文档库 最新最全的文档下载
当前位置:文档库 › 流体力学

流体力学

流体力学
流体力学

1.何谓连续介质假定,引入的目的意义何在?

答:连续介质假定既忽略流体分子之间的间距,假定流体是由无数宏观上无穷小,微观上无穷大的流体微团(流体质点)多组成,彼此之间相互连续,毫无间隙。引入意义:将真实流体看成连续介质,意味着流体的一切宏观物理量速度,温度,压强都可看成时间与空间的连续函数,使我们可以用数学分析的方法来讨论和解决流体力学的问题。

2.何谓流体的粘性?温度对流体粘性的影响如何?

答:粘性是指流体微团发生相对运动时,所表现出来的抵抗变形,阻碍运动的性质。

温度升高时液体的μ值降低,而气体的μ值反而加大。

3.何为压力体,压力中心?

答:由液体的自由表面,承受压力的曲面和由该曲面的边线向上垂直引申到自由液面或其延伸面得到的各个表面所围成的体积。总压力的作用点称为压力中心。

4.流体静压力有哪些特性?

答:(1)方向特性:静压力的方向垂直指向作用面。

(2)大小特性:静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。

5.等压面及其特性如何?

答:等压面即为在同一种连续的静止流体中静水压力相等的各点所组成的面。

特性(1)等压面即为等势面,(2)作用在静止流体中任一点的质量力必然垂直于通过该点的等压面。

6.描述液体运动有哪两种方法?它们的区别是什么?

答:拉格朗日法和欧拉法拉格朗日法是跟踪一个质点,描述它的运动过程,再把足够的质点运动情况综合起来了解整个流体的运动:而欧拉法则是观察质点流经每个空间点上运动要素随时间变化的规律,再把足够多的空间点综合起来了解整个流体的运动。

7.何为流线?流线有哪些特点?

答:流线是某一瞬时在流场中绘出的曲线,在这条曲线上所有质点的速度矢量都和该曲面曲线相切。

特点:(1)对于不稳定流,经过同一点的流线其空间方位和形状都随时间改变,(2)稳定流的流线不随时间而改变(3)流线不可相交也不可逆转(4)流线簇的疏密反映流速的大小(5)稳定流中质点的迹线和流线重合,而不稳定流中二者不重合。

8.引入断面平均流速有什么好处?它与实际流速有什么关系?

答:假想有效端面上各点流速相等,而按这个各点相等的流速V所通过的流体体积与按实际不同分布的流速U所通过的流体体积相等(物理意义)方便计算

9.何谓系统与控制体?

答:系统是一团流体质点的集合,它始终包含着相同的流体质点,而且具有确定的质量,一个系统的形状,位置等均可改变,但它所包含的物质一定不变;控制体是指流场中某一确定的空间区域,这个区域的固界称为控制面,控制体的形状根据流动情况和边界位置任意选定,当选定后,控制体的形状和位置相对于所选定的坐标系来讲是固定不变的,但它所包含的流体的量可能时时刻刻改变。

10.何为水力光滑管与水力粗糙管?

答:水力光滑管:Re较小时,管壁处层流边层完全掩盖住管壁粗糙突起,其时粗糙度对紊流不起作用。水力粗糙管:Re增大,层流边层变薄,当粗糙突起高出层流边层之外时,粗糙突起造成加剧紊流,粗糙突起越高阻力越大。

11.在单相流动中,为什么不直接用临界流速作为流态的判别标准?

答:(1)流动介质,装置不同时所得到的临界流速差别很大(2)从层流过渡到紊流从

紊流过渡到层流临界流速不同。

12.何谓时均流速,表达式如何?

答:时均流速:发生紊流流动时,真实流速在一段时间内平均值。

13.何谓因次的齐次性原理?

答:凡是可以正确反应客观规律的物理方程,其各项的量纲都必须是一致的。

14.管嘴出流比孔口出流的阻力增加了,在相同作用水头和孔径的情况下为何流量系数却增大了?

答:因为所取出口断面不同,孔口取在收缩断面,其处压强为大气压,而管嘴出口在收缩断面之后,由于液流带走一部分气体形成负压,这就造成自由液面与管嘴间比孔口增大了一个压头差,所以流速和流量比孔口增大了。

15.何谓压力管路?长管和短管如何划分?

