文档库 最新最全的文档下载
当前位置:文档库 › 氢原子的能级解析及经典例题

氢原子的能级解析及经典例题

氢原子的能级解析及经典例题
氢原子的能级解析及经典例题

氢原子的能级:

1、氢原子的能级图

2、光子的发射和吸收

①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。

②原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的频率为ν,:hυ=E m-E n。

③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。

④原子处于第n能级时,可能观测到的不同波长种类N为:。

⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量

E n=E Kn+E Pn。轨道越低,电子的动能越大,但势能更小,原子的能量变小。

电子的动能:,r越小,E K越大。

⑥电离:就是从外部给电子以能量,使其从基态或激发态脱离原子核的束缚而成为自由电子。例1.对于基态氢原子,下列说法正确的是()

A.它能吸收12.09ev的光子

B.它能吸收11ev的光子

C.它能吸收13.6ev的光子

D.它能吸收具有11ev动能的电子部分能量

A、基态的氢原子吸收12.09eV光子,能量为-13.6+12.09eV=-1.51eV,可以从基态氢原子发生跃迁到n=3能级,故A正确;

B、基态的氢原子吸收11eV光子,能量为-13.6+11eV=-2.6eV,不能发生跃迁,所以该光子不能被吸收.故B错误;

C、基态的氢原子吸收13.6eV光子,能量为-13.6+13.6eV=0,发生电离,故C正确;

D、与11eV电子碰撞,基态的氢原子吸收的能量可能为10.2eV,所以能从n=1能级跃迁到n=2能级,故D正确;

故选:ACD

例2.氢原子的能级图如图所示.欲使一处于基态的氢原子释放出一个电子而变成氢离子,该氢原子需要吸收的能量至少是()

A.13.60eV B.10.20eV C.0.54eV D.27.20eV

例3.氢原子的部分能级如图所示,下列说法正确的是()

A.大量处于n=5能级氢原子向低能级跃迁时,可能发出10种不同频率的光

B.大量处于n=4能级的氢原子向低能级跃迁时,可能发出的最长波长的光是由n=4直接跃到n=1的结果

C.大量处于n=3能级的氢原子向低能级跃迁时,可能发出的不同频率的光中最多有3种

能使逸出功为2.23ev的钾发射光电子

D.处于基态的氢原子可以吸收能量为10.5ev的光子而被激发

A、根据C52==10知,这些氢原子可能辐射出10种不同频率的光子.故A正确;

B、氢原子由n=4向n=1能级跃迁时辐射的光子能量最大,频率最大,波长最短,故B错误;

C、氢原子由n=3能级的氢原子向低能级跃迁时,n=3→n=1辐射的光子能量为13.6-1.51eV=12.09eV,n=3→n=2辐射的光子能量为3.40-1.51=1.89eV,n=2→n=1辐射的光子能量为13.6-3.40=10.20eV,1.89<2.23不能发生光电效应,故有两种光能使逸出功为2.23ev的钾发射光电子,故C错误;

D、只能吸收光子能量等于两能级间的能级差的光子,n=1→n=2吸收的光子能量为13.6-3.40=10.20eV,n=1→n=3吸收的光子能量为13.6-1.51eV=12.09eV,故能量为10.5ev的光子不能被吸收,故D错误.

故选:A.

例4.如图为氢原子能级示意图的一部分,已知普朗克常量h=6.63×10-34J·s,则氢原子()

A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长

B.从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度大

C.一束光子能量为12.09eV的单色光照射到大量处于基态的氢原子上,受激的氢原子能自发地发出3种不同频率的光,且发光频率的最大值约为2.9×1015Hz

D.一束光子能量为15eV的单色光照射到大量处于基态的氢原子上,能够使氢原子核外电子电离

试题分析:从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的能

量要小,因此根据可知,因此A说法正确;从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度一样都是光速,B错。一束光子能量为12.09eV 的单色光照射到大量处于基态的氢原子上,能够跃迁到n=3能级,因此受激的氢原子能自发地发出3种不同频率的光,且发光频率的最大值约为2.9×1015Hz(对应从n=3跃迁到n=1),C正确。一束光子能量为15eV的单色光照射到大量处于基态的氢原子上,能够使氢原子核外电子电离,D说法正确。

