文档库 最新最全的文档下载
当前位置:文档库 › 深层油气藏 - 7

深层油气藏 - 7

深层油气藏 - 7
深层油气藏 - 7

1. 深层油气藏

随着全球油气工业的发展,油气勘探地域由陆地向深水、目的层由中浅层向深层和超深层、资源类型由常规向非常规快速延伸,水深大于3000m的海洋超深水等新区、埋深超过6000m的陆地超深层等新层系、储集层孔喉直径小于1000nm的超致密油气等新类型,将成为石油工业发展具有战略性的“三新”领域。深层将是石油工业未来最重要的发展领域之一,也是中国石油引领未来油气勘探与开发最重要的战略现实领域。

关于深层的定义,不同国家、不同机构的认识差异较大。目前国际上相对认可的深层标准是其埋深大于等于4500m;2005年,中国国土资源部发布的《石油天然气储量计算规范》将埋深为3500~4500m的地层定义为深层,埋深大于4500m的地层定义为超深层;钻井工程中将埋深为4500~6000m的地层作为深层,埋深大于6000m的地层作为超深层。

尽管对深层深度界限的认识还不一致,但其重要性日益显现,目前,已有70多个国家在深度超过4000m的地层中进行了油气钻探,80多个盆地和油区在4000m以深的层系中发现了2300多个油气藏,共发现30多个深层大油气田(大油田:可采储量大于

6850×104t;大气田:可采储量大于850×108m3),其中,在21个盆地中发现了75个埋深大于6000m的工业油气藏。美国墨西哥湾Kaskida油气田是全球已发现的最深海上砂岩油气田,目的层埋深7356m,如从海平面算起,则深达9146m,可采储量(油当量)近

1×108t。

中国陆上油气勘探不断向深层-超深层拓展,进入21世纪,深层勘探获得一系列重大突破:在塔里木发现轮南-塔河、塔中等海相碳酸盐岩大油气区及大北、克深等陆相碎屑岩大气田;在四川发现普光、龙岗、高石梯等碳酸盐岩大气田;在鄂尔多斯、渤海湾与松辽盆地的碳酸盐岩、火山岩和碎屑岩领域也获得重大发现东部地区在4500m以深、西部地区在6000m以深获得重大勘探突破,油气勘探深度整体下延1500~2000m,深层已成为中国陆上油气勘探重大接替领域[1]。

中国石油天然气股份有限公司的探井平均井深由2000年的2119m增长到2011年的2946m,其中,塔里木油田勘探井深已连续4年超过6000m(见图1.1),且突破了8000m 深度关口(克深7井井深8023m);东部盆地勘探井深突破6000m(牛东1井井深

6027m)中国近10年来完钻井深大于7000m的井有22口,其中,2006年以来完钻19口,占86%目前钻探最深的井是塔深1井,完钻井深8408m,在8000m左右见到了可动油,产微量气,钻井取心证实有溶蚀孔洞,储集层物性较好,地层温度为175~180℃最深的工业气流井是塔里木盆地库车坳陷的博孜1井,7014~7084m井段在5mm油嘴、64MPa 油压条件下日产气251×104m3,日产油30t,属典型的碎屑岩凝析气藏;最深的工业油流井是塔里木盆地的托普39井,6950~7110m井段日产油95t、气1.2×104m3。

图1.1 中国石油探井平均井深变化图

深层油气资源潜力大,尤其是天然气资源,随着中浅层勘探程度的不断提高,油气勘探目标逐渐转向深层,本文以4500~6000m为深层标准,大于6000m为超深层标准,初步预测,中国石油探区范围内深层油气资源潜力为220×108~300×108t油当量,主要分布于碳酸盐岩、碎屑岩和火山岩3大领域,以气为主。

深层-超深层碳酸盐岩是未来勘探发展的重要接替领域,当前有塔里木盆地塔北南缘奥陶系岩溶发育区、塔里木盆地塔中奥陶系礁滩与岩溶发育区、鄂尔多斯盆地靖边气田周缘奥陶系岩溶发育区、四川盆地川东北二叠系-三叠系礁滩体发育区、四川盆地川东北石炭系白云岩富气区5大现实领域,勘探面积约10×104km2;有塔里木盆地麦盖提斜坡奥陶系岩

溶发育区、塔中-塔北下奥陶统白云岩、环满加尔凹陷寒武系台缘带,四川盆地川西二叠系白云岩区、雷口坡组风化壳区、震旦系-寒武系岩溶-白云岩区,鄂尔多斯盆地东部盐下白云岩及渤海湾盆地潜山8大接替领域,有利勘探面积约10×104km2。

深层碎屑岩资源潜力大,是未来深层油气勘探重要领域,当前有库车坳陷深层天然气、四川盆地须家河组天然气、准噶尔盆地腹部岩性地层油气3大现实领域,勘探面积

9×104~10×104km2接替领域有渤海湾盆地深层碎屑岩油气、塔里木盆地海相砂岩油气、准噶尔盆地深层致密砂岩气、塔里木盆地塔西南深层油气、吐哈盆地台北凹陷致密气、三塘湖盆地致密油、松辽盆地深层致密气,勘探面积约34×104km2。

深层火山岩具备规模成藏的基础和条件,具有较好的油气勘探前景现实领域有准噶尔盆地石炭-二叠系、松辽盆地侏罗系-白至系、三塘湖盆地石炭-二叠系、渤海湾盆地侏罗系-古近系,勘探面积14×104km2;接替领域有塔里木盆地二叠系、吐哈盆地石炭-二叠系、四川盆地二叠系,勘探面积17.5×104km2。

近年来,针对深层油气勘探开发技术需求,对超高温钻井液进行了重点研究,形成了超高温钻井液技术体系国内泡沫钻井液抗高温能力从150℃提高到350℃,形成了抗温350℃的水基泡沫钻井液技术,其抗温能力比国外聚合物成膜增黏泡沫钻井液技术高50℃。研发了超高温条件下成胶率高的抗超高温纳米有机土及配套的油基钻井液关键处理剂,形成了抗温250℃、密度2.60g/cm3的油基钻井液技术,达到国外同类技术水平,实现了国内油基钻井液处理剂基本配套,并且钻井液可回收利用同时研发了分子结构中含有高电荷官能团的高温保护剂,将水基钻井液抗温能力从180℃提高到240℃,形成了抗温240℃的水基钻井液技术,其抗温能力比国外同类技术系列高30℃,成本仅为国外技术的30%。

此外,中国钻机已适应超深井钻井需求2006年生产出9000m钻机,2007年又生产出12000m钻机,钻机生产能力为超深井勘探开发提供了条件。

1.1.1 深层油气藏主要分布

塔里木盆地深层油气藏主要分布

塔里木盆地位于新疆维合尔自治区南部,被天山山脉、昆仑山系、阿尔金山和喀喇昆仑山系环绕,面积56×104km2,总体上呈菱形块状,东西最长约1320km,南北最宽约720km。依据盆地基底顶面起伏将盆地划分为“三隆四坳”,即塔北隆起、中央隆起、塔南隆起、库车坳陷、北部坳陷、西南坳陷和东南坳陷[2],如图1.2所示。

图1.2 塔里木盆地构造单元划分

塔里木库车坳陷地质构造复杂,地层压力系数高,存在大段复合膏盐层,迪那和大北-克拉苏地区均为高温高压气井,这对后期的钻井、固井作业来说是巨大的挑战。同时,较高的地层压力对固井后的二界面胶结强度是很大的考验,由于常规钻井液滤饼不具备固化特性,在高温下脱水后没有胶凝结构,因而容易被地层高压流体破坏,从而形成窜流通道。塔里木油田部分区块井况见表1.1。

表1.1 塔里木油田部分区块井况资料

区块井类井深范围地层压力井口压力井底温度H2S情况

(Km)(MPa)(MPa)(℃)

塔中4 油 3.2~4.5 42.33

轮古油5~6 62.9 132 无

英买7 气 5.1~6.0 50~70 14~40 106 含量低

牙哈气 4.9~5.9 51~63 90~130 含量低

迪那2 气 4.7~5.4 105~111 90 131~150 无

克拉2 气 4.2~5.0 60~75 50~55 100 含量低

大北1 气 5.9~6.6 98 72~75 168 无

大北3 气 6.7~8.1 113~120 94~97 168 无

轮南油气平均4.76 62.9 120~140 无

1. 塔里木盆地主要深层油气藏

(1)塔河油田

塔河油田位于塔里木盆地北部,构造单元主要在阿克库勒凸起,并包括顺托果勒隆起的北部、哈拉哈塘凹陷东部及草湖凹陷西部。塔河油田为一个以大型奥陶系碳酸盐岩油藏为主的复合型油田。主要目的层系为奥陶系、石炭系和三叠系。

塔河油田所钻遇的地层层序多,地层复杂。塔河油田上部第三系库车组、康村组、吉迪克组砂、泥岩不等厚互层,胶结弱、成岩性差、可钻性好、砂岩渗透性高、泥岩以伊利石为主,水化分散性强烈,极易造成虚厚砂泥饼和胶粘性钻屑厚泥饼缩径。下部侏罗系、三叠系、石炭系地层砂、泥岩交叠,层理裂缝发育的硬脆性泥页岩和易水化膨胀分散的泥岩同存,同一地层水化性差异大,泥岩地层坍塌压力系数高于油气层孔隙压力系数,井壁受力不平衡等极易造成严重剥蚀掉块垮塌。

(2)大北气田

大北气田位于库车坳陷克拉苏构造带西端。主要目的层段为下白噩统巴什基奇克组,埋藏深(大于5600m),成岩性强。岩性为褐色中细砂岩、含砾砂岩,钙质含量高,一般为10%左右,最大可达15%。从上至下,粒度变粗。砂岩储层基质渗透率低(基质渗透率处于0.1×10-3-1×10-3μm2之间时为超低渗透率砂岩储层),总体上属于低孔低渗-特低孔特低渗储层,非均质性强[3]。库车前陆盆地构造单元划分及大北地区位置见图1.3。