答:凡是液面充满全管在一定压差下流动的管路都称为压力管路。

由于长输管线输送距离较远,两端压差较大,与沿程损失相比,流速水头和局部水头可忽略,此种管路即为长管;而与沿程损失相比,流速水头和局部水头不可忽略的称为短管。

16.串联管路和并联管路各有何特点?

答:串联:(1)各联结点处流量出入平衡,即流入节点的总流量等于流出节点的总流量,(2)全线总的水头损失为各分段水头损失的总和。并联:(1)进入各并联管的总流量等于流出各并联管的流量之和,(2)不同并联管段从A到B单位重量液体的能量损失(水头损失)都相等。

17.何谓水击现象?

答:在有压系统中,由于管路工作状态的突然改变,使液体流速发生急剧变化,引起管内压强在大范围内波动,形成水击现象。

(水击是指压力瞬变过程,是管路中不稳定流所引起的一种特殊重要现象。)

18.流体微团运动和刚体质点运动有什么不同?

答:刚体质点的运动只表现为移动和旋转,而流体质点的运动除了移动和旋转以外突出表现为变形运动。

第1章-流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 1.1 连续介质与流体物理量 1.1.1 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 1.1.2 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

流体力学基础

第二章流體力學基礎 1.流動描述法 在質點力學和固體力學的學科中,因可以很清楚看到或想像質點或固體的運動情形,所以,也就比較容易去分析。流體雖然可視為由無數的流體質點或元素(element)所組成,但是,在分析或想像流體各質點的運動時,就可能引起困難。為研究流體流動的問題,通常有兩種不同定義流場流動的描述或分析的方法,分別是拉氏描述法(Lagrangian method of description)和歐拉氏(Eulerian method of description)描述法。 甲、拉氏描述法 這種描述法的觀念和分析質點力學的問題相同,即視流體 的流動是由無數個流體質點或元素所組成。茲假設某一流 體質點(取名為A質點)的運動軌跡或路徑(pathline)為已 知,則該運動軌跡在卡氏座標(Cartesian coordinates)上可表 示為: r= r(ξA, t) = x i+ y j+ z k 式中, ξA = x A i+ y A j+ z A k =流體A質點在已知時間t時的位置向量,故為已

知值。 因此,流體A 質點隨時間而運動的軌跡r ,應僅為時間t 的函數,其分量為 x = F x (ξA , t ) y = F y (ξA , t ) (2-1) z = F z (ξA , t ) 所以,流體A 質點運動的速度(u , v, w )和加速度(a x , a y , a z ),可依定義對時間t 微分而得。即: u = (dt dx )A ξ a x = (dt du )A ξ = (22dt x d )A ξ v = (dt dy )A ξ (2-2) a y = (dt dv )A ξ = (22dt y d )A ξ (2-3) w = (dt dz )A ξ a z = (dt dw )A ξ = (22dt z d )A ξ 顯然地,這些結果和質點力學所表示的式子是完全相同的。 乙 歐拉氏描述法 這種描述法的觀念是在流場中隨意選取某定點P 或固定區域,然後注視佔據該定點P 或固定區域上的流體,注意其流動變數(flow variables)的變動情形。歐拉假設流體的流動情形,可以一速度場ν表示: ν = ν(r , t ) = u i + v j + w k 流體質點P 的運動軌跡 x

