文档库 最新最全的文档下载
当前位置:文档库 › 岩石比面的测定

岩石比面的测定

岩石比面的测定
岩石比面的测定

中国石油大学 油层物理 实验报告

实验日期: 成绩:

班级: 石工 学号: 姓名: 教师: 张丽丽

同组者:

岩石比面的测定

一、实验目的

1.巩固岩石比面的相关知识;

2.学习并掌握比面的实验室测量方法。

二、实验原理

单位体积岩石所有空隙的内表面积称为岩石的比面,单位为cm 2/cm 3 。可以分为以岩石外表体积、岩石骨架体积和岩石孔隙体积为基础的比面。比面的大小与岩石的孔隙度、渗透率密切相关。可以通过粒度组成测量也可以通过仪器测量。本实验是在比面测定仪器中测量。

计算公式:

()μ

φφ1

114

2

3

Q

H L A S b -=

b S —以岩石骨架体积为基础的比面,cm 2/cm 3

φ—岩样孔隙度,小数;

μ—室温下空气的粘度,P (100 mPa ﹒s );

Q —通过岩心的空气流量, cm 3 /s ;

H —空气通过岩心稳定后水柱压差计中水柱的高度,cm ; A,L —岩样截面积和岩样长度,cm 2 和cm 。

三、实验流程

图一:流程图

四、实验步骤

1. 打开水罐进液阀、放空阀,向水罐中灌水,大约灌3

2

体积时停止,关闭水罐进液阀及放空阀; (此步骤实验前已经做好)

2.用游标卡尺量出岩样的长度和直径,计算岩样的截面积;

3.将岩样放入岩心夹持器,关闭环压放空阀,打开环压阀加环压,确保岩样与夹持器之间无气体窜流;

4.准备好秒表、打开流量控制阀,并控制流出的水量,待压力计的压力稳定在某一H 值后,测量一定时间内流出的水量,用同样的方法至少测定三个水流量和与之相应的H 值。;

5.关流量控制阀,关闭环压阀,缓慢打开环压放空阀,结束实验。

五、数据处理与计算

实验所得的数据如下表:

岩石比面测定记录表

实验仪器编号:

室内温度℃ 19.5 空气粘度μ(cP ) 0.00018065 孔隙度φ(%) 27.8

计算如下:

222792.447.214.34

1

41cm D A =??==π

3

22

23

2

3

1/61.108310018065.011349.06

.387.4792.4)278.01(278.0141

)1(14

cm

cm Q H L A S b =?-?=-=-μφφ322

23

23

2

/92.111110

018065.01

1815.01.587.4792.4)278.01(278.0141

)1(14

cm cm Q H L A S b =?-?=-=-μφφ3

22

23

2

3

3

/07.111510018065.012229

.03.687.4792.4)278.01(278.0141

)1(14

cm

cm Q

H L A S b =?-?=-=-μφφ32321/53.1103)07.111592.111161.1083(3

1

)(31cm cm S S S S b b b b =++?=++=

六、实验小结

本次实验,让我对岩石的比面有了一个直观的认识,比面的大小一定程度上

反映了岩石孔隙度和渗透率大小。实验操作步骤相对简单,每次记录数据需等水柱稳定后再记,这样实验会更加准确!最后,感谢老师的指导。

松散岩石孔隙度、持水度和给水度的测定结果数据

实验四松散岩石孔隙度、持水度和给水度的测定 一实验目的及要求 通过本次实验,使学生加深对孔隙度、给水度和持水度概念的理解,掌握室内测定基本方法; 要求学生在实验过程中认真观察和记录,分析本次实验后面的相关问题。 二测定方法及原理 松散岩石的孔隙度、持水度与给水度测定方法,通常有高柱仪法和加压法,前者适用于砂和 亚砂;后者则用于粘土及亚粘土。 本实验为高柱仪法(图Ⅰ—1),用以下两种方法均可求得其相应参数。 (一) 直接测定水量法 根据定义,只要测出装入高柱筒中 干试样的体积(V干试样)、试样饱水时所 用水的体积(向供水瓶内加入的水和剩 余水的体积之差),即: V饱水=V加水―V剩水 和在重力的作用下试样排出水的体 积(V排水),则试样所保持的水体积(V持水) 为: V持水=V饱水―V排水 据此,就可求出相应的孔隙度(n)、图Ⅰ—1高柱仪测定装置 持水度(sr)和给水度(μ)。1—高柱筒2—橡胶管3—橡皮塞4—金属网 (二) 间接测定水量法5—调流量管夹6—接水桶7—供水瓶 先将干试样装入高柱筒,并测出干试样体积(V干试样),倒出干试样,并将干燥试样称量获得其总重量(W干试样)后,再装入高柱筒,并加水饱和,最后使其在重力的作用下自由流出,直至排尽。根据试样所排出的水量(V排水)、试样饱水时的含水率和重力作用下仍能保持的含水率与试样总重量W干试样,就可求出砂土的V持水及V饱水。然后再由后面式子求出相应的孔隙 度(n)、持水度(sr)和给水度(μ)。 三测定装置(图Ⅰ—1) 漏斗、塑料桶、供水瓶、支撑铁架、流量调节阀、高柱仪、接水桶、样品盒、托盘天平、橡胶塞、牛角勺、烘箱、电子天平。 四测定步骤 1.用滤网垫住高柱筒底部排水孔,将橡胶塞斜面上抹少量凡士林,塞住高柱筒侧壁上各个取样孔。 2.用漏斗向高柱筒中分层加入干燥试样,一边装一边振动,使试样达到最大密实度。装填试样至距离高枉筒顶部孔口约3―5cm为止。 3.测量高柱筒内径和试样柱高度,计算试样体积,并填写记录表在相应测定孔隙度和测定持水度实验数据表2和3。 4.用电子天平称取试样总的净重量,并填入相应测定孔隙度和测定持水度实验数据记录表2和3。之后将试样按步骤2方法重新分层装填到高柱筒内。

第二章岩石中的孔隙与水分

第二章岩石中的空隙与水分 一、名词解释 1.岩石的透水性:岩石允许水透过的能力。 2.孔隙:松散岩石中,颗粒或颗粒集合体之间的空隙。 3.孔隙度:松散岩石中,某一体积岩石中孔隙所占的体积。 4.裂隙:各种应力作用下,岩石破裂变形产生的空隙。 5.裂隙率:裂隙体积与包括裂隙在内的岩石体积的比值。 6.岩溶率:溶穴的体积与包括溶穴在内的岩石体积的比值。 7.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。 8.给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积。 9.重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。 10.毛细水:受毛细力作用保持在岩石空隙中的水。 11.支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。 12.悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。 13.容水度:岩石完全饱水时所能容纳的最大的水体积与岩石总体积的比值。 14.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。 15.持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。 二、填空 1.岩石空隙是地下水储存场所和运动通道。空隙的多少、大小、形状、连通情况和分布规律,对地下水的分步和运动具有重要影响。 2.岩石空隙可分为松散岩石中的孔隙、坚硬岩石中的裂隙、和可溶岩石中的溶穴。3.孔隙度的大小主要取决于分选程度及颗粒排列情况,另外颗粒形状及胶结充填情况也影响孔隙度。 4.松散岩层中,决定透水性好坏的主要因素是孔隙大小;只有在孔隙大小达到一定程度,