图1.3 库车前陆盆地构造单元划分及大北地区位置

(3)克深气田

克深区块位于新疆阿克苏拜城县境内,地面海拔1300~2000m。构造位置为塔里木盆地库车凹陷克拉苏构造带克深区带克深1-克深2构造。完钻层位自变系巴什基奇克组,完钻原则为钻穿自变系巴什基奇克组240m完钻[4]。地质层位及岩性情况见表1.2。

表1.2 克深气田地质层位及岩性情况

地质时代层位底界深度层厚主要岩性描述(注明油气层位置)

N2k2940 2940 砂砾岩、泥岩、粉砂质泥岩新近系N1-2k4120 1180 粉砂质泥岩、泥岩

N1j4850 730 含砾细砂岩、泥岩夹粉砂岩

古近系

E2-3s5100 250 泥岩、含膏泥岩夹膏质泥岩E1-2km6665 1565 岩盐、泥岩层、泥膏岩

白垩系K1bs6990 325 粉砂岩、含砾细砂岩、泥岩

1.1.1.2 四川盆地主要深层油气藏

四川盆地西部是一个大型坳陷区-川西坳陷。川西坳陷面积近6×104km2,发育有巨厚上三叠统和侏罗系陆相碎屑岩地层。侏罗系蓬莱组气藏和沙溪庙组气藏是目前主力开发气藏,上三叠统须家河组气藏是目前深层天然气的主要勘探层系。川西坳陷受构造运动强烈挤压,沉积物严重致密化,油气成熟度高,储层孔隙度低,地层压力变化大,地下裂缝发育不均衡,渗流介质非均质性严重,气藏属致密砂岩孔隙-裂缝型双重介质。油气分布见图1.4。

图1.4 四川盆地油气田分布(据四川石油局资料补充)

1. 普光气田

四川盆地普光气田是四川盆地发现的最大气田,也是我国海相碳酸盐岩层系最大的气田,还是四川盆地埋藏深度最大、资源丰度最高、储层性质最好、优质储层最厚、天然气中硫化氢含量最高、天然气干燥系数最大的整装气田。

普光气田位于四川省东北部大巴山南麓,为双石庙-普光北东向构造带上的一个鼻状构造。截至2006年底,探明普光气田含气面积约28km2,可采储量2511×108m3,是四川盆地目前己发现的国内规模最大、丰度最高的特大型整装海相气田。普光气田于2009年10月顺利投产,现己建成年产80亿m3混合天然气的生产能力。

2. 龙岗气田

四川盆地北面是米仓山隆起带,南面是娄山褶皱带,东面是川鄂湘黔褶皱带,西面是龙门山褶皱带。龙岗构造位于仪陇-平昌地区,该构造具有基底固结早、刚性强的特点。

龙岗地区地层平缓,地层倾角普遍都小于10°,发育有弱褶皱,总体上为NW-SE向和NE-SW向排列,呈弧形。区内发育有世界上规模最大的生物礁地震异常体,位于龙岗构造的西侧,在地震剖面上表现为同期岩隆特征。岩隆分布在96YP02线~96YP013线之间,长约40km,宽约4~6km,呈北西-南东向展布,厚度大于330m,发育有生物礁,分布面积为184.28km2。龙岗岩隆条带顶界面海拔在-5400~-6200m之间,其中,具有典型岩隆外貌特征的96YP011线显示的上二叠统厚度为440m,属于岩隆条带埋藏最低点和礁体的最大增厚点,与下三叠统底界低幅圈闭的构造高点重合性较好[5]。

3. 高石梯气田

高石梯构造位于四川省安岳县境内,2011年开始进行勘查,以预探井、探井为主,多为直井,主产层为灯影组,一般井深都在5000m以上,部分龙王庙组专层井,井深在4500m以上。地层结构十分复杂,高温、高压、且多个地层含硫。主要体现在浅层垮塌及漏失,开钻地表可能发生严重垮塌。表层钻井深度及套管下深,很大程度影响着二开的钻井速度。上部地层沙溪庙及凉高山垮塌严重、掉块多、扭矩大。自流井组及须家河组地层软硬交错,可钻性差,钻井扭矩大。

雷口坡至嘉陵江含大段石膏层,易缩径卡钻。茅口组至灯影组地层,龙潭、分乡组、南津关岩性泥质重、塑性强,PDC钻头难以吃入,机械钻速低。沧浪铺上部、灯四中下部和灯三及部分井的高台,地层石英含量重、研磨性特别强,钻头磨损严重,寿命短。潭组泥页岩易发生应力垮塌,掉快多。笨竹寺至灯四段压力差异大,地层压力系数相差0.8以上,界而确定不准,用高密度钻井液进入灯四顶部后,压漏地层发生严重井漏。栖霞至灯影组地层井漏严重,可钻性差,小井眼单只钻头进尺短,机械钻速低。采用复合钻具、小钻具,易发生井漏、垮塌卡钻、上叶下泻等,风险大,处理事故复杂难度高。

1.1.1.3 大庆徐深[6]

徐深气田位于黑龙江省大庆-安达境内,南北长约45km,东西宽约10km,区域构造上处于松辽盆地北部深层徐家围子断陷区中部,从南向北由兴城、昌德、升平、汪家屯4个区块构成,储集层分布在下白至统营城组一段和三段,以酸性喷发岩为主。目前,已具千亿方天然气储量规模,其中火山岩储集层储量占89.8%,是大庆油田天然气开发的主要领域。徐深气田位置图见图1.5。

图1.5 徐深气田位置图

徐家围子地区火山岩储层深度在3000~5000m[7],岩性类型多样,包括凝灰岩、安山岩、玄武岩、流纹岩等。火山岩储集物性受火山岩喷发时的岩性、岩相及后期改造作用影响较大。强烈的构造运动,使得非常致密的火山岩产生形态各异的天然裂缝,这些天然裂缝与地层中的原生孔隙、次生孔隙、溶洞进行空间组合,形成千变万化的复杂孔隙介质地层。储层类型比较丰富,在深层各个层位存在着不同的五大类储层类型,分别为砂岩、砂

砾岩、火山岩、花岗岩及变质岩等。不同类型的储层,结构特征、渗流特征也不一样。同一类型的储层,地层物性、产量等也存在很大差别。储层含气性差异大,横向非均质性强。不同的火山岩储集空间组合,归结为裂缝、孔隙及复合型3种。孔隙度较低(一般为0%~12%),泥质含量平均为10.8%。

1.1.1.4 南海莺歌海

南海北部边缘盆地广阔,主要分布有北部湾、莺歌海、琼东南、珠江口及台西南等5大盆地,海域水深在50~3000m之间。其中,陆架浅水盆地(水深<500m)与陆坡深水盆地(水深>500m)展布规模大体相当。油气勘探表明,南海北部边缘盆地具有巨大的油气资源潜力及勘探前景。通过半个世纪的油气勘探,尤其是近20多年的对外合作与自营油气勘探,迄今在陆架浅水盆地已发现多个大中型油气田,且大部分已投入开发,目前该区年产天然气和原油分别为60×108m3和1700×108t,其油气(当量)产量已占中国近海陆架盆地一半以上[8]。

图1.6南海北部大陆边缘主要沉积盆地分布

东方13-2气田是近期在莺歌海盆地发现的超压大气田[9],己探明天然气地质储量近700×108m3。产层黄流组一段是邻近莺西斜坡的盆内坡折带所控制的重力流海底扇沉积,发育向东方1-1底辟构造翼部上超尖灭的构造弓含性圈闭,水道砂分布广、厚度大、物性优,岩心平均孔隙度17.3%,平均渗透率42.3mD,为高温超压弹性边水大气藏,天然气组分优良。

1.1.2 深层油气井钻井难点

陆上油气勘探开发正向着超深层领域发展,钻遇的超深井普遍存在着压力系统复杂、地层岩性复杂、储层流体复杂、工程力学复杂等工程地质特征。钻井工程面临着设计优化难、施工风险大、钻井速度慢、工程质量控制难度大等技术问题。在钻井施工中表现为钻井周期长、复杂情况和故障多、工程投资大,甚至有些井难以钻达目的层。根据我国深层油气藏分布及地质情况,我国深层油气藏钻井难点有以下方面:

1.区域地质条件极为复杂。塔里木山前地质复杂,部分地区含有CO2、H2S,地层倾角大,很多地区高达30~85°,地层压力、应力复杂,裂缝广泛发育及特殊岩性的不规则分布等问题,给工程设计与施工带来很多难度;剑门1井和龙岗地区的己钻井都表明雷口坡组-长兴组井段含有硫化氢,实测长兴组和飞仙关组的硫化氢含量大多数超过30g/m3。剑门1井长兴组的硫化氢含量为86~88g/m3,雷口坡组在钻进过程中也出现了硫化氢。长兴组储层最高压力超过100MPa,温度120℃以上,属于“三高”气井范畴[10-11]。

2.多套压力系统下的井身结构设计困难。纵向上分布压力系统多,例如,普光气田剑门关组-沙溪庙组属于正常压力地层,须家河组-龙潭组地层压力较高,其中在须二段可能会钻遇异常超高压CO2气层,嘉二段地层含有异常高压盐水层。例如,剑门1井在须二段钻遇异常超高压气层,使用钻井液最高密度为2.45g/cm3;邻区构造龙4井在嘉二段钻遇异常高压盐水层,地层压力系数为1.8~2.1。同时受低承压层、破碎带等影响,井身结构优化设计难度大;超深井上部套管尺寸较大、下深较深,套管抗挤与抗内压强度往往达不到要求[12]。

3.地层埋藏较深,岩石强度高、地层坚硬、研磨性强、可钻性差,机械钻速低。川东北元坝地区上部陆相地层自流井须家河、西北麦盖提地区开派兹雷克组玄武岩地层硬度一般在2000~5000MPa之间,可钻性级值6~10级;普光气田地层研磨性强、可钻性差。自流井组、须家河组地层岩性由页岩、细砂岩及砂砾岩组成,可钻性级值达到7级以上,地层研磨性强、可钻性差。实钻显示机械钻速非常低,单只钻头进尺少且使用寿命短。

4.高温条件下钻井液粘土分散、絮凝、钝化,超高密度钻井液体系流变性和稳定性变差,裂缝发育地层在高密度钻井液条件下易引发漏失问题;钻井液体系维护困难。塔里木目前已钻的大部分井使用的是欠饱和盐水、磺化防塌钻井液体系[13],主要存在以下问题:钻遇高温高压地层时,难以兼顾失水量和流变性这两个指标;抗污染能力低,性能不稳定,维护周期短;抑制性不能满足应力性坍塌地层稳定井壁的需要;发生漏失易损害油气层。