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

流体力学名词解释

流体力学概念总结 1.连续介质模型:在流体力学的研究中,将实际由分子组成的结构用流体微元代替。流体 微元有足够数量的分子,连续充满它所占据的空间,这就是连续介质模型。 2.质量力:处于某种力场中的流体,所有质点均受有与质量成正比的力,这个力称为质量 力。 3.表面力:指作用在所研究流体外表面上与表面积大小成正比的力。 4.流体的相对密度:某均质流体的质量与4℃同体积纯水的质量的比称为该流体的相对密 度。 5.体胀系数:当压强不变而流体温度变化1K时,其体积的相对变化率,以α表示。 6.压缩率:当流体保持温度不变,所受压强改变时,其体积的相对变化率。 7.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层间相对 运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。 8.动力粘度:单位速度梯度时内摩擦力的大小μ=τ∕(dv∕dh) 9.运动粘度:动力粘度和流体密度的比值。υ=μ/ρ 10.恩氏粘度:被测液体与水粘度的比较值。 11.理想流体:一种假想的没有粘性的流体。 12.牛顿流体:在流体力学的研究中,凡切应力与速度梯度成线性关系,即服从牛顿内摩擦 定律的流体,称为牛顿流体。 13.表面张力:引起液体自由表面欲成球形的收缩趋势的力称为表面张力。 14.静压强:当流体处于绝对静止或相对静止状态时,流体中的压强称为流体静压强。 15.有势质量力:质量力所做的功只与起点和终点的位置有关,这样的质量力称为有势质量 力。 16.力的势函数:某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影,该 函数称为力的势函数。 17.等压面:在充满平衡流体的空间,连接压强相等的各点所组成的面称等压面。 18.压力体:由所研究的曲面,通过曲面周界所作的垂直柱面和流体的自由表面(或其延伸 面)所围成的封闭体积叫做压力体。 19.实压力体:当所讨论的流体作用面为压力体的内表面时,称该压力体为实压力体。 20.虚压力体:当所讨论的流体作用面为压力体的外表面时,称该压力体为虚压力体。 21.浮力:液体对潜入其中的物体的作用力称为浮力。 22.时变加速度(当地加速度):位于所观察空间的流体质点的速度随时间的变化率。 23.位变加速度(迁移加速度):流体质点所在空间位置的变化所引起的速度变化率。 24.全加速度(质点导数或随体导数):时变加速度与位变加速度的和称为全加速度。 25.恒定流动(定常流动):流场中每一空间点上的运动参数不随时间变化,这样的流动称 为恒定流动。 26.非恒定流动(非定常流动):流场中运动参数不但随位置改变而改变,而且也随时间变 化,这种流动称为非恒定流动。 27.迹线:流体质点的运动的轨迹称为迹线。 28.流线:某瞬时在流场中作一条空间曲线,该瞬时位于曲线上各点的流体质点的速度在该 点与曲线相切。 29.流管:在流场中任取一封闭曲线l(非流线),过曲线上各点作流线,所有这些流线构成一 管状曲面,称为流管。 30.流束:若在流场中取一非流面的曲面S,则过曲面上各点所作流线的总合,称为流束。 31.总流:在实际工程中,把管内流动和渠道中的流动看成是总的流束,它由无限多微小流

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

流体力学-基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。 (5) 在边界层内,黏性力与惯性力同一数量级。 (6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

流体力学在医学中的应用

流体力学在医学中的应用 通过对流体力学这一章的学习,我发现在医学治疗疾病领域,流体力学有着丰富的应用,尤其在动脉病方面,通过对资料及文献的学习,了解到心血管疾病与其有密切关系,而且血流动力学不仅在动脉病变的发生和发展过程中起着决定性的作用,而且是外科医生在心血管疾病的手术和介入治疗等过程中必须充分考虑的因素,下面依次举例~ 1冠状动脉硬化斑块与血液流体动力学关系 原理:当冠状动脉粥样硬化斑块给血管造成的狭窄程度在20%-40%之间的时候,流经斑 块的速度剖面呈抛物线状态;当狭窄的程度是50%时,速度剖面出现紊乱,没有出现抛物线的分布,且不满足层流的规律,并伴有回流现象的发生;当狭窄程度在50%-75%之间时,斑块附近轴管的管轴速度小于周围速度,此时速度剖面呈现中心凹状,斑块的后部有明显的回流现象。 疾病成因及表象:软斑块可逆,且对血液动力学不造成明显的影响,但是它的不稳定与易破 碎等会引发急性冠状动脉的综合症状,是引发心脏事件的危险因素;钙化斑块不可逆,对血液动力学的影响较为明显,但其斑块稳定和不易破碎的特点是造成稳定性心绞痛的主要诱导原因,也是冠状动脉疾病的晚期表现。 检测及治疗方法:冠状动脉硬化斑块有较多的常规检查方法,比如多层CT冠状动脉成像、 血管的内超声检查以及冠状动脉造影,而其中冠状动脉造影是冠心病检查的金标准,但它主要是由填充造影剂的方法来判断血管腔的变化情况,而无法真正识别血管壁的结构,不能起到判断斑块性质的作用,也无法对血液动力学造成影响。而64排螺旋CT在空间和时间的分辨率上都有所提升,不仅能观察到管腔,还可以看到血管壁。由斑块特征的不同,可将其分成软斑块和纤维斑块以及钙化斑块,斑块不同,CT值也各异,其稳定性也存在差异,64排螺旋CT是目前为止无创检查冠心病最为常见的影像方法。本文主要研究患者在冠状动脉螺旋CT成像之后的软斑块和钙化斑块给血液动力学与诱发心脏事件带来的影响。 2与血液流体动力学关系