松散岩石孔隙度、持水度和给水度的测定

实验三松散岩石孔隙度、持水度和给水度的测定 一实验目的及要求 通过本次实验,使学生加深对孔隙度、给水度和持水度概念的理解,掌握室内测定基本方法; 要求学生在实验过程中认真观察和记录,分析本次实验后面的相关问题。 二测定方法及原理 松散岩石的孔隙度、持水度与给水度测定方法,通常有高柱仪法和加压法,前者适用于砂和 亚砂;后者则用于粘土及亚粘土。 本实验为高柱仪法(图Ⅰ—1),用以下两种方法均可求得其相应参数。 (一) 直接测定水量法 根据定义,只要测出装入高柱筒中 干试样的体积(V干试样)、试样饱水时所 用水的体积(向供水瓶内加入的水和剩 余水的体积之差),即: V饱水=V加水―V剩水 和在重力的作用下试样排出水的体 积(V排水),则试样所保持的水体积(V持水) 为: V持水=V饱水―V排水 据此,就可求出相应的孔隙度(n)、图Ⅰ—1高柱仪测定装置 持水度(sr)和给水度(μ)。1—高柱筒2—橡胶管3—橡皮塞4—金属网 (二) 间接测定水量法5—调流量管夹6—接水桶7—供水瓶 先将干试样装入高柱筒,并测出干试样体积(V干试样),倒出干试样,并将干燥试样称量获得其总重量(W干试样)后,再装入高柱筒,并加水饱和,最后使其在重力的作用下自由流出,直至排尽。根据试样所排出的水量(V排水)、试样饱水时的含水率和重力作用下仍能保持的含水率与试样总重量W干试样,就可求出砂土的V持水及V饱水。然后再由后面式子求出相应的孔隙 度(n)、持水度(sr)和给水度(μ)。 三测定装置(图Ⅰ—1) 漏斗、塑料桶、供水瓶、支撑铁架、流量调节阀、高柱仪、接水桶、样品盒、托盘天平、橡胶塞、牛角勺、烘箱、电子天平。 四测定步骤 1.用滤网垫住高柱筒底部排水孔,将橡胶塞斜面上抹少量凡士林,塞住高柱筒侧壁上各个取样孔。 2.用漏斗向高柱筒中分层加入干燥试样,一边装一边振动,使试样达到最大密实度。装填试样至距离高枉筒顶部孔口约3―5cm为止。 3.测量高柱筒内径和试样柱高度,计算试样体积,并填写记录表在相应测定孔隙度和测定持水度实验数据表Ⅰ—2和Ⅰ—3。 4.用电子天平称取试样总的净重量,并填入相应测定孔隙度和测定持水度实验数据记录表Ⅰ—2和Ⅰ—3。之后将试样按步骤2方法重新分层装填到高柱筒内。 5.将供水瓶排水口用胶塞、玻璃管和胶管连接好,装上流量调节阀并关闭阀门,向瓶内加入2/3容积水,将所加水体积填写在直接测定水量法实验数据记录表Ⅰ—1,并将供水瓶放置在支撑铁架子上。连接供水瓶胶管与高柱仪筒下面水嘴。

岩石孔隙度的测定

岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占的体积越大,与标准室连通后,平衡压力就越低;反之,当放入岩心室内的岩样体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力后,根据标准曲线反求岩样的固相体积。按下式计算岩样的孔隙度: 三、实验流程 (a)流程图 (b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体压力为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.发开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘;

6.用同样的方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯中,按上述方法测定装岩样后的平衡压力; 8.将上述数据填入原始记录表 五、实验数据处理 1.计算各个铜圆盘体积和岩样的外表体积 取编号为2的钢圆盘进行分析,其直径d=2.50cm,长度L=2.030cm; 所以,由得: 同理,可得表1中V f数据。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,并根据待测岩样测得的平衡压力,在标准曲线上反查出岩样的固相体积 由下表1中数据,可绘制标准曲线图如下: 图2 标准曲线图 所以,有上图2得:岩样固相体积V s=25.0cm3 4.计算岩样孔隙度 所以岩样孔隙度为20.10% 钢圆盘编 号2号3号4号1-4号 自由组合钢圆盘岩样编号 2,4 3,4 2,3,4 A15-1B 直径 d(cm) 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.482 长度 L(cm) 2.030 2.484 5.000 10.014 7.030 7.484 9.514 6.468 体积V f9.96 12.19 24.54 49.16 34.51 36.74 46.70 31.29

岩石的比重孔隙率

。3.2 岩石的比重、孔隙率 a、岩石比重 岩石的比重就是指岩石的干比重除以岩石实体体积(不包括孔隙),再与4℃时水的容重相比,即: 式中,Gs-岩石比重 Ws-绝对干燥时体积为V的岩石重力(KN) Vs-岩石实体(不包括孔隙)体积(m) γw-在4℃时水的容重,γw=10(KN/m) b、孔隙率 岩石内孔隙体积与总体积(包括孔隙体积)之比,计算式为: 根据岩石干容重γd和比重Gs,也可以用下式计算: 式中, n-孔隙率,以百分数表示 Vv-孔隙、裂隙体积(m) V-岩样总体积(m) 图1.3。1b碳酸盐类岩石的抗压强度与孔隙率的关系.