5.天然气储层埋藏深、地层压力高、高含硫化氢和二氧化碳、纵向上分布多套压力体系,固井压稳防气窜、水泥石防腐蚀难度大。普光气田高含H2S等有毒气体,井控难度大,风险大。实钻显示雷口坡组-长兴组海相地层含有H2S,其中飞仙关组和长兴组地层

H2S含量已超过30g/m3。例如,剑门1井显示长兴组H2S含量达到8087g/m3。另外,井底最高地层压力超过110MPa、温度在150℃以卜,属于油气井领域典型的“三高”气井。高温、高压及高含H2S将会给钻井液体系、钻井液高温稳定性及固井水泥浆提出了更高标准的要求;大庆油田深井产层以天然气为主,并含有CO2,其含量最高可达90%,CO2在有水或相对湿润的环境下,对套管及水泥会产生严重的腐蚀破坏作用,可导致水泥环渗透率变大、抗压强度降低,甚至会失去封隔作用。

6.井壁失稳严重。部分地层为裂缝性地层,极易发生井漏。普光1井在89~154m井段出现5次井漏,共漏失泥浆164m3。龙岗西部地区出露地层为自要系下统剑门关组,岩性以砂砾岩为主,胶结疏松,表层发生窜漏和垮塌的可能性极大。高石1、2及磨溪8井[14]实钻证实,上部侏罗系地层井壁稳定性差,地层易垮塌,产水、产油,气体钻井提速优势难以发挥(特别是沙溪庙-珍珠冲)。同时,上部侏罗系地层砂泥岩交互频繁,岩石强度与可钻性差异大,加之大尺寸井眼,在不能实施气体钻井时其钻井速度也很低。有的地区地层极易坍塌而被迫提高钻井液密度,也大大影响了钻井速度。

7.勘探发现与储层保护困难。松辽盆地火山岩气藏岩性复杂[15],储集空间类型多样,火山岩岩性识别、岩相划分、储层流体解释等方面难度比较大;营城组火山岩、凝灰岩和角砾岩等裂缝性地层储层保护困难;莺歌海组二段到黄流组上部的泥岩段易水化[16],易造成井眼水化膨胀、岩屑成团、成球,从而发生起钻困难等复杂情况。同时,高压目的层井段钻井液密度高,固相含量高,泥饼虚厚,易造成储层污染而影响油气发现。

1.1.3 深层油气井固井难点

固井技术,作为钻井工程中重要的环节,主用是用于对井眼内的油层、气层和水层进行封隔,起到保护套管、延长油气井寿命和提高产量的目的。由于我国地层情况复杂,在东部地区,主要是进行老区挖潜和对深层油气田的开发,在西部,则主要是进行深井和超深井的开发,而海洋勘探也由浅海发展到深海领域,复杂的地形和井身给固井作业带来了很大的难度,从而影响了固井质量的提高。在深井、超深井固井中,超高温、超高压等诸多因素导致固井质量一直无法满足要求,深井固井还是存在着不少问题。以下对存在的问题做个简单的介绍。

1.井深且井身结构复杂,特殊井身结构存在封固段长和间隙窄的难题[17]。例如,为保证气层开发,根据完井方案的要求,普光气田要求采用特殊尺寸井身结构[18]。采用φ311.1或φ314.3mm钻头钻进,下入φ273.1mm技术套管,套管本体环空间隙只有20mm,接箍的环空间隙则不到15mm。同时由于需要封固陆相地层,套管鞋深度在3600~4600m,属于典型的窄间隙长封固段固井。在此情况下,易导致顶替效率过低和流动阻力过大。

2.地层压力大、井底温度高。大多数深井的井底温度都超过了120℃。温度严重影响着水泥浆的性能,成了固井设计中首先要考虑的因素。井越深,从井口到井底温度变化越大.水泥浆性能越不易控制,而且井下高温对水泥石强度也会产生影响。例如,大庆油田地温

梯度为3.8~4.1℃/100m,井深达到5000m,最高温度可能超过200℃[19]。每级固井水泥浆上下温差65~85℃,对水泥浆的稠化时间、失水、强度等性能要求高,既要保证施工安全,又要保证水泥浆“直角”稠化。同时高温对完井工具及套管附件的抗高温性能提出了更高的要求。

3.封固段长、注替量大、施工泵压高。例如,大庆油田深层气井平均井深约4000m,采用密度1.90g/cm3水泥浆连续双级注水泥工艺封固全井,每级封固井段长约

1700~2300m[20]。即便采用重浆顶替技术,最高施工压力也高达20MPa,对固井设备和钻井循环系统的耐压性能提出了更高的要求。同时,封固段长,上部温度低,上下温差大,达50℃以上,给水泥浆设计带来困难。

4.钻遇多套复杂地层。上部存在多套压力体系,安全密度窗口极窄。井越深,钻遇复杂地层的可能性越大。特别是当同一裸眼井段存在两套或多套压力体系时,易出现上漏下涌、上涌下漏等现象,给固井施工带来了一定难度。例如,普光气田海相地层的破裂压力当量密度为1.70g/cm3,安全窗口较窄,容易发生漏失,水泥浆密度选择困难。水泥浆与钻井液密度差过小,易发生失重,使水泥浆柱不能压稳气层,发生气窜。

5.深井地层气体对套管的腐蚀问题。深井经常钻遇H2S,CO2,H2,等有害气体,不仅危害到人的生命,也会腐蚀套管而影响油井寿命,须进行抗腐蚀外加剂及水泥浆体系的研究。例如,普光气田储层的H2S含量达15%,CO2含量达8%,为典型的酸性腐蚀环境。酸性气体在潮湿环境下会腐蚀水泥环,对水泥环和套管的抗腐蚀性能要求高。由水泥环密封性降低引起的毒性气体泄漏,对气田生产安全和周围人民群众生命财产安全带来极大隐患。

6.井眼质量差,井径不规则及套管居中度低。例如,大庆油田由于火山岩属脆性地层,井壁易掉块,稳定性差。目的层井段平均井径达250.81mm,井径扩大率达16.17%。在施工压力高,顶替排量受限的情况下,给顶替效率的提高带来了很大的困难。同时水泥量不易控制,尤其是采用“淹没”式双级注水泥工艺时,洗出多余水泥浆时,会给一、二界面的泥饼及钻井液造成不同程度的污染,影响二级固井质量;套管居中困难,普光气田的开发井以定向井和水平井为主,水平位移都在1000m以上,套管在斜井段和水平段难以居中,影响了水泥浆的顶替效率。

参考文献

[1]孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,06:641-649.

[2]许雯婧. 塔里木油田钻固一体化工作液体系研究[D].西南石油大学,2013.

[3]张博,李江海,吴世萍,陈德友,袁克学,巴旦. 大北气田储层裂缝定量描述[J]. 天然气地球科学,2010,01:42-46.

[4]李元轩,赵重阳,耿智,梅峰龙,杨炜. 克深区块山前井提速方案实施评价与研讨[J]. 西部探矿工程,2013,11:86-88.

[5]王洋. 龙岗地区侏罗系大安寨段碳酸盐岩储层测井评价方法研究[D].中国石油大学(华东),2012.

[6]徐正顺,王渝明,庞彦明,舒萍,高翔,艾兴波. 大庆徐深气田火山岩气藏储集层识别与评价[J]. 石油勘探与开发,2006,05:521-531.

[7]孙刚,马光,朱艳霞. 大庆油田深层火山岩气藏压裂技术研究[J]. 西部探矿工程,2009,08:52-54+58.

[8]朱伟林,张功成,高乐. 南海北部大陆边缘盆地油气地质特征与勘探方向[J]. 石油学报,2008,01:1-9.

[9]于俊峰,裴健翔,王立锋,朱建成,张伙兰. 莺歌海盆地东方13-2重力流储层超压气田气藏性质及勘探启示[J]. 石油学报,2014,05:829-838.

[10]邹灵战,葛云华,张军,汪海阁,黄建章. 龙岗地区复杂压力层系下非常规井身结构设计与应用[J]. 石油学报,2012,S2:189-196.

[11]谭茂波,何世明,邓传光,米光勇,高德伟,王强. 龙岗西地区首口非常规超深井钻井技术[J]. 石油钻采工艺,2015,02:19-23.

[12]闫光庆,张金成,赵全民. 普光气田超深井钻井技术的进步与思考[J]. 探矿工程(岩土钻掘工程),2013,06:38-42.

[13]李元轩,赵重阳,耿智,梅峰龙,杨炜. 克深区块山前井提速方案实施评价与研讨[J]. 西部探矿工程,2013,11:86-88.

[14]张军,聂福贵. 磨溪高石梯区块震旦系探井钻井提速技术措施与效果[J]. 钻采工艺,2013,06:24-27+2.

[15]陈安明,张进双,白彬珍,陈天成. 松辽盆地深井钻井技术难点与对策[J]. 石油钻探技术,2011,04:119-122.

[16]李炎军,吴江,黄熠,罗鸣. 莺歌海盆地中深层高温高压钻井关键技术及其实践效果[J]. 中国海上油气,2015,04:102-106.

[17]张宏军. 深井固井工艺技术研究与应用[J]. 石油钻探技术,2006,05:44-48.

[18]李铁成,周仕明. 普光气田整体固井工艺技术[J]. 石油钻探技术,2011,01:78-82.

[19]张书瑞,郭盛堂,何文革,卢胜,张春明. 大庆油田深层气井固井技术[J]. 石油钻探技术,2007,04:56-58.

