regions are often different from one another. 7. Despite+n/ving = in spite of尽管. (不能加句子) Despite the fact that + 句子(太累赘) Despite myself, …情不自禁地… Her words were so satirical(讽刺的)that I lost my temper in spite of myself。 8. Notwithstanding +sth尽管 But notwithstanding its ancient lineage, it is open to the following challenge. 9. Albeit 虽然即使 You are to be given one method of communication with your rival, albeit indirect communication. 1.2 原因 Since

短语结构和句子成分

短语结构和句子成分 一、比较判断短语类型 经济发展(主谓)历史悠久(主谓)发展经济(动宾)悠久历史(偏正) 描写景物(动宾)市场繁荣(主谓)景物描写(偏正)市场的繁荣(偏正) 我的弟弟(偏正)表达的见解(偏正) 二、指出下列短语的结构 风俗习惯(并列)变化规律(偏正)整修一新(动补)废寝忘食(并列)打扫干净(动补) 前程远大(主谓)襟怀坦白(主谓)挥手之间(偏正)辛勤耕耘(偏正) 销售计划(偏正)色彩缤纷(主谓)激动不已(动补)禁止吸烟(动宾)最后一次演讲(偏正) 三、选择题: 1、选出全是主谓短语的一组 ( D ) A 资源丰富调查研究 B 心胸宽广勇敢坚强 C 品质高尚实现理想 D 感情强烈精力充沛 2、下列短语中与“露珠晶莹”结构相同的一项是 ( C ) A.科学技术 B.坚持真理 C.会议结束 D.宇宙飞船 3、下列各组短语依次与短语“秘密通道、深入研究、庄严肃穆、腰肌扭伤”结构相同的一组是 ( D ) A战斗里程慈祥目光红得耀眼前途无量 B蔚蓝天空相差很远巍然高大红日东升 C最后一课美丽温柔比他胖点战果辉煌 D 光辉业绩纷纷议论美观大方路途遥远 4、找出下列每组短语中不同类的一个,把序号填入括号里: ①A一群孩子 B短篇小说 C仙山楼阁 D乡间生活 ( A ) ②A单纯真诚 B我和老师 C我的旅途 D报刊书籍 ( C ) ③A特别美丽 B花红柳绿 C豪华住宅 D复习资料 ( B ) ④A多么伟大 B踱来踱去 C思想感情 D悬崖峭壁 ( A ) 语法内容:一、词类——(一)实词 1、名词 雷锋同志学生计算机法律明年星期天中国上边中间——名词在句子中常作主语、宾语,不能做状语。 2、动词 走学习打算害怕有死亡——; a动词常常作谓语或谓语中心语,多数能带宾语 b动词后面一般可以带“着、了、过”等,表示动态; A.判断动词“是” B.助动词:能可以愿意应该要 助动词在句子中一般做状语:他能来吗你现在应该做作业 3、形容词 伟大苦长整齐绿油油轻松 形容词大部分都能作定语,也能作谓语或谓语中心,有的也可作状语、补语。 激烈的战争开始了。这花美丽。你坐下来,慢慢说。他走得慢。 4、数词量词 数词经常和量词组合,构成量词短语,充当定语或补语。——万里长城去一趟医院 5、副词 限制、修饰动词、形容词。非常几乎仅仅曾经常常必定赶紧偏偏居然——副词都能作状语 6、代词 代词和它所代替的实词或短语的用法大致相当,就是说所代的词语能做什么句子成分,那个代词就能作什么成分。 7、象声词——主要作状语。 8、叹词——它的独立性最强,一般不同别的词语发生结构关系,常作感叹词或独立成句。 (二)虚词——1、介词 主要用在名词或名词性短语前,共同组成介词短语,作动词、形容词的附加成分,表示方位、处所、时间、条件等。自从当随着在按照经过根据由于为了对于让把比除了

液力耦合器工作原理介绍

用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机。 工作原理 液力偶合器是以液体为介质传递功率的一种动力传递装置,主要由两个带有径向叶片的碗状工作轮组成。由主动轴传动的轮称为泵轮,带动从动轴转动的轮称为涡轮,泵轮和涡轮中间有间隙,形成一个循环圆状腔室结构。 工作时,原动机带动液力偶合器主动轴——泵轮转动,泵轮内的液体介质在离心力作用下由机械能转换为动能,形成高压、高速液流冲向涡轮叶片;在涡轮内,液流沿外缘被压向内侧,经减压减速后动能转换为机械能,带动涡轮——从动轴旋转,实现能量的柔性传递。作功后的液体介质返回泵轮,形成液流循环。 液力偶合器工作原理示意图 液力偶合器内液体的循环是由于泵轮——涡轮流道间不同的离心力产生压差而形成,因此泵