图1.3.1b 描述岩体孔隙性的另一个指标,孔隙比е。它是岩石孔隙体积与岩石实体体积之比,即: 一些主要岩石的物理性质 岩石名称比重密度孔隙率(%)吸水率(%)

(g/cm) 岩浆岩 花岗岩 2.50~2.84 2.30~2.80 0.04~3.53 0.2~1.7 花岗闪长岩 2.65~ 2.65 1.5~1.8 1.5~1.8 闪长岩 2.60~3.10 2.52~2.96 0.25~3.0 0.18~0.40 正长岩 2.50~2.90 2.40~2.85 0.47~1.94 辉长岩 2.70~3.20 2.55~2.98 0.29~3.13 流纹斑岩 2.62~2.65 2.58~2.51 0.9~2.30 0.14~0.35 流纹岩 2.65 2.60~2.65 粗面岩 2.40~2.70 2.30~2.67 安山岩 2.40~2.80 2.30~2.75 1.09~2.19 闪长玢岩 2.66~2.84 2.49~2.78 2.1~5.1 0.4~1.0 斑岩 2.62~2.84 2.20~2.74 0.29~2.75 玢岩 2.60~2.90 2.40~2.86 辉绿岩 2.60~3.10 2.53~2.97 0.40~6.38 0.20~1.0 玄武岩 2.50~3.10 2.53~3.10 0.35~3.0 0.39~0.80 橄榄岩 2.90~3.40 2.90~3.40 霏细岩 2.66~2.84 2.62~2.78 1.59~2.23 0.18~0.35 响岩 2.40~2.70 2.40~2.70 火山碎屑岩火山角砾岩 2.50~3.00 2.20~2.90 安山凝灰岩 2.68 2.58 4.59 0.55 粗面凝灰岩25.07 凝灰质熔岩 2.87 2.64 3.35 沉积岩 硅质砾岩 2.64~2.77 2.42~2.70 0.40~4.10 0.16~4.40 石英砾岩 2.67~2.71 2.60 0.34~9.3 钙质胶结砾岩 2.42~2.66 粘土质胶结砾岩 2.20 石英砂岩 2.64~2.77 2.42~2.77 1.04~9.30 0.14~4.10 硅质胶结砂岩 2.50 泥质胶结砂岩 2.60~2.70 2.20~2.60 5.00~20.0 1.00~9.00 页岩 2.57~2.77 2.30 2.46~7.59 砂质钙质页岩 2.47~2.60 2.00~7.00 2.30~6.00 灰质页岩 2.65~2.70 致密石灰岩 2.70~2.80 2.60~2.77 1.00~3.5 0.20~3.00 白云质灰岩 2.75 2.70~2.75 1.64~3.22 0.50~0.66 泥质灰岩 2.70~2.75 2.45~2.65 1.00~3.00 2.00~4.00 变质 片麻岩(新鲜) 2.69~2.82 2.65~2.79 0.70~2.20 0.10~0.70 花岗片麻岩(强风 化) 2.30~2.50

岩石润湿性测定实验

中国石油大学 渗流物理 实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 岩石润湿性测定实验 一.实验目的 1.了解光学投影法测定岩石润湿角的原理及方法; 2.了解界面张力的测定原理及方法; 3.加深对岩石润湿性、界面张力的认识。 二.实验原理 1.光学投影法测定岩石润湿角 液体对固体表面的润湿情况可以通过直接测定接触角来确定。将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ: D h tg 22= θ 式中, θ—润湿角,°; h —液滴高度,mm ; D —液滴和固体表面接触的弦长,mm 。 图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力 悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为 10-1~10-2 mN/m 。 液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。测量液滴的相关参数,利用下式计算界面张力: , 21ρρρ-=Δ , e sn n d d S = 式中,σ—界面张力,mN/m ; 2 e gd H ρσ?=

21ρρ、—待测两相流体的密度,g/cm3; ρ?—两相待测试样的密度差,g/cm3; e d —实际液滴的最大水平直径,cm ; sn d —从液滴底部算起,高度为e d n 10高度处液滴的直径,cm ; n S —液滴e d n 10高度处的直径与最大直径的比值; H —液滴形态的修正值,由n S 查表得到。 a )烧杯中气泡或液滴形状 ( b ) 气泡或液滴放大图 图2 悬滴法测界面张力示意图 三.实验仪器 图3 HARKE-SPCA 接触角测定仪器

油层物理实验报告岩石孔隙度测定

中国石油大学《油层物理》实验报告 实验日期: 成绩: 班级:石工11-1班 学号: 姓名:李悦静 教师: 同组者: 徐睿智 实验一 岩石孔隙度测定 一、实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 100%f s f V V V ?-= ? 测定岩石骨架体积可以用①气体膨胀法 11221()()Po Vo Vs PV P Vo V V -+=-+ ②气体孔隙度仪 三.实验流程