第五章油气聚集及油气藏的形成

第五章油气聚集及油气藏的形成 第一节圈闭和油气藏概述 圈闭与油气藏概述》 一、圈闭的基本概念 1.圈闭的概念 适合于油气聚集、形成油气藏的场所,称为圈闭。圈闭是由三部分组成:(1) 储集层; (2) 盖层;(3) 阻止油气继续运移,造成油气聚集的遮挡物,它可以是盖层本身的弯曲变形,如背斜;也可以是另外的遮挡物,如断层、岩性变化等。 2.圈闭的度量 圈闭的大小和规模往往决定着油气藏的储量大小,其大小是由圈闭的最大有效容积来度量。圈闭的最大有效容积表示该圈闭能容纳油气的最大体积。因此,它是评价圈闭的重要参数之一。 (1) 溢出点 流体充满圈闭后,开始溢出的点,称圈闭的溢出点(图5-1)。 (2) 闭合面积 通过溢出点的构造等高线所圈出的面积,称该圈闭的闭合面积。闭合面积愈大,圈闭的有效容积也愈大。圈闭面积一般由目的层顶面构造图量取。 (3) 闭合高度 从圈闭的最高点到溢出点之间的海拔高差,称该圈闭的闭合高度。闭合高度愈大,圈闭的最大有效容积也愈大。 必须注意,构造闭合高度与构造起伏幅度是两个完全不同的概念。闭合高度的测量,是以溢出点的海拔平面为基准。而构造幅度的测量,则是以区域倾斜面为基准。同样大小构造起伏幅度的背斜,当区域倾斜不同时,可以具有完全不同的闭合高度。 (4) 有效孔隙度和储集层有效厚度的确定 有效孔隙度值主要根据实验室岩心测定、测井解释资料统计分析求得,做出圈闭范围内的等值线图。储集层有效厚度则是根据有效储集层的岩电、物性标准,扣除其中的非渗透性夹层而剩余的厚度。 (5) 圈闭最大有效容积的确定 圈闭的最大有效容积,决定于圈闭的闭合面积、储集层的有效厚度及有效孔隙度等有关参数。其具体确定方法,可用下列公式表示: V=F·H·P 式中V--圈闭最大有效容积,m3; F--圈闭的闭合面积,m2; H--储集层的有效厚度,m; P--储集层的有效孔隙度,%。

深层油气藏

1. 深层油气藏 随着全球油气工业的发展,油气勘探地域由陆地向深水、目的层由中浅层向深层和超深层、资源类型由常规向非常规快速延伸,水深大于3000m的海洋超深水等新区、埋深超过6000m的陆地超深层等新层系、储集层孔喉直径小于1000nm的超致密油气等新类型,将成为石油工业发展具有战略性的“三新”领域。深层将是石油工业未来最重要的发展领域之一,也是中国石油引领未来油气勘探与开发最重要的战略现实领域。 关于深层的定义,不同国家、不同机构的认识差异较大。目前国际上相对认可的深层标准是其埋深大于等于4500m;2005年,中国国土资源部发布的《石油天然气储量计算规范》将埋深为3500~4500m的地层定义为深层,埋深大于4500m的地层定义为超深层;钻井工程中将埋深为4500~6000m的地层作为深层,埋深大于6000m的地层作为超深层。 尽管对深层深度界限的认识还不一致,但其重要性日益显现,目前,已有70多个国家在深度超过4000m的地层中进行了油气钻探,80多个盆地和油区在4000m以深的层系中发现了2300多个油气藏,共发现30多个深层大油气田(大油田:可采储量大于6850×104t;大气田:可采储量大于850×108m3),其中,在21个盆地中发现了75个埋深大于6000m的工业油气藏。美国墨西哥湾Kaskida油气田是全球已发现的最深海上砂岩油气田,目的层埋深7356m,如从海平面算起,则深达9146m,可采储量(油当量)近1×108t。 中国陆上油气勘探不断向深层-超深层拓展,进入21世纪,深层勘探获得一系列重大突破:在塔里木发现轮南-塔河、塔中等海相碳酸盐岩大油气区及大北、克深等陆相碎屑岩大气田;在四川发现普光、龙岗、高石梯等碳酸盐岩大气田;在鄂尔多斯、渤海湾与松辽盆地的碳酸盐岩、火山岩和碎屑岩领域也获得重大发现东部地区在4500m以深、西部地区在6000m以深获得重大勘探突破,油气勘探深度整体下延1500~2000m,深层已成为中国陆上油气勘探重大接替领域[1]。 中国石油天然气股份有限公司的探井平均井深由2000年的2119m增长到2011年的2946m,其中,塔里木油田勘探井深已连续4年超过6000m(见图1.1),且突破了8000m 深度关口(克深7井井深8023m);东部盆地勘探井深突破6000m(牛东1井井深6027m)中国近10年来完钻井深大于7000m的井有22口,其中,2006年以来完钻19口,占86%目前钻探最深的井是塔深1井,完钻井深8408m,在8000m左右见到了可动油,产微量气,钻井取心证实有溶蚀孔洞,储集层物性较好,地层温度为175~180℃最深的工业气流井是塔里木盆地库车坳陷的博孜1井,7014~7084m井段在5mm油嘴、64MPa油压条件下日产气251×104m3,日产油30t,属典型的碎屑岩凝析气藏;最深的工业油流井是塔里木盆地的托普39井,6950~7110m井段日产油95t、气1.2×104m3。 图1.1 中国石油探井平均井深变化图

圈闭和油气藏类型的识别

圈闭和油气藏类型的识别练习 要求:(一)阅读各图构造等高线及储层分布图。在平面图上找出溢出点位置(用字母C表示),圈定闭合面积,计算闭合高度,确定圈闭及油气藏类型,并写出结果。 (二)结合储集层分布的变化及油气水分布情况,绘制给定剖面线的圈闭和油气藏横剖面。 练习题: 图1—1 某油层顶面构造图 1—正断层;2—油层顶面等高线;3—产气井;4—产油井;5—产水井;6—剖面线; A区:油气藏类型:背斜油气藏;闭合度:h=70m;油柱高度:h o= 40m ;气柱高度:h g= 35m ;B区:油气藏类型:断块油气藏;闭合度:h=85m;油柱高度:h o= 40m;气柱高度:h g= 10m ;(??) E区:油气藏类型:断块油气藏;闭合度:h=45m;油柱高度:h o=20m;气柱高度:h g=10m;

图1—2 某油层顶面C—D剖面图 图2—1 某地层底面构造图及其下伏油层等厚度图 1—某地层顶面等高线(m);2—储层等高线(m);3—产气井;4—产油井;5—产水井;6—剖面线油气藏类型:透镜体油气藏;闭合度:h=160m;油柱高度:h o=80m;气柱高度:h g= 40m ; 图2—2某油层F—E剖面线横剖面图 纵比例尺:1:4000

1—砂层所在地层顶面等高线(m);2—砂层尖灭线;3—砂层等厚线(m);4—剖面线

图3—2 某区地层A—B剖面线横剖面图 纵比例尺:1:4000 图4—1 某区砂层构造图及不整合面等高线图 1—不整合面等高线(m);2—某砂层顶面等高线(m);3—某砂层侵蚀终止线;4—剖面线 图实4—2 某区砂层P—Q剖面线横剖面图 纵比例尺:1:5000

低渗透油气藏的开发与研究

低渗透油气藏的开发与研究 低渗透油气资源是未来我国油气能源的主要来源。在开发低渗透油气藏方面需要继续创新理论,加大技术研发,提高油气开发效率。本文针对目前低渗透油气藏的开发现状,油气资源分布及特点等,对低渗透油气藏开发技术予以研究。 标签:低渗透;油气藏;开发;研究 我国的经济正在快速发展,生产规模也越来越大,国民的经济水平不断提高,对生活质量的要求也在不断增长,这些都导致我国的石油需求越来越大。但是,我国的石油资源有限,石油的开采不能满足经济社会发展的需求,这就加剧了石油供给与需求的矛盾。因此,多年来,我国一直在大量的进口石油,且每年的进口量在不断地增长,但近年来,国际局势变化莫测,对我国石油进口的影响产生了不利影响。这会严重影响我国的经济发展与人民的正常生活。在这种情况下,我国必须加强国内的石油勘探,提高石油开采技术,缓解我国的石油需求压力。 1 我国低渗透油气藏的开发现状 1.1 油气藏 油气藏是衡量聚集程度的基本单位,通常一个单位的油气藏聚集在地壳内的一个独立圈闭内。聚集于一个圈闭内的油气在统一的压力系统内按照一定的规律分布。油气藏的形成需要一定的必备条件,首先就需要有充足的油气来源,还需要一定的保存条件和有效的圈闭。另外,必须要有生储盖组合。 1.2 低渗透油气资源 低渗透油气是一种流动性较差,渗透率低于50毫平方微米,开采难度比较大的油气资源。我国有超过45%的油气属于低渗透油气,对低渗透油气资源的开发是缓解我国石油压力,保证国民生活的重要手段。因此,不断研发和创新低渗透油气资源的勘测与开发技术,是当前油气资源开发领域急需解决的问题。 我国的低渗透油气资源开发开始于1995年的安塞特低渗透油田开发,经过20多年的不断探索,油气资源勘探领域的工作人员不断勘探出了我国很多低渗透油气资源。同时,低渗透油田勘探、开发的技术也在不断创新与发展,当前我国对于低渗透油气资源的勘探与开发逐渐形成了一套完善的方案,这有助于提升我国低渗透油气资源的开发水平[1]。 根据目前的勘探,我国已探明低渗透油气资源主要分布在东北、新疆等地区。从地质的分布层来看,我国超过80%低渗透油气资源分布在中生代和新生代的陆相沉积中。近年来,对低渗透油气资源的开发也在不断增加,仅2017年我国低渗透油气藏中原有与天然气的开发分别在油气开发总量中占到36%和55%。随着油气需求的不断增加,未来低渗透油气藏的开发将在油气开发中占据更重要的