例5.如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子。问最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射―上述能量的光子?请在图中画出获得该能量后的氢原子可能的辐射跃迁图。

解:氢原子从n>2的某一能级跃迁到n=2的能级,满足:

所以可见n=4基态氢原子要跃迁到n=4的能级,应提供:

分跃进图如图所示:

例6.氢原子的能级如图所示,已知可见光的光子能量范围约为1.62eV~3.11eV.下列说法正确的是()

A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离

B.大量氢原子从高能级向n=3能级跃迁时,发出的光具有显著的热效应

C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光

D.大量处于n=4能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光

A、紫外线的频率大于3.11eV,n=3能级的氢原子可以吸收紫外线后,能量大于0,所以氢原子发生电离.故A正确.

B、氢原子从高能级向n=3能级跃迁时发出的光子能量小于

1.51eV,小于可见光的频率,有可能是红外线,红外线有显著的热效应.故B正确.

C、根据C42=6,知,可能放出6种不同频率的光.故C正确,D错误.故选ABC

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

因式分解经典题及解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________ 的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步)

层次分析法例题(1)

层次分析法在最优生鲜农产品流通中的应用 班级 (一)、建立递阶层次结构 目标层:最优生鲜农产品流通模式。 准则层:方案的影响因素有:c1自然属性、c2经济价值、c3基础设施、c5政府政策。 方案层:设三个方案分别为:A1农产品产地一产地批发市场一销地批发市场一消费者、A2农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、A3农业合作社一第三方 物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区)。 。 目标层:G:最优生鲜农产品流通模式 自经基政 准则层:然济础府属价设政性值施策 方案层:A A2A3 1 图 3— 1 递阶层次结构 (二)、构造判断 (成对比较 )矩阵 所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。为

了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9 的标度,见表 标度 a定义 ij 1i 因素与 j 因素同等重要 3i 因素比 j 因素略重要 5i 因素比 j 因素较重要 7i 因素比 j 因素非常重要 9i 因素比 j 因素绝对重要 2,4,6,8为以上判断之间的中间状态对应的标度值 倒数若 i因素与 j 因素比较,得到判断值为, a ji=1/a ij,a ii=1 为了构造判断矩阵,作者对 6 个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为: G c1 c2 c3 c4 c1 A1 A2 A3c1c2c3c4 1853 1/811/21/6 1/5211/3 1/3631 A1A2A3 11/31/9 311/8 981

c2 A1 A2 A3 c3 A1 A2 A3 c4 A1 A2 A3 A1A2A3 139 1/318 1/91/81 A1A2A3 129 1/217 1/91/71 A1A2A3 11/31/9 311/7 971 (三)、层次单排序及其一致性检验 层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。 对应于判断矩阵最大特征根λ max 的特征向量,经归一化 (使向量中各元素之和等于 1) 后记为W。 W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程 称为层次单排序。 能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对 A 确定不一致的允许范围。 由于λ连续的依赖于a ij,则λ比n大的越多,A的不一致性越严重。用最大特征值对 应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ― n 数值的大小来衡量 A 的不一致程度。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

经典的因式分解练习题有答案

因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是( ) A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)

A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( ) A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是( ) A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是( ) A.-12 B.±24C.12 D.±12 6.把多项式a n+4-a n+1分解得( ) A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( ) A.8 B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( ) A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得( ) A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得( ) A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( ) A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( ) A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得( )

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

因式分解易错题汇编含答案解析

因式分解易错题汇编含答案解析 一、选择题 1.下列各式分解因式正确的是( ) A .2112(12)(12)22a a a -=+- B .2224(2)x y x y +=+ C .2239(3)x x x -+=- D .222()x y x y -=- 【答案】A 【解析】 【分析】 根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解. 【详解】 A. 2112(12)(12)22 a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误; C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误; D. ()22 ()x y x y x y -=-+,故本选项错误. 故选A. 【点睛】 此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式. 2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 【答案】D 【解析】 【分析】 判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】 解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>, 0x y ∴->, x y ∴>, 故选:D . 【点睛】 本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.