图1 实验流程图 图2 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1. 将钢圆盘从小到大编号为1、2、3、4; 2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中; 3. 打开样品阀及放空阀,确保岩心室气体为大气压; 4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。 5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。 8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入

储层岩石孔隙度的测定

中国石油大学油层物理实验报告 实验日期:2014年9月22日 成绩: 班级:石工(实验)1202 学号: 姓名: 教师: 同组者: 储层岩石孔隙度的测定 一.实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理。 2.掌握测量岩石孔隙度的流程和操作步骤。 二.实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,放入岩心室岩样的固相体积越大,平衡压力就越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线。测定待测岩样平衡压力,根据标准曲线反查岩样固相体积,按式(3-2-1)计算岩样孔隙度。 f s f f p V V V V V -= =φ (3-2-1) 式中 φ--孔隙度; p V --孔隙体积; s V --骨架体积; f V --外表体积。 因此,只需在实验室内测得p V ,s V ,f V 中的任意两个值,即可求出孔隙 度值。 三.实验流程

1 2 3 4 1V 7 s V 5 6 1---岩心室;2---标准室;3---调压阀;4---气源阀;5---样品阀;6---放空阀;7---供气阀。 流程图 ()()1021100V V V P V P V V P s s +-=+- (3-2-2) ()11102V P V V V P g s g =-+ (3-2-3) 四.实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢 圆盘从小到大编号为1、2、3、4),并记录在数据表中。 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压。 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至560kPa 。待压力稳定后,关闭供气阀,并记录标准室气体压力。 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。 5.打开放空阀,逆时针转动T 形转柄,将岩心杯向外推出,取出钢圆盘。 6.用同样方法将3号、4号及全部(1~4号)、(2、3)、(2、4)、(2、3、4)组合装入岩心杯中,重复步骤2~5,记录平衡压力。 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五.数据处理与计算 1.计算各个钢圆盘体积。 0P 1 P 气 源

岩石孔隙度测定

中国石油大学(油层物理)实验报告 实验日期 成绩: 班级 学号: 姓名: 教师: 同组者 实验一 岩石孔隙度的测定 一. 实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二.实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心 杯岩样的固相(颗粒)体积越小,则岩 心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体 积越大,平衡压力越高。根据平衡压力的大小就可测得岩样的固相体积。 %100?=-f s f V V V φ 测定岩石骨架体积可以用①气体膨胀法 )12(211)(V V Vo P V P Vs Vo Po +-=+- ②气体孔隙度仪 三.实验流程

(a)流程图 仪器有下列部件组成: 1气源阀:供给孔隙度仪调节器低于1000Pa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 2调节阀:将1000Pa的气体压力准确地调节到指定压力(小于1000Pa)。 3供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系 的平衡压力。 5样品阀:能使标准室内的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 四.实验步骤 1.将钢圆盘从小到大编号为1、2、3、4; 2.用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表 中; 3.打开样品阀及放空阀,确保岩心室气体为大气压; 4.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。 5.关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压 力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6..开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7.开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心 室向外推出,取出钢圆盘。 8.用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢 圆盘装入岩心室中,重复步骤2-5,记下平衡压力。