成藏分析

准噶尔盆地车排子地区油气成藏分析从油气成藏角度看,该区至少存在早侏罗世(或更早)、早白垩世、新近纪-现今三个主要成藏期。前两次成藏属于早期成藏(印支—燕山期),油气主要来自昌吉凹陷及盆1井西凹陷二叠系;新近纪-现今成藏属于晚期成藏(喜山晚期),油气主要来自昌吉凹陷侏罗系。两期成藏与原油性质关系密切:①成藏期晚,遭到破坏的时间短,油性好;②埋藏深度浅,受到地下水和生物的影响越大,如排203井沙湾组油层浅于950m,有降解,排2井深于950m,为正常轻质油;③早期油和晚期油混合,油性会介于两者之间。 (2)保存(封盖)条件对油藏的影响 车排子凸起区地层埋藏浅,保存条件的好坏对油气能否成藏意义重大,研究表明,塔西河组及沙湾组泥岩的封盖作用对沙湾组岩性体油藏的成藏起到重要的保存作用。另外,泥岩封盖能力的好坏直接关系到油藏的性质: 根据该区岩心泥质岩盖层分析资料,同是沙湾组上段的泥岩盖层,属于排2油藏的排206井990m泥质岩突破压力为3.0MPa(饱含煤油),渗透率0.017×10-3μm2,具备一定封油能力,封气能力一般;而在其北面的属于排6油藏的排602井520.8m泥质岩突破压力为0.5MPa(饱含煤油),渗透率0.812×10-3μm2,封油能力较弱,不具备封气能力。与此对应的前者油藏为轻质油,平均原油密度0.8059g/cm3,天然气微量,气中缺少甲烷、乙烷等轻烃组分,压力系数为1.024,水型为Cacl2型,平均总矿化度104330.36 mg/L;而后者油藏主要为稠油,原油密度为0.9807 g/cm3,原油粘度214000Pa.s。由此可见深度不同泥岩的封盖能力也不同,而保存条件的好坏对车排子凸起区的油气成藏十分关键,直接影响到油气含量和物性。 气和油的物理化学特性存在差别,气较油而言,对储层要求较油低,而对盖层的要求又比油要高,当上覆盖层无法提供有效的封闭时,即使有大量的气注入也无济于事。虽然沙湾组油藏目前是轻质油藏,但从所处的构造位置看,盖层无法对油提供长期有效的封堵和保护,在经历一个较长的地质时间后,有可能散失和降解,变成和下面的稠油一样,只是由于充注晚、充注快,气大多散失了,而轻质油散失的速度较慢,并可能还在接受源源不断的充注,如同“有洞轮胎”的“边打气边慢撒气”,成藏可能是一个动态过程(一边泄漏一边补充)。因此,车排子地区出现轻质油藏有其特定的地质条件,即侏罗系烃源岩成熟期晚、高效输导和快速埋藏形成的一定保存条件等几个因素复合作用的结果。 (3)运移条件对成藏的影响 车排子凸起区在排12与排18井之间存在一个近南北向的“梁子”,该梁子虽然整体幅度不高,但是以石炭系基岩潜山为基础的披覆的鼻状隆起,对油气自东向西的运移有阻隔作用,可能导致油气难以运聚至梁子以西地区,另一方面,东侧运移过来的油气可能沿着该梁子向北部高部位运移,并在该梁子消失部位(排8—排2井区)聚集成藏。 而对排16井及排20井沙湾组岩性体圈闭来说,圈闭落实程度高,储层物性好,砂体上下的泥岩封堵层也存在,但由于缺乏断开沙湾组下部厚层砂岩段这一油气主力输导层的断层,油气难以运移至圈闭中成藏,因而这两个圈闭的钻探相继落空。 综上所述,是否具备良好的油气运移通道也是车排子凸起区油气能否成藏的关键因素之一。 四油气运移输导体系分析 车排子凸起地层缺失严重,地层埋藏浅,其本身的烃源岩不发育,不具备生烃能力。但该凸起周围与多个生烃凹陷相邻,且长期处于隆起状态,是油气运移的有利指向区,为周围深洼区生成的油气提供了有利“聚油背景”。油源对比已经证实,车排子地区已经发现的油气主要来自昌吉凹陷的二叠系及侏罗系烃源岩。另外,盆1井西凹陷的二叠系及四棵树凹陷的

连续型油气藏形成条件与分布特征.

连续型油气藏形成条件与分布特征摘要:随着油气藏勘探的不断深入,岩性油气藏勘探从有明显圈闭型的油气藏,进入大规模连片储集体系的连续型油气藏;地层油气藏从东部盆底基岩潜山油气藏,进入中西部大型不整合面控制的大规模地层油气藏。根据圈闭是否具有明确界限和油气聚集分布状态,把油气藏分为常规圈闭型油气藏和非圈闭连续型油气藏两大类,明确了连续型油气藏内涵,阐述了其主要地质特征。大型浅水三角洲体系及其砂质碎屑流砂体是连续型油气藏形成和大面积分布的地质基础,成岩相定量评价是低—特低孔渗连续型储层评价的重要方法。在湖盆中心陆相沉积上,建立了以鄂尔多斯盆地长6组为代表的湖盆中心深水砂质碎屑流重力成因沉积模式,拓展了中国湖盆中心部位找油新领域;在储层评价上,以四川盆地须家河组为例,系统提出了成岩相内涵、分类和评价方法,运用视压实率、视胶结率和视溶蚀率等参数定量表征成岩相,为落实有利储集体分布提供了理论依据和工业化评价方法。中国连续型油气藏储量规模与潜力很大。21世纪以来,随着中国陆上油气勘探总体从构造油气藏向岩性地层油气藏的转变,岩性地层大油气田目前已进入发现高峰期,相继在松辽盆地、渤海湾盆地、鄂尔多斯盆地、四川盆地、准噶尔盆地和塔里木盆地等发现了多个亿吨级以上的大型岩性地层油气田,展示出较大的勘探潜力。目前岩性地层油气藏已经成为中国陆上最重要的勘探领域和储量增长的主体,2003年以来,中国石油天然气股份公司岩性地层油气藏探明储量占总探明储量的比例已达到60%~70%。其中连续型油气藏将是今后该勘探领域的

重中之重。随着岩性地层油气藏勘探的不断深入,油气勘探实践中迫切需要针对湖盆中心大规模连片厚砂岩形成机制与分布,大面积低渗透率背景下有利储层发育主控因素与定量评价方法,大型地层油气藏成因类型与成藏机制,大范围连续型油气藏形机理、富集规律与储量规模等关键地质问题进行深入研究。 关键词:岩性油气藏;地层油气藏;连续型油气藏;大型浅水三角洲;砂质碎屑流;成岩相 1大型浅水三角洲的沉积模式 大型浅水三角洲连片砂体是连续型油气藏形成连片大油气区的地质基础。随着松辽盆地和鄂尔多斯盆地等大型坳陷湖盆的深入勘探,浅水三角洲及湖盆中心砂体已成为中国陆相盆地岩性油气藏勘探的重要目标。大型浅水三角洲形成所需的条件有:相对较浅的水体、稳定的构造背景、平缓的坡度及充足的物源。例如松辽盆地下白垩统青一段沉积期湖相面积可达8. 7×104km2,嫩江组一段湖相面积可达15×104 km2,且最大湖扩期深水区的水深仅30~60m。浅水三角洲的主要特征是:①水体相对较浅;②砂体宏观叠合连片,大面积分布;③水下分流河道很发育,延伸较远;④河口坝被后续河流冲刷而不易保存。鄂尔多斯盆地中生界延长组长8段是较为典型的浅水三角洲。在盆地周边露头剖面上可发现长8段三角洲平原河道砂体规模较大,连片发育(图2)。大规模连续分布的长8段砂体为油气富集的基础,是鄂尔多斯盆地中生界石油勘探的有利目标区。湖盆的敞流性是湖盆中心浅水三角洲砂体发育的重要条件,敞流通道对湖盆中心砂体分布及方向有

低渗透油气田勘探开发国家工程室简

低渗透油气田勘探开发国家工程实验室简介低渗透油气田勘探开发国家工程实验室(简称“低渗透国家工程实验室”),是“十一五”期间国家建设的100个国家工程实验室之一。根据国家发展改革委“发改办高技[2007]2513号文件”申报,《国家发展改革委办公厅关于低渗透油气田勘探开发国家工程实验室项目的复函》([2008]2477号)文件批准建设,2012年5月31日通过国家发改委组织的建设验收。建设地点在陕西省西安市经济 技术开发区。 低渗透国家工程实验室由中国石油长庆油田分公与川庆钻探工程公司共同承建,采用理事会领导的实验室管理体制。理事单位有中国石油集团公司科技管理部、中国石油勘探开发研究院、中国石油大学(北京)、西南石油大学、西安石油大学、中国石油大学(华东)。 实验室功能定位是瞄准国际低渗透油气田勘探开发工程技术发展趋势,开展基础理论研究,搭建技术研发平台,发挥技术引进与现场试验桥梁作用,开展国内外学术交流与技术合作,培养技术创新人才,对低渗透油气田经济有用开发起到示范作用。 实验室研究方向是提高低渗透油气田储量探明率、提高单井产量、提高最终采收率和经济有用开发低渗透油气藏,突破关键技术瓶颈,形成低渗透油气藏勘探开发配套技术。 实验室下设地质实验研究室、开发实验研究室、增产稳产实验室、井下作业工具与装备实验室和地面工程实验室等五个专业实验室,与“中国 石油特低渗透油气田勘探开发先导试验基地”一体化运作,开展低渗透油气田勘探开发技术的科研攻关、现场试验、新技术推广应用等工作。 实验室现有不变人员232人,依托长庆油田分公司的勘探开发研究院、油气工艺研究院和西安长庆科技工程有限责任公司,以及川庆钻探工程公司的工程技术研究院和长庆井下作业公司的流动研究人员千余人。实验室不变人员中有中石油集团公司专家8人,博士29人,教授级高工22人,高级职称人数89人。