层次分析法例题

层次分析法在最优生鲜农产品流通中的应用 班级 (一)、建立递阶层次结构 目标层:最优生鲜农产品流通模式。 准则层:方案的影响因素有:1c 自然属性、2c 经济价值、3c 基础设施、5c 政府政策。 方案层:设三个方案分别为:1A 农产品产地一产地批发市场一销地批发市场一消费者、2A 农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、3A 农业合作社一第三方物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区)。 。 图3—1 递阶层次结构 (二)、构造判断(成对比较)矩阵 所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。为 目标层: 准则层: 方案层:

了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9的标度,见表 为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:

(三)、层次单排序及其一致性检验 层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。 对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。 W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。 能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许围。 a,则λ比n 大的越多,A 的不一致性越严重。用最大特征值对由于λ连续的依赖于 ij 应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ―n数值的大小来衡量A 的不一致程度。

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

因式分解难题经典题(1)

因式分解难题经典题 1、若实数满足,则. 2、已知,则的值为 3、分解因式: a3+a2-a-1=______________. 4、已知a+b=2,则a2-b2+4b的值. 5、因式分解: 6、已知实数满足,则的平方根等于. 7、若,则的值是_______________. 8、,则___________。 9、如果是一个完全平方式,则= . 10、已知实数x 满足x+=3,则x2+的值为_________. 11、若a2+ma+36是一个完全平方式,则m= . 12、已知,则 . 13、-a4÷(-a)=; 15、把下列各式分解因式:

18、如果,求的值. 19、已知a+b=﹣5,ab=7,求a2b+ab2﹣a﹣b的值. 20、(x﹣1)(x﹣3)﹣8. 22、 23、(1)已知a m=2,a n=3,求①a m+n的值;②a3m﹣2n的值 (2)已知(a+b)2=17,(a﹣b)2=13,求a2+b2与ab的值. 24、先化简,再求值:已知:a2+b2+2a一4b+5=0求:3a2+4b-3的值。 三、选择题 25、若的值为() A.0 B.-6 C.6 D.以上都不对 26、下列各式中,能用平方差公式分解因式的是()。 A、x2+4y2 B、x2-2y+1 C、-x2+4y2 D、-x2-4y2

27、不论为什么实数,代数式的值() A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数 28、若9x2+mxy+16y2是一个完全平方式,则m的值为() A.24 B.﹣12 C.±12D.±24 29、下列各式中与2nm﹣m2﹣n2相等的是() A.(m﹣n)2B.﹣(m﹣n)2C.﹣(m+n)2D.(m+n)2 30、.若+(m-3)a+4是一个完全平方式,则m的值应是( ) A.1或5 B.1 C.7或-1 D.-1 31、下列计算中,①x(2x2-x+1)=2x3-x2+1;②(a+b)2=a2+b2;③(x-4)2=x2-4x+16;④(5a-1)(-5a-1)=25a2-1;⑤(-a-b)2=a2+2ab+b2;其中准确的个数有…() A.1个 B.2个 C.3 个 D.4个 四、计算题 32、因式分解:; 33、已知a+b=3,ab=2,试求(1)a2+b2;(2)(a b)2。

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

初中数学因式分解经典测试题含解析

初中数学因式分解经典测试题含解析 一、选择题 1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】B 【解析】 【分析】 将各项分解得到结果,即可作出判断. 【详解】 ①322(2+1)x xy x x x y ++=+,故①错误; ②2244(2)x x x ++=+,故②正确; ③2222()()x y y x x y y x -+=-=+-,故③正确; ④39(+3)(3)x x x x x -=-故④错误. 则正确的有2个. 故选:B. 【点睛】 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 2.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1) B .x 2﹣1=(x+1)(x ﹣1) C .x 2﹣x+2=x (x ﹣1)+2 D .x 2+2x ﹣1=(x ﹣1)2 【答案】B 【解析】 试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解. 解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误; B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确; C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误; D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误. 故选B . 考点:提公因式法与公式法的综合运用. 3.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a +1=(a ﹣1)2 B .a (a +1)(a ﹣1)=a 3﹣a

关于层次分析法的例题与解.