润湿性的测量方法

润湿性的测量方法 测量润湿性的方法很多,按测量目的的不同可分为两大类,即定性方法和定量方法。其中定量方法主要有接触角法、渗吸与排驱法(Amott方法)和USBM(美国矿物局)方法。定性测量方法种类很多,包括渗吸率、显微镜检测、浮选法、玻璃滑动法、相对渗透率曲线法、渗透率与饱和度关系曲线、毛管压力曲线、毛细测量法、排驱毛管压力、油藏测井曲线、核磁共振法以及染色吸附法。 一润湿性的定量测量方法 一般定量测量常用以下三种方法:(1)接触角法;(2)Amott方法(渗吸和排驱);(3)USBM 方法。 1.接触角法: 接触角法测量的是一个特定表面的润湿性。在油水系统中就是测量光滑矿物表面上油和水的润湿性。 石油工业中一般用悬滴法测量接触角,第一步要全部彻底的清洗仪器,因为即使微量的杂质也能改变润湿性。当用纯净流体和人造岩心时接触角法是最好的测量方法。此法也用来检验实验条件对润湿性的影响,如压力、温度和水的化学性质。 润湿角测量的一个问题是滞后现象。测量的接触角有前进角和后退角两种,前进角是向前推液滴边缘测得的,而后退角是向后拉测得的,二者之差就是接触角滞后。引起滞后的原因有三种:a、表面粗糙度;b、表面非均质性;c、大分子水垢的表面固定性。 将接触角用于油藏岩石的第二个问题是它仅仅反映岩石局部的润湿性,不能考虑岩石表面的非均质性。第三个限制是得不到有关岩石上是否存在永久连接有机覆盖物的信息。2.Amott方法 USBM方法和Amott方法测量的是岩心的平均润湿性。当测量天然状态岩心或恢复原态岩心时,这两种方法要好于接触角法。确定岩心是否清洗完全必须用USBM方法或Amott方法。USBM方法有时要优于Amott方法,因为后者在中性润湿附近不敏感。改进的USBM 方法可以进行USBM和Amott两种方法的指数计算。 Amott方法是把渗吸和驱替结合起来测量岩石的平均润湿性。测量之前,所用的岩心先要在水中通过离心作用直至达到残余油饱和度(ROS),然后才可进行Amott方法实验。 Amott方法主要由以下四步组成: ①将岩心浸入油中,20小时后测量被油的自发吸入所排出的水的体积; ②岩心在油中离心达到束缚水饱和度(IWS),测量排出的水的总量; ③将岩心浸入水中,20小时后测量被水的自吸排出的油的体积; ④在水中离心直至达到残余油饱和度,测量排出的油的总量。 注意:岩心可能是通过流动而不是离心达到ROS和IWS,尤其对于不能用离心机的非固态物质必须如此。 分别引入油驱比和水驱比的定义如下: 油驱比: 水驱比: 其中δo--- 油驱比 δw--- 水驱比 Vwsp--- 通过油的自吸所排出的水的体积 V osp--- 通过水的自吸所排出的油的体积

实验二 给水度 孔隙度 持水度测定实验

实验二 给水度、孔隙度、持水度测定实验 一、实验目的 1.加深理解松散岩石的孔隙度、给水度和持水度的概念。 2.熟练掌握实验室测定孔隙度、给水度和持水度的方法。 3.熟悉给水度仪并对仪器进行标定。 4.测定三种松散岩石试样的孔隙度、给水度和持水度。 二、实验原理 给水度就是饱水岩石在重力作用下,能从岩石中自由流出来的水的体积与整个岩石体积之比。在数值上相当于岩石饱和容水度(简称容水度)与最大分子水容度(持水度)之差。其计算公式为32V V =μ。 孔隙度是指某一体积岩石(包括孔隙在内)中孔隙体积所占的比例。其计算公式为 31V V n =。 持水度是指饱水岩石在重力作用下释水后,岩石中保持的水的体积与岩石体积之比。其计算公式为μ-=n S r 。 式中:—水充满砂样孔隙的体积(进水量体积)(); 1V 3 cm 2V —重力作用下,饱水砂中自由流出的水体积(退水量体积)(); 3 cm 3V —饱水砂样的总体积(试样体积)() 3cm 给水度、孔隙度和持水度的测定有两种方法:体积法和差值法。体积法适用于碎石、砾和砂等粗粒岩土。差值法适用于砂、粉砂和粘性土等细粒岩土。 本实验要求掌握体积法测定砂的给水度、孔隙度和持水度。 体积法(1) 一、仪器设备 1.给水度仪(图2—1)。 2.十二指肠减压器,或大号吸耳球,用以抽吸气体。 3.量筒(25ml )和胶头滴管。 4.松散岩石试样:砾石(粒径为5~10mm ,大小均匀,磨圆好);砂(粒径为0.45mm~0.6mm );砂砾混合样(指把上述砂样完全充填进砾石样的孔隙中得到的一种新试样)。