轮、涡轮必须有转速差,这是液力偶合器的工作特性所决定的。泵轮、涡轮的转速差称为滑差,在额定工况下,滑差为输入转速的2%~3%。 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的97%~98%),调节机构称为勺管调速机构,它通过调节勺管的工作位置来改变偶合器流道中循环液体的充满程度,实现对被驱动机械的无级调速,使工作机按负载工作范围曲线运行。 特点 ?节省能源。输入转速不变的情况可获得无级变化的输出转速,对离心机械(如泵)在部分负荷的工作情况下,与节流式相比节省了相当大的功率损失。 ?空载启动。电动机启动后工作油系统开始工作,按需要加载控制、无级变速,电动机启动电流小,延长了使用寿命,并可选用较小电动机,节省投资。 ?离合方便。充油即行接合,传递扭矩、平稳升速;排油即行脱离。 ?振动阻尼与冲击吸收。工作轮之间无机械联系,通过液体传递扭矩,柔性连接,具有良好的隔振效果;并能大大减缓两端设备的冲击负荷。 ?过载保护。当从动轴阻力矩突然增加时,滑差增大直至制动,而原动机仍能继续运转而不致损坏,同时保护了从动机不致进一步损坏。 ?无磨损,坚固耐用,安全可靠。 ?润滑油系统可供工作机和电动机所用润滑油。 ?结构紧凑。增速齿轮和工作轮安装在同一箱体中,只需很小空间。 ?可根据用户需要安装不同的执行器。 调速范围: 被驱动的机械具有抛物线负载力矩时,如离心泵和通风机,调速范围为4:1,特殊情况下可以达到5:1。 被驱动的机械具有近乎恒定负载力矩时,调速范围为3:1以下。 工作时排空液力偶合器内的工作液,可以使被驱动的机械停止运转。

句子结构类型和成分

句子成分及句子类型 句子是具有一定的语法结构,表达一个独立完整意义的语言单位。口头表达中,句与句之间略有停顿。书面上,这种停顿用标点符号表示,如句号、逗号、分号或感叹号。 一、基本句型(Basic Sentence Patterns):英语中千变万化的句子归根结底都是由以下五种基本句型组合、扩展、变化而来的: I 句子成分 句子的组成成分叫句子成分。在句子中,词与词之间有一定的组合关系,按照不同的关系,可以把句子分为不同的组成成分。句子成分由词或词组充当。英语的基本成分有六种:主语(subject)、谓语(predicate)、表语(predicative)、宾语(object)、定语(attribute)和状语(adverbial)。 II 基本句型 基本句型一:SV(主+谓) 基本句型二:SVP(主+谓+表) 基本句型三:SVO(主+谓+宾) 基本句型四:SVoO(主+谓+间宾+直宾) 基本句型五:SVOC(主+谓+宾+宾补) 1 基本句型一SV(主+谓) 此句型的句子有一个共同特点,即句子的谓语动词都能表达完整的意思。这类动词叫做不及物动词,后面可以跟副词、介词短语、状语从句等 2 基本句型二SVP(主+谓+表) 此句型的句子有一个共同的特点:句子谓语动词都不能表达一个完整的意思,必须加上一个表明主语身份或状态的表语构成复合谓语,才能表达完整的意思。这类动词叫做连系动词。be, look, keep, seem, get, grow, become, turn等 This is an English-Chinese dictionary. 这是本英汉辞典。 The dinner smells good. 午餐的气味很好。 Everything looks different. 一切看来都不同了。 He is growing tall and strong. 他长得又高又壮。

电动给水泵液力偶合器结构及工作原理

电动给水泵液力偶合器结构及工作原理 调速型液力偶合器,它是以液体为介质传递功率的一种液力传动装置,它安装在电动机和给水泵之间,并在电动机转速恒定的情况下无级调节给水泵的转速。 液力偶合器的主要部件:泵轮、涡轮、转动外壳、输入轴、输出轴、勺管、大小传动齿轮、主油泵、辅助油泵等。 液力偶合器的泵轮和涡轮对称布置,它们的流道几何形状相同,中间保持一定间隙,轮内有几十片径向辐射的叶片,运转时在偶合器中充油,当输入轴带动泵轮旋转时,进入泵轮的油在叶片带动下,因离心力作用由泵轮内侧流向外缘,形成高压高速流冲向涡轮叶片,使涡轮跟随泵轮作同向旋转,油在涡轮中由外缘流内侧被迫减压减速,然后流入泵轮,构成了一个油的循环,这里传递能量的介质是工作油。在这个循环中,泵轮将原动机的机械能转变成油的动能和势能,而涡轮则将油的动能和势能又转变成输出轴的机械能,从而实现能量的柔性传递。转动外壳与泵轮相连,转动外壳腔内放置一根可上下移动的勺管,运转时,当偶合器工作油腔充满油时,能量最大,传动扭矩的能量最大,当偶合器工作油腔排空油时,能量最小、传动扭矩的能量最小。既通过勺管来调节工作油腔的油层厚度,把勺管以下内侧的循环园中的油导走,以改变工作腔内的油量,则偶合器传递的扭矩将随

着勺管的上下移动带来工作腔内的油量变化,即实现了偶合器的调速功能。 液力偶合器结构原理图

液力偶合器部分构件 它具有以下几个优点: 1.可以空载启动电动机,可控地逐步启动大负载。

2.给水泵无级调速时可以大量节省厂用耗电量。 3.可利用电机的最大扭矩启动负载。 4.隔离在动转过程中的冲击和震动。

相关文档
相关文档 最新文档