油气成藏名词解释

地研12-4 王景平 S1******* 名词解释: 1、油气成藏条件:油气能否成藏,取决于是否具备有效的烃源岩层、储集层、盖层、运移通道、圈闭和保存条件等成藏要素及其时空配置关系。任何油气藏的形成和产出都是这些要素的有机配合,而且缺一不可,归结为4个基本条件,即充足的油气来源,有利的生储盖组合,有效的圈闭和良好的保存。就油气藏来说,充足的油气来源、良好的生储盖组合和有效的圈闭是基本的成藏地质条件。 2、油气成藏机理:油气成藏机理是对尤其在生成、运移、聚集以及保存和破坏各个方面的综合性研究;对于特定的沉积盆地, 成藏流体的来源、运移路径、充注过程和充注时间是油气成藏机理研究的主要内容。 3、油气成藏模式:油气成藏模式是对油气藏中的油气注入方向、运移通道、运移过程、运移时期、聚集机理及赋存地质特征的高度概括,同时也研究油气藏形成后的保存与破坏过程,是各种成藏控制因素综合作用的结果。是一组类似的控制油气藏形成的基础条件、动力介质、形成机制、演化历程等要素单一模型或者多要素复合模型的概括。一个地区的油气成藏模式是建立在典型油气藏解剖的基础上的,需要研究各油气藏的地质特征、流体特征、温度压力特征、储集层特征等因素;明确烃源岩与油气藏的相对位置关系、油气运移的方式与通道、油气的注入期次、保存条件等。之后才能准确建立起油气成藏模式。 4、油气成藏规律:油气成藏的规律,一般通过对油气藏成藏条件的分析和成藏模式的建立后得到成藏规律,具体表现为油气藏的发育和分布特征,形成这种特征的主控因素,以及成藏时期和演化等方面。从研究区域内沉积相带的展布分析油气储集空间;研究区域构造带内断裂发育,结合构造应力场分析反演盆地演化形成;对区域输导体系研究找出油气聚集带;综合分析构造背景、输导体系、储层岩性、物性与含油性关系得出控藏的认识,对成藏体系分析,建立输导成藏模式,确定油气藏类型。油气运移既有缓慢的以富力为主的渐进式,也有以高压为主的运移式,圈闭中储层的低势区是油气聚集的有利场所。 5、油气成藏特征:“求同存异”,把某一个或某一类油气藏中最与众不同的特点突出来,可以是油源,可以是储层,可以是圈闭,可以是成藏条件过程中的任何一点值得突出的特征。

油气藏形成的条件

第二节油气藏形成的条件 油气藏必须具备的两个条件是油气和圈闭。而油气在由分散到集中形成油气藏的过程中,受到各种因素的作用,要形成储量丰富的油气藏,而且保存下来,主要取决于生油层、储集层、盖层、运移、圈闭和保存六个条件。归纳起来油气藏形成的基本条件有以下几个方面: 一、油气源条件 盆地中油气源是油气藏形成的首要条件,油气源的丰富程度从根本上控制着油气资源的规模,决定着油气藏的数量和大小;油气源的性质决定着烃类资源的种类、油藏与气藏的比例;油气源形成的中心区控制着油气藏的分布。因此,油气源条件是油气藏形成的前提。 1、烃源岩的数量 成烃坳陷:是指地质历史时期曾经是广阔的有利于有机质大量繁殖和保存的封闭或半封闭的沉积区;成熟烃源岩有机质丰度高,体积大,并能提供充足的油气源,形成具有工业价值的油气聚集。 成烃坳陷在不同类型的盆地中有不同的分布形式,这与盆地的演化模式有关。平面上,可以位于盆地中央地带(松辽盆地),也可以偏于盆地一侧(酒西盆地),或者有多个成烃坳陷(渤海湾盆地)。纵向上,由于盆地演化的不同,烃源岩的分布在单一旋回盆地中只能有一套,在多旋回盆地中常发育多套烃源岩,但主力烃源岩常常只有一个。成烃坳陷的位置也可以是继承性的,也可以是非继承性的,在不同的阶段位置产生迁移或完全改变。只有研究盆地的演化史,进行旋回分析和沉积相分析,才能把握成烃坳陷的发育和迁移规律,有效地指导油气勘探。 烃源岩的数量:取决于烃源岩的面积(分布范围)和厚度。

2、烃源岩的质量 并非所有的沉积盆地都有成烃拗陷,当盆地内拗陷区一直处于补偿或过补偿状态时,难以形成有利的成烃环境,或油气潜量极低,属于非成烃拗陷。因此,一个拗陷是否具备成烃条件,还要对烃源岩有机质丰度、类型、成熟度、排烃效率来进行评价。通过定量计算成烃潜量、产烃率来确定盆地的总资源量,从而评价油气源的充足程度。只有具丰富油气资源的盆地,才能形成大型油气藏。 二、生、储、盖组合和传输条件 油气生成后,只有及时的排出,聚集起来形成油气藏,才能成为可以利用的资源;否则,只能成为油浸泥岩。而储集层是容纳油气的介质,只有孔渗性良好,厚度较大的储集层,才能容纳大量的油气,形成巨大的油气藏,这是显然的。而有利的生、储、盖组合,也是形成大型油气藏不可缺少的基本条件。 生储盖组合:是指烃源层、储集层、盖层三者的组合型式。 有利的生储盖组合:是指三者在时、空上配置恰当,有良好的输导层,使烃源层生成的油气能及时地运移到储集层聚集;盖层的质量和厚度能确保油气不致于散失。 1、生储盖组合类型

低渗透油藏的开发技术-2019年精选文档

低渗透油藏的开发技术 0 引言 低渗透是针对储层的概念,一般指渗透性能低的储层,国外一般将低渗透储层称为致密储层[1-3] 。进一步延伸和概念拓展,低渗透一词又包含了低渗透油气藏和低渗透油气资源的概念。现在讲到低渗透一词,其普遍的含义是指低渗透油气藏。具体来说低渗透油气田是指油层孔隙度低、喉道小、流体渗透能力差、产能低,通常需要进行油藏改造才能维持正常生产的油气田。目前低渗透储层的岩石类型包括砂岩、粉砂岩、砂质碳酸岩、灰岩、白云岩以及白垩等,但主要以致密砂岩储层为主。 低渗透油田一般具有储层渗透率低、丰度低、单井产能低,与中高渗透油田相比具有以下特点: 1)低渗透油层连续性差,砂体发育规模小,井距过大,水驱控制程度低; 2)储层渗透低,流度低,孔隙喉道半径小,存在“启动生产压差现象”,渗流阻力和压力消耗特别大; 3)低渗透油层见水后,采液和采油指数急剧下降,对油田稳产造成严重威胁; 4)储量丰度低,含油饱和度低,自然产能低,压裂投产后产量递减较快,无稳产期。 低渗透油气田与高渗油气田相比,其储层特性、伤害机理、流动规

律不仅仅是量的变化,实际上在一定程度上已经发生了质的变化,因此在开发中遇到的主要问题是:①油藏表征准确度差,渗流机理尚未研究清楚;②对油层伤害的敏感度强;③储层能量低,单井产量低;④基质中的油难以开采。归结起来是成本、效益和风险问题。 1 低渗透油藏开发技术 1.1油气藏表征技术 油藏表征是对油藏各种特征进行三维空间的定量描述、表征以至预测的技术。现代油藏表征技术是国外进行剩余油分布预测和开发决策等生产优化的最主要技术。技术发展经历了三个主要阶段,目前向着精细化方向发展。 油气藏表征主要包括野外露头天然裂缝描述技术、成像与常规测井裂缝描述、储层生产动态测试资料表征、三维地震、四维地震、井间地震和井间电磁波等油气藏表征、三维可视化、综合地质研究技术。油藏描述技术是对油气藏特征进行定性与定量描述、预测是进行剩余油分布预测和开发决策主要技术。由于决策的内容不同油藏描述技术和方法也不同描述内容和精度有差别。对进入中后期开发的老油田以确定剩余油分布为目的的油气藏描述必须通过集成化的精细表征提供准确的剩余油分布状况指导油气田调整挖潜改善开发效果。 1.2低渗油藏钻井技术包括气体钻井、雾化钻井、泡沫钻井和欠 平衡钻井技术等。 欠平衡钻井亦称为欠平衡压力钻井这一概念早在20 世纪初就已提出但是直至20 世纪80 年代初期井控技术和井控设备出现才使防止井喷成为可能这种钻井技术也得以发展和应用。在美国和加拿大欠平衡钻井已经成为钻井技术发展的热点并越来越多地与水平井、多分支井及小井

低渗透油气田勘探开发国家工程实验室简介

低渗透油气田勘探开发国家工程实验室简介 低渗透油气田勘探开发国家工程实验室(简称“低渗透国家工程实验室”),是“十一五”期间国家建设的100个国家工程实验室之一。根据国家发展改革委“发改办高技[2007]2513号文件”申报,《国家发展改革委办公厅关于低渗透油气田勘探开发国家工程实验室项目的复函》([2008]2477号)文件批准建设,2012年5月31日通过国家发改委组织的建设验收。建设地点在陕西省西安市经济技术开发区。 低渗透国家工程实验室由中国石油长庆油田分公与川庆钻探工程公司共同承建,采用理事会领导的实验室管理体制。理事单位有中国石油大学(北京)、西南石油大学、西安石油大学、中国石油勘探开发研究院廊坊分院。 实验室功能定位是瞄准国际低渗透油气田勘探开发工程技术发展趋势,开展基础理论研究,搭建技术研发平台,发挥技术引进与现场试验桥梁作用,开展国内外学术交流与技术合作,培养技术创新人才,对低渗透油气田经济有效开发起到示范作用。 实验室研究方向是提高低渗透油气田储量探明率、提高单井产量、提高最终采收率和经济有效开发低渗透油气藏,突破关键技术瓶颈,形成低渗透油气藏勘探开发配套技术。 实验室下设地质实验研究室、开发实验研究室、增产稳产实验室和井下作业工具与装备实验室等四个专业实验室,与“中国石油特低渗透油气

田勘探开发先导试验基地”一体化运作,开展低渗透油气田勘探开发技术的科研攻关、现场试验、新技术推广应用等工作。 实验室现有固定人员187人,依托长庆油田分公司勘探开发研究院、油气工艺研究院和川庆钻探工程公司工程技术研究院的流动研究人员近千人。项目具体实施由长庆油田分公司勘探开发研究院、油气工艺研究院和川庆钻探工程公司工程技术研究院承担完成。实验室固定人员中有中石油集团公司专家8人,博士29人,教授级高工22人,高级职称人数89人。 实验室建筑面积15000平方米,配套有国内、国际领先的各类重大仪器设备120多台套,实验装备能力达到国内领先水平。实验研究领域涵盖石油天然气领域的岩石矿物、地层流体(石油、天然气、地层水)、油气开采化学剂、油气开采工艺技术、地球物理、石油天然气开发地质及开发技术、工具及装备等全部油气勘探开发实验和综合研究技术,具有低渗透储层研究、流体研究、成藏研究、增产技术研究及井下工具研究等25项分析实验能力。可以满足岩石、油、气、水、化学剂的物理化学性能测试等97种实验需要,形成了支撑低渗透油气田勘探开发的14项特色实验技术。