流体力学简答题

流体力学 1流体的粘滞性 (1)流体粘性概念的表述 ①运动流体具有抵抗剪切变形的能力,就是粘滞性,这种抵抗体现在剪切变形的快慢(速率)上。 ②发生相对运动的流体质点(或流层)之间所呈现的内摩擦力以抵抗剪切变形(发生相对运动)的物理特 性称为流体的黏性或黏滞性。 ③黏性是指发生相对运动时流体内部呈现的内摩擦力特性。在剪切变形中,流体内部出现成对的切应力 , 称为内摩擦应力,来抵抗相邻两层流体之间的相对运动。 ④粘性是流体的固有属性。但理想流体分子间无引力,故没有黏性;静止的流体因为没有相对运动而不表 现出黏性。 2毛细管现象 ①将直径很小两端开口的细管竖直插入液体中,由于表面张力的作用,管中的液面会发生上升或下降的现 象,称为毛细管现象。 ②毛细管现象中液面究竟上升还是下降,取决于液体与管壁分子间的吸引力(附着力)与液体分子间的吸 引力(内聚力)之间大小的比较:附着力>内聚力,液面上升;附着力<内聚力,液面下降。 ③由液体重量与表面张力的铅垂分量相平衡,确定毛细管中液面升降高度h, ④为减小毛细管现象引起误差,测压用的玻璃管内径应不小于10mm。 3流体静压强的两个基本特性 ①静压强作用的垂向性:静止流体的应力只有内法向分量—静压强(静止流体内的压应力)。 ②静压强的各向等值性:静压强的大小与作用面的方位无关—静压强是标量函数。 4平衡微分方程的物理意义 (1)静压强场的梯度 p 的三个分量是压强在三个坐标轴方向的方向导数,它反映了标量场p在空间上的不均匀性(inhomogeneity)。 (2)流体的平衡微分方程实质上反映了静止(平衡)流体中质量力和压差力之间的平衡。 (3)静压强对流体受力的影响是通过压差来体现的 5测压原理 (1)用测压管测量 测压管的一端接大气,可得到测压管水头,再利用液体的平衡规律,可知连通的静止液体区域中任何一点 的压强,包括测点处的压强。如果连通的静止液体区域包括多种液体,则须在它们的分界面处作过渡 6拉格朗日法:着眼于流体质点,跟踪质点描述其运动历程。 ①以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

流体力学_环境自测题

《流体力学》自测题 第1章绪论 一.思考题 1.为什么说流体运动的摩擦阻力是摩擦阻力?它与固体运动的摩擦和有何不同? 2.液体和气体的粘度随温度变化的趋向是否相同?为什么? 3.不可压缩流体定义是什么?在实际工程应用中,通常可把什么流体作为不可压缩流体处 理? 二.选择题(单选) 1.作用于流体的质量力包括()。 (a)压力;(b)摩擦阻力;(c)重力;(d)表面力。 2.比较重力场(质量力只有重力)中,水和水银所受单位质量力Z水和Z汞的大小()。 (a)Z水﹤Z汞; (b)Z水=Z汞; (c)Z水﹥Z汞; (d)不定。 3.单位质量力的国际单位是()。 (a)N;(b)Pa (c)N/m (d) m/s2 4.与牛顿摩擦定律直接有关的因素是()。 (a)切应力和压强;(b) 切应力和剪切变形速度; (c) 切应力和剪切变形;(d) 切应力和流速。 5.水的动力粘度随温度的升高()。 (a)增大;(b) 减小;(c)不变;(d)不定。 6.流体运动粘度 的国际单位是()。 (a)m2/s; (b) N/m2; (c)kg/m; (d)N.s/m2 7.以下作用在流体上的力中不是表面力的为()。 (A) 压力(B) 剪切力(C) 摩擦力(D) 惯性力 8. 液体在两块平板间流动,流速分布如图所示,从中取出A、B、C三块流体微元,试分析:(1)各微元上下两平面上所受切应力的方向;(2)定性指出哪个面上的切应力最大?哪个最小?为什么?