旅游业发展水平评价问题 摘要 为了研究比较两个旅游城市Q、Y的旅游业发展水平,建立层次分析法]3[数学模型,对两个旅游城市Q、Y的旅游业发展水平进行了评价. 首先,通过对题目中的图1、表1进行了分析与讨论,根据层次分析法,建立了目标层A、准则层B和子准则层C、方案层D四个层次,通过同一层目标之 间的重要性的两两比较,得出判断矩阵,利用]1[ MATLAB编程对每个判断矩阵进行求解. 其次,用MATLAB软件算出决策组合向量,再比较决策组合向量的大小,由“决策组合向量最大”为目标,得出城市Y的决策组合向量为0.4325,城市Q组合向量为0.5675. 最后,通过城市Q旅游业发展水平与旅游城市Y旅游业发展水平的决策组合向量比较,得出城市Q的旅游业发展水平较高. 关键词层次分析法MATLAB旅游业发展水平决策组合向量

1.问题重述 本文要求分析Q Y,两个旅游城市旅游业发展水平,并且给出了两个城市各方面因素的对比,如城市规模与密度,经济条件,交通条件,生态环境条件,宣传与监督,旅游规格,空气质量,城市规模,人口密度,人均GDP,人均住房面积,第三产业增加值占GDP比重,税收GDP,外贸依存度,市内外交通,人均拥有绿地面积,污水集中处理率,环境噪音,国内外旅游人数,理赔金额,立案数量,A级景点数量,旅行社数量,星级饭店数量.建立数学模型进行求解. 2.问题分析 本文要求分析Q Y,两个城市的分析Y,两个旅游城市旅游业发展水平,在对Q 中,发现需要考虑因素较多,第一、城市规模与密度,包括城市规模与人口密度.第二、经济条件,包括外贸依存度,人均GDP,人均住房面积,第三产业增加值占GDP比重,税收GDP.第三、交通条件,包括市内外交通.第四,生态环境条件包括空气质量,人均绿地面积,污水处理能力,环境噪音.第五、宣传与监督,包括国内外旅游人数,游客投诉立案件数.第六、旅游规格,包括A级景点个数,旅行社个数,星级饭店个数,这就涉及到层次分析法来估算各个指标的权重,评出最优方案.具体内容如下: (1)本文选择了对Q Y,两个旅游城市旅游业发展水平有影响的19个指标作为评价要素,指标规定如下: 城市规模:城市的人口数量. 人口密度:单位面积土地上居住的人口数.是反映某一地区范围内人口疏密程度的指标.人口影响城市规模.人口密度越大城市规模也就越大. 人均GDP:即人均国内生产总值. 人均城建资金:即用于城市建设的资金总投入. 第三产业增加值:增加值率指在一定时期内单位产值的增加值.即第三产业增加值越高越能带动城市经济的发展. 税收GDP:税收是国家为实现其职能,凭借政治权力,按照法律规定,通过税收工具强制地、无偿地征收参与国民收入和社会产品的分配和再分配取得财政收入的一种形式. 外贸依存度:即城市对于外贸交易的依赖程度. 市内交通:即城市市区交通情况. 市外交通:即城市郊区交通情况.市内交通与市外交通对于城市交通条件具有同等的重要性. 空气质量:即城市总体空气质量情况.空气质量越好对于城市生态环境就越好. 人均绿地面积:即反应城市绿化面积以及人口密度的比值关系. 污水处理能力:城市污水处理水平. 环境噪音:城市环境噪音情况. 国内外旅客人数:国内外来旅客一年总人数.人数越多说明宣传与监督就越好.

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

相关文档
相关文档 最新文档