试论成岩作用与油气成藏的关系

《成岩作用与储层评价》文献综述试论成岩作用与油气成藏的关系 专业______地质学_______ 班级__ 资信研10-4班___ 姓名______蔡晓唱_______ 学号_____S1*******_____

试论成岩作用与油气成藏的关系 20世纪80年代以来,油气运移、成岩作用、盆地分析研究相互渗透,并取得了长足的进展。将成岩作用、油气的成藏史等纳入到盆地发展演化历史中统一考虑,是当前研究的一个趋势所在[1]。本文从烃类流体充注与储层成岩作用的关系、用储层油气包裹体岩相学确定油气成藏期次、示烃成岩矿物与油气成藏的关系、利用成岩过程中自生石英数量的变化确定油气藏形成时间、岩性油气藏中成岩作用对油气聚集的控制作用五个方面简要论述了储层成岩作用与油气生成、运移和成藏的关系。 1 烃类流体充注与储层成岩作用的关系 由有机质转化来的有机流体是整个地壳流体活动的一部分,对成岩演化有着至关重要的影响,也是盆地发展演化的一个重要侧面。有机质转化形成的有机酸引起了地质界的广泛关注,主要是因为它可以溶解矿物,形成次生孔隙[2]。有机酸主要由干酪根含氧基团的热催化断落、烃类与矿物氧化剂之间的氧化还原反应、原油微生物降解和热化学硫酸盐还原作用转化而来,但就其生成时间而言,尚未有定论。泌阳凹陷碎屑岩储层在碱性-强碱性原始地层水中发现石英溶解型次生孔隙,不但丰富了次生孔 为石英自生加大提供了新的解释。塔中隙的成因理论,而且石英溶解所产生的SiO 2 地区志留系烃类侵位后因淡水注入而使烃类被氧化,所产生的有机酸促进了钾长石等矿物的溶解,导致了次生孔隙的发育。 除有机质转化产生有机酸外,油气的产生对成岩作用有着重要意义。油气运移成藏的成岩记录是从岩石学和地球化学方法反演成藏过程的基础,国际上对储层中烃类流体充注与成岩作用关系给予高度重视。九十年代以来学者们开始关注“烃类流体侵位与储层成岩作用”领域的研究,这主要基于两方面原因,一是早期烃类流体侵位有利于优质储层形成,二是储层成岩纪录有助于重构油气成藏过程[3]。1999年和2000年AAPG年会曾将“成岩作用作为烃类流体运聚记录”作为分会讨论的主题,要使叠合盆地成藏年代学分析理论和分析方法取得进展,一个重要的基础是必须深入分析其中烃类流体充注与储层成岩作用关系,建立起烃类流体运聚-储层成岩作用-烃类流体包裹体-自生矿物形成关系的解释定量模式,为成岩矿物及其包裹的流体化石作为烃类流体运聚的记录提供理论基础。 烃类流体注入储层,一方面,储层胶结物及其中流体包裹体记录了成藏条件(温度、压力、流体成分和相态),另一方面,随着含油气饱和度增加,孔隙水流体与矿物之间的反应受抑制(如储层中石英次生加大等)或中止(自生伊利石、钾长石的钠

影响低渗透油田开发效果的因素.

影响低渗透油田开发效果的因素及对策目前,低渗透油田储量在我国油田储量中所占的比例越来越大。近年,低渗透油田石油勘探和开发程度的快速发展,为我国天然气产量快速发展和原油产量稳定增长做出了重大贡献。但随着时间的延长,低渗透油田开发过程出现一些影响开发效果的因素,不但影响了油田的安全生产,而且影响了油田开发的经济效益。 1影响低渗透油田开发效果的主要因素 影响低渗透油田的开发效果的因素有很多,其中最主要的就是技术方面的影响。 1.1油层孔喉的影响 影响低渗透油层开采根本原因是储层孔喉细小和比表面积大。低渗透油层平均孔隙直径为26~43μm;油层孔喉细小,半径中值只有0. 1~2. 0μm;比表面积相对较大,在2~20 m2/g之间;三者之间直接形成了渗透率低。 1.2渗流规律的影响 低渗透储层的渗流规律具有启动压力梯度特点,是不遵循达西定律的。低渗透油田主要表现非达西型渗流特征:表面分子力和贾敏效应作用强烈、孔喉细小、比表面积和原油边界层厚度大。渗流直线段的延长线与压力梯度轴的交点即为启动压力梯度,是不通过坐标原点而与压力梯度轴相交,由于渗透率越低,所以启动压力梯度越大。 1.3弹性能量的影响 低渗透油田弹性能量除少数异常高压油田外,一般的油田弹性阶段采收率只有1% ~2%。弹性能量小主要是由于一般底、边水都不活跃,储层渗流阻力大、连通性差引起的。在消耗天然能量方式开采条件下,弹性能量压力和产量下降快,是由于地层压力大幅度下降,油田产量急剧递减,使生产和管理都非常被动。1.4见注水效果的影响

低渗透油田开发过程中,油井见注水效果尤为重要。在井距280 m左右的条件下,注水效果需注水半年至一年时间才见效,见效后油井产量、压力相对稳定,但上升现象很不明显。有部分油田的注水井因注不进水转为间歇注水或被迫关井停注,从而影响开发效果。低渗透油层采油指数相当于高、中渗透油层的几十分 之一,只有1~2t/(MPaod。低渗透油井见注水效果程度差,停止吸水是由于泵压与井口压力达到平衡时出现的。因为启动压力很高,渗流阻力大,而且吸水能力低,大部分能量都消耗在注水井周围,使注水井附近地层压力上升很快。 1.5产液(油指数的影响 低渗透油井见水后产液(油指数大幅度下降,是由于岩石润湿性和油水黏度比等多种因素影响的。当含水达到55 %左右时,无因次产液指数最低,只有0. 4左右,无因次采油指数更低,只有0.15左右,对油井见水后的提液和稳产造成极大困难。 1.6地应力的影响 地应力的大小和方向对开发效果具有重要的影响,因此,开发方案必须考虑地应力的影响和作用。压裂开发是低渗透油田通常进行的一种开发方式,压裂裂缝的延伸方向和形状很大程度受地应力的大小和方向制约。 2低渗透油田开发的主要对策 2.1合理加密井网 目前国内外已基本建立采收率及水驱控制程度与低渗油藏井网密度的关系的一系列经验方法。开发好低渗透油田的基础和关键是合理井网部署方案。低渗油藏、小断块开发的目标定位要适当,不宜过高,要充分考虑到低渗油田开发的复杂性,为此要根据采用线状注水方式、平行裂缝主要方向布井、井距可以加大、排距应该减小的低渗透油田井网部署的基本原则,合理缩小井距,加大井网密度。 2.2合理优选储量富集区块

油气藏分类

油气藏的分类 摘要: 目前,在世界上发现的油气藏的种类众多,形成方式也各有不同,地质学家很早就认识到将这些油气藏分类的必要性。国内外石油地质学家们提出的油气藏的分类很多。其中大部分支持的是根据圈闭的形态和成因进行分类,这样的分类在油气勘探中已经取得了非常重要的作用。但随着常规油气藏的数量慢慢减少以及非常规油气藏在油气藏勘探中的地位的上升,使我们逐渐重视起这些非圈闭类的油气藏,而以往的分类方法在这方面体现出了一定的局限性,所以,我们需要寻找一个更为有效的方法对油气藏进行分类,这样的分类不应该完全推翻根据圈闭分类的方法,而是应该继承圈闭分类的优点并对它的不足加以补充。本文就是在圈闭分类的基础上对油气藏在宏观上分成聚集类油气藏和非聚集类油气藏,并对两种分类分别进行了简单地划分,以此来更好地进行学术上的探讨。 关键词:油气藏分类常规油气藏非常规油气藏圈闭非圈闭 一、传统油气藏分类简要概述 传统对油气藏的分类一般遵循两条基本的原则: 1、分类的科学性,即分类应能充分反映圈闭的成因,反映各种不同类型油气藏之间的联系和区别;

2、分类的实用性,即分类应能有效地指导油气藏的勘探及开发工作,并且比较简单实用。 根据上述两条分类原则将油气藏按照圈闭分为构造油气藏、地层油气藏、岩性油气藏以及符合油气藏,并根据具体特点细分为若干类型(表1)。 二、传统油气藏分类缺陷 可以说,传统油气藏的分类在过去的几十年中对油气藏的勘探已经取得了显著的成效,尤其在寻找圈闭类油气藏勘探中更是如鱼得水,曾经在石油勘探中形成这样的思维“找石油就找背斜”。可见,以圈闭对油气藏分类的重要性和实用性。但近些年来,随着非常规油气藏的发展,如致密砂岩气、页岩气、页岩油、煤层气油气藏在储量和开采量的提高,让我们不得不重视这些所谓的非常规油气藏,而这些油气藏之所以被称为非常规油气藏,如果从发现和利用的时间角度讲,先被利用的就是常规的,后被发现的就是非常规的,但如果当初先被发

低渗透油田开发资料

目录 一、国内国外低渗透油田开发现状? (1) 二、低渗透油田地质特点有哪些? (6) 三、朝阳沟油田目前开发现状、存在的主要矛盾及对策? (9) 四、提高采收率原理是什么?主要的提高采收率技术有哪些? 其提高采收率机理是什么? (17) 五、外围难采储量如何经济有效动用? 要实现经济有效动用需要哪些技术攻关? (23) 六、如何搞好技术创新与应用,实现油田可持续发展? (26) 七、低渗透油田(朝阳沟油田)注水开发技术方法? (32) 八、精细油藏描述技术的内容及成果应用有哪几个方面? (37) 九、多学科油藏研究? (41) 十、油藏评价的方法(模式)有哪些?主要应用的技术? (42) 十一、“百井工程”的内容以及在零散、复杂、规摸小的 油藏评价中的作用? (44) 十二、水驱开发过程中的油层保护技术有哪些? (45) 十三、目前三次采油技术主要有哪些?哪些具有应用潜力 (48) 十四、油田开发合理采油速度、合理储采比受哪些因素,如何界定? (51) 十五、油田开发合理注水压力、合理注采比是如何界定? (53) 十六、区块分类治理的原则、思路和目标? (54) 十七、油田分几个开发阶段,不同阶段的调整方法有哪些? (55) 十八、如何确定注水开发中技术调控指标? (57) 十九、裂缝对低渗透油田的利弊? (58) 二十、低渗透油田怎样进行合理井网部署? (59) 二十一、如何进行低效井治理? (60)