第2章流体静力学一. 复习思考题 1.试述静止流体中的应力特性。 2.怎么认识流体静力学基本方程 p z C g ρ +=的几何意义和物理意义? 3.绝对压强、相对压强、真空度是怎样定义的?相互之间如何换算?4.何谓压力体?怎样确定压力体? 5.液体的表面压强(以相对压强计) 00 p≠时,怎样计算作用在平面或曲面上的静水总压力? 二. 选择题(单选) 2-1 静止液体中存在()。 (a) 压应力(b) 压应力和拉应力(c ) 压应力、切应力(d) 压应力、拉应力和切应力2-2 相对压强的起点是()。 (a) 绝对压强(b) 1个标准大气压(c) 当地大气压(d) 液面大气压 2-3金属压力表的读值是()。 (a) 绝对压强(b) 相对压强(c) 绝对压强加当地大气压(d) 相对压强加当地大气压2-4某点的真空度为65000Pa,当地大气压为0.1MPa,该点的绝对压强为()。 (a) 65000Pa (b) 55000Pa (c) 35000 Pa (d) 165000 Pa 2-5绝对压强p abs与相对压强p、真空度p v、当地大气压p a之间的关系是()。 (a) p abs=p+p v(b) p=p abs+p a(c) p v=p a-p abs(d) p=p v+p a 2-6在密闭容器上装有U形水银测压计,其中1、2、3点位于同一水平面上,其压强关系为()。 (a) p1=p2=p3(b) p1>p2>p3(c) p1<p2<p3(d) p2<p1<p3

流体力学概念总结

第一章绪论 1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观 的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 第二章流体的主要物理性质 1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。 2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。 3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是: 1)由无数连续分布、彼此无间隙地; 2)占有整个流体空间的流体质点所组成的介质。 4.密度:单位体积的流体所具有的质量称为密度,以ρ表示。 5.重度:单位体积的流体所受的重力称为重度,以γ表示。 6.比体积:密度的倒数称为比体积,以υ表示。它表示单位质量流体所占有的体积。 7.流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用d表示。 8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。 9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。 10.可压缩流体:ρ随T 和p变化量很大,不可视为常量。 11.不可压缩流体:ρ随T 和p变化量很小,可视为常量。 12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。 13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变 化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。这个关系式称为牛顿内摩擦定律。 14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随dυ/d n而变化,否则称 为非牛顿流体。 15.动力粘度μ:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的 大小。 16.运动粘度ν:在流体力学中,动力粘度与流体密度的比值称为运动粘度,以ν表示。 17.实际流体:具有粘性的流体叫实际流体(也叫粘性流体), 18.理想流体:就是假想的没有粘性(μ= 0)的流体 第三章流体静力学 1.★流体的平衡:(或者说静止)是指流体宏观质点之间没有相对运动,达到了相对的平衡。 2.★绝对静止:流体对地球无相对运动,也称为重力场中的流体平衡。 3.★相对平衡:流体整体对地球有相对运动,但流体对运动容器无相对运动,流体质点之间也无相 对运动,这种静止或叫流体的相对静止★:体积力:作用于流体的每一个流体质点上,其大小与流体所具有的质量成正比的力。在均质流体中,质量力与受作用流体的体积成正比,因此又叫。 4.★表面力:表面力是作用于被研究流体的外表面上,其大小与表面积成正比的力。 5.★压强:在静止或相对静止的流体中,单位面积上的内法向表面力称为压强。 6.等压面:在静止流体中,由压强相等的点所组成的面。 7.★位置水头(位置高度):流体质点距某一水平基准面的高度。 8.压强水头(压强高度):由流体静力学基本方程中的p/(ρg)得到的液柱高度。 9.★静力水头:位置水头z和压强水头p/(ρg)之和。 10.压强势能:流体静力学基本方程中的p/ρ项为单位质量流体的压强势能。

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

流体力学重点概念总结

第一章绪论 表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。它的大小与作用面积成比例。剪力、拉力、压力 质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。重力、惯性力 流体的平衡或机械运动取决于: 1.流体本身的物理性质(内因) 2.作用在流体上的力(外因) 流体的主要物理性质: 密度:是指单位体积流体的质量。单位:kg/m3 。 重度:指单位体积流体的重量。单位: N/m3 。 流体的密度、重度均随压力和温度而变化。 流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。 流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。任何一种流体都具有粘滞性。 牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。 τ=μ(du/dy) τ只与流体的性质有关,与接触面上的压力无关。 动力粘度μ:反映流体粘滞性大小的系数,单位:N?s/m2 运动粘度ν:ν=μ/ρ 第二章流体静力学 流体静压强具有特性 1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。 2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。 静力学基本方程: P=Po+pgh 等压面:压强相等的空间点构成的面 绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs 相对压强:以当地大气压为基准起算的压强 P P=Pabs—Pa(当地大气压) 真空度:绝对压强不足当地大气压的差值,即相对压强的负值 Pv Pv=Pa-Pabs= -P 测压管水头:是单位重量液体具有的总势能 基本问题: 1、求流体内某点的压强值:p = p0 +γh; 2、求压强差:p – p0 = γh ; 3、求液位高:h = (p - p0)/γ

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

流体力学

()⊥ -++ +φφφ φφ1 4210 .01 Re 3 1Re 161 Re 8= 2 .0log 4.03 4 ∥ D C 其中,面积 颗粒在迎流方向上投影 计算颗粒表面积 等体积球横截面积 -2=∥φ 向上投影面积 计算颗粒在垂直迎流方 等体积球横截面积 =⊥φ The sphericity (Φ) represents the ratio between the surface area of the volume equivalent sphere and that of the considered particle, the cross-wise sphericity (Φ⊥) is the ratio between the cross-sectional area of the volume equivalent sphere and the projected cross-sectional area of the considered particle and the lengthwise sphericity (Φ||) is the ratio between the cross-sectional area of the volume equivalent sphere and the difference between half the surface area and the mean projected longitudinal cross-sectional area of the considered particle.

最新2-5有限元法在流体力学中的应用汇总

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

流体力学基础知识

流体力学基础知识 第一节 流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m 3。流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m 3,两者之间的关系为g ργ=,g 为重力加速度,通常g =9.806m/s 2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。 所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60℃下。 第二节 液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa 。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△F ,当△F 逐渐趋近于零时作用在△F 面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示

流体力学

第十一讲流体力学 我们通常所说的流体包括了气体和液体。流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。 一、理想流体 无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。 液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。 如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。理想流体是不可压缩又无粘性的流体。 二、静止流体内的压强 1.静止流体内一点的压强 首先,我们可以证明:在重力场中,过静止流体内一点的各不同方位无穷小的截面上的压强的大小都是相等的。这是流体内压强的一条重要的性质。基于这一点,我们对静止流体内的一点的压强作如下的定义:静止流体内的压强等于过此点任意一假想的微小截面上的压力与该截面的面积之比。 2.静止流体内压强的分布 a.在重力场中,静止流体内各等高点的压强相等。 b.沿直方向的压强的分布 在重力作用下,静止流体内的压强随流体高度的增加而减小。如果液体具有自由的表面,且自由表面处的压强为p0,则液体内部深度为h处的压强为 p=p0+ρgh (式中ρ为液体的密度) 对于气体来说,因密度很小,若高度范围不是很大,则可认为气体内各部分的压强

相关文档
相关文档 最新文档