一、国内国外低渗透油田开发现状 1、低渗透油田的划分 世界上对低渗透油田并无统一固定的标准和界限,只是一个相对的概念。不同国家根据不同时期石油资源状况和技术经济条件而制定。根据我国的实际情况和生产特征,按照油层平均渗透率把低渗透油田分为三类。 第一类为一般低渗透油田,油层平均渗透率为10.1~50×10-3μm2,油井一般能够达到工业油流标准,但产量太低,需采取压裂措施提高生产能力,才能取得较好的开发效果和经济效益; 第二类为特低渗透油田,油层平均渗透率为1.1~10.0×10-3μm2,一般束缚水饱和度较高,必须采取较大型的压裂改造和其他相应措施,才能有效地投入工业开发; 第三类为超低渗透油田,油层平均渗透率为0.1~1.0×10-3μm2,油层非常致密,束缚水饱和度很高,基本没有自然产能,一般不具备工业开发价值。 2、国内低渗透油田储量动用情况 2004年,我国探明低渗透油层的石油地质储量为52.1×108t,动用的低渗透油田地质储量约26.0×108t,动用程度为50%。从我国每年提交的探明石油地质储量看,低渗透油田地质储量所占的比例越来越大,1989年探明低渗透油层的石油地质储量为9989×104t,占当年总探明储量的27.1%。1990年探明低渗透油层的石油地质储量为21214×104t,占当年总探明储量的45.9%;1995年探明低渗透油层的石油地质储量为30796×104t,占当年总探明储量的72.7%,年探明的石油地质储量中大约三分之二为低渗透油层储量。可见,今后低渗透难采储量的开发所占的比重逐年加大,如何经济有效做好难采储量的评价、动用和开发理论技术的研究是我们攻关的主要目标和方向。 从我国近些年来对低渗透油田的研究和开发水平看,有了较大的进展和提高, - 1 -

低渗透油气藏成为勘探开发主战场_任继凯

中国石油报/2009年/4月/3日/第002版 要闻 低渗透油气藏成为勘探开发主战场 ——中国低渗透油气勘探开发的现状与未来 记者任继凯 当前,如何应对国际金融危机成为我国石油工业界面临的重大挑战。据业内专家预测,全球对油气资源的需求2009年年底将恢复,国际油价可能在2010年下半年恢复到合理水平。因此,大力推动石油工业上游科技的发展具有现实意义。 记者从3月26日召开的首届中国低渗透(致密)油气勘探开发技术研讨会上获悉,全球石油工业上游发展有5个投资重点,即低渗透油气、老油田提高采收率、天然气、深水油气勘探开发、非常规油气资源。其中,低渗透油气对确保油气安全供应具有重要意义,低渗透油气勘探生产与理论技术取得快速发展。各国公司投入巨大人力、财力,新技术不断涌现,呈现良好发展势头。在我国,低渗透油气成为勘探开发的主战场。 我国低渗透油气的基本状况 我国低渗透油气藏含油气层系多,涵盖古生界、中生界、新生界。低渗透油气藏类型多,包括砂岩、碳酸盐岩、火山岩。低渗透油气藏分布区域广,主要盆地都有分布,东部有松辽、渤海湾、二连、海拉尔、苏北、江汉盆地砂岩油藏,松辽、渤海湾盆地火山岩油气藏;中部有鄂尔多斯、四川盆地砂岩油气藏和海相碳酸盐岩气藏;西部有准噶尔、柴达木、塔里木、三塘湖盆地砂砾岩油气藏、火山岩油气藏和海相碳酸盐岩油气藏。我国的低渗透油气藏具有“上油下气、海相含气为主、陆相油气兼有”的特点。 低渗透油气资源在我国占有重要战略地位,据我国2004年第三次油气资源调查结果显示,低渗透油气远景资源量分别占全国总资源量的49%和42.8%。在近几年新增探明油气储量中,低渗透达到70%。2008年,中国石油提交的探明储量中82%为低渗透,原油产量中低渗透油区产量占34%。业内专家一致认为,未来我国油气产量中低渗透所占比例将持续增大,油气产量稳产、增产将更多地依靠低渗透油气。 我国的低渗透油气勘探开发经历三个阶段:1907年—1949年,1907年中国第一口油井延长1号井(鄂尔多斯盆地)发现延长油矿,开始低渗透勘探开发探索。1950年—1980年,以鄂尔多斯、松辽盆地为代表,仅发现中小规模的油气藏。“磨刀石”、“井井有油、井井不流”,是人们对低渗透勘探开发早期的基本认识。1980年至今,陆续在鄂尔多斯、松辽等盆地发现一大批地质储量超过亿吨级、千亿立方米级和万亿立方米以上的低渗透油气田,为油气探明储量快速增长发挥了重要作用。 近几年,中国低渗透油气产能建设规模占总量的70%以上,已成为油气田开发建设的主战场。2008年,中国低渗透原油产量0.71亿吨(包括低渗透稠油),占全国总产量的37.6%,低渗透产量比例逐年上升,近3年分别为34.8%、36%、37.6%。2008年,中国低渗透天然气产量320亿立方米,占全国总产量的42.1%,低渗透产量的比例逐年上升,近3年分别为39.4%、40.9% 、42.1%。 低渗透油气资源勘探取得重大发现,实现规模有效开发 我国低渗透油气勘探在近20年取得重大发现。发现一大批地质储量超亿吨级、千亿立方米以上的大油气田,出现多个地质储量在5亿—10亿吨规模的油田,形成油气储量新的增长高峰期。发现苏里格超万亿立方米的特大型气田,探明储量2.2万亿立方米,其中上报1.67万亿立方米,

构造应力与油气成藏关系

综述与评述 收稿日期:2006-09-19;修回日期:2006-12-11. 基金项目:国家“973”项目“高效天然气藏形成分布与凝析、低效气藏经济开发的基础研究”(编号:2001CB209103)资助.作者简介:张乐(1979-),男,新疆阜康人,在读博士,主要从事沉积学、层序地层学及油气成藏机理研究.E -mail :z han gleu pc @https://www.wendangku.net/doc/c112640358.html, . 构造应力与油气成藏关系 张 乐1,2,3,姜在兴3,郭振廷4 (1.中国地质大学地质过程与矿产资源国家重点实验室,北京100083; 2.北京市国土资源信息 开发研究重点实验室,北京100083; 3.中国地质大学能源学院,北京100083; 4.胜利油田弧岛采油厂地质所,山东东营257231) 摘要:总结了构造应力对油气生成、运移、聚集及分布等方面的影响。指出构造应力与油气成藏关系密切,其不仅能形成断层和裂缝等油气运移通道,还能形成各种构造圈闭,同时也可直接引发油气运移,是油气运移的主要驱动力;构造应力与孔隙流体压力有相关性,油气从强压应力区向张应力区运移,张应力区是油气的最佳聚集区;构造应力对油气藏的形成既可以起到积极作用,也可以对其起破坏作用;构造应力还可为有机质向烃类转化提供能量。关键词:构造应力;油气藏;油气运移聚集;油气分布 中图分类号:TE121 文献标识码:A 文章编号:1672-1926(2007)01-0032-05 传统的油气地质学理论认为,油气运移的动力主要是浮力、水动力以及异常地层压力;毛细管力一般为油气运移的阻力,其决定了油气二次运移的方向和聚集场所的流体势分布。人们也认识到构造应力对油气运聚有重要的影响,但对构造应力在油气生成、运聚成藏和分布等方面的作用机理尚认识不足。在许多情况下,油气运移聚集受构造应力场的控制[1-5] 。构造应力是形成异常高压的重要因素,构造应力产生的热效应对油气生成也有影响。构造应力是各种地质现象与地质过程形成发展的主要动力来源,构造应力场的发展演化不仅控制了含油气盆地的形成和盆地内构造的形成及分布,还影响生、储、盖层的发育及油气生成、运移、聚集过程。因此,构造应力与油气成藏、油气勘探开发有密切关系,许多学者在这方面进行了较深入的研究,并取得了丰硕的成果。 1 构造应力与油气生成的关系 构造应力通常是指导致构造运动、产生构造形变、形成各种构造形迹的应力。在油田应力场研究中,构造应力常指由于构造运动引起的地应力的增量[6]。地应力主要由重力应力、构造应力和流体压力 等几种应力耦合而成。 1.1 概述 构造应力在油气形成过程中,可为有机质的热演化和转化提供能量,从而促进有机质向烃类转化。现代石油地质理论已经证实,热量在导致有机质发生热降解并生成石油范畴的烃类过程中具有决定性作用。构造应力是地壳中最为活跃的能量之一,其产生的能量已为地壳中岩层的各种变形所证实。索洛维耶夫等指出,由构造变形转变而来的机械能是构造变形过程中补充放热的主要原因。机械能可转化成热能,在强烈挤压带,这种热能特别大。其表现形式是: 沿断裂面的摩擦热; 可塑性变形时内部的摩擦热; 应力松驰时的弹性变形热。此外,在构造变形速率极快的情况下,放热发生得更快,并可使围岩的温度大幅度升高,这己被现代地震观测所证实[7-9] 。据钟建华等[3] 对我国湘西沪溪县白沙含油瘤状灰岩的研究发现在野外手标本和室内显微镜薄片中,石油仅分布在剪切破碎带内瘤状灰岩中,而与其相邻的、未受剪切破碎的非瘤状灰岩中却未见石油,从而认为该区剪切作用导致矿物等固体颗粒旋转、位错或断裂,因彼此摩擦或晶格断裂而产生热量,为有机源岩生油提供了附加热能,促使有机质转化为 第18卷1期 2007年2月 天然气地球科学 NAT URAL GAS GEOSCIENCE Vol.18No.1Feb. 2007

相关文档
相关文档 最新文档