图2-1 给水度仪图 图2-2 胶头滴管调整三通管液面示意图 二、实验室准备工作 1—装样筛;2—筛板;3—试样筒;4—透水石;5—固定连接板;6—试样筒底部漏斗;7—弹簧夹;8—硬塑料管;9—滴定管;10—三通管 1—H 为三通管液面到透水石底面的距离; 2—三通管液面 1.标定透水石的负压值 透水石是用一定直径的砂质颗粒均匀胶结成的多孔板。透水石的负压值是指在气、液、固三相介质界面上形成的弯液面产生的附加表面压强。标定方法如下: 首先,饱和透水石并使试样筒底部漏斗充满水(最好用去气水,即通过加热或蒸馏的方法去掉水中部分气体后的水)。具体做法是:将试样筒与底部漏斗一起从开关a 处卸下(见图2-1),浸没于水中并倒置,将漏斗管口与十二指肠减压器抽气管连接,抽气使透水石饱水,底部漏斗全充满水。用弹簧夹在水中封闭底部漏斗管,倒转试样筒,将装有水(可以不满)的试样筒放回支架。同时打开a 、b 两开关,在两管口同时流水的情况下连接塑料管。关闭a 、b 开关,倒去试样筒中剩余的水,将A 滴定管液面调至零刻度,并与透水石底面水

第二节 储层岩石的孔隙度

第二节 储层岩石的孔隙性(3学时) 一、教学目的 掌握孔隙的分类、定义、 测量方法和影响因素。 二、教学重点、难点 教学重点 1、孔隙的分类和定义 教学难点 1、孔隙的分类和定义 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、孔隙度的定义和分类 二、孔隙度的测量 三、影响孔隙度的因素 (一)、孔隙度的定义和分类 1、孔隙度的定义 岩石的孔隙度是指岩石的孔隙体积与岩石外观体积的比值,常用百分数表示,记为φ 式中: Vr——岩石的骨架体积,米3,cm3 Vp——岩石的孔隙体积,米3,cm3 V f——岩石的视体积,米3,cm3 φ——岩石的孔隙度,% 2、孔隙度的分类 我们已知讲过,孔隙空间可以分为有效孔隙和无效孔隙,所以相应地,孔隙度也可以分为: A、绝对孔隙度,φa 绝对孔隙度是指岩石所有孔隙体积(有效+无效)与岩石视体积之比。 Vap——总孔隙体积,=V有效+V无效 V f——岩石的视体积 φa——岩石的绝对孔隙度

B、有效孔隙度 由于储油岩石孔隙的复杂性,所以在岩石孔隙中,并非所有的孔隙都是有用的,比如说函端孔隙和孔道半径很小(r<0.0001mm)的孔隙,这样的孔隙实际上对流体的流动毫无价值,所以人们将流体能在其中流动且相互连通的孔道称为有效孔隙,有效孔隙与岩石视体积的比值称为有效孔隙度。 Vep——岩石有效孔隙体积 V f——岩石的外观体积 φe——岩石的有效孔隙度 大家值得注意的是:由于流体只能在大于0.0001mm半径的孔道中流动,因此,孔道小于0.0001mm的那些孔隙也被看作是死孔隙,同样被这些微小孔道包围的大孔道当然也属于死孔隙之列。 另外,从上面的分析中我们不难看出,还应当存在一种孔隙度。 C、流动孔隙度φm Vmp——流动孔隙度 V f——岩石的外观体积 φm——流动体积 很显然,流动体积是指有效孔隙中,允许流何流动的那一部分孔道体积。它不仅排除了死孔隙,也包括束缚水占据的部分以及岩石表面吸附流体所占据的孔道部分。可见,在相互连通的孔隙中并不是全部孔道都能让流体流动。直得注意的是被吸附流体的厚度有时相当可观,可把原来流动的孔道堵住,或者使渗重能力下降,这一点在三次采油中尤为重要。 综合上述的三种孔隙度不难看出: φa>φe>φm 对于砂岩:φa≈φe>φm 泥质砂岩:φa>>φe>φm 泥岩:φa>>>φe>φm 岩石孔隙度在油田中应用极广,通常在地质储量计算中用有效孔隙度φe,在计算可采储量时要用流动孔隙度,而绝对孔隙度只有岩石学上的意义,应用很少。 利用岩石的孔隙度(有效孔隙度)还可以用来进行油层评价,一般砂岩φe=10~25% φ 评价 5~10% 差

中国石油大学(华东)岩石润湿性测定实验

岩石润湿性测定实验 一、实验目的 1、了解光学投影法测定岩石润湿角的原理和方法; 2、了解界面张力的测定原理和方法; 3、加深对岩石润湿性、界面张力的认识。 二.实验原理 1.光学投影法测定岩石润湿角 液体对固体表面的润湿情况可以通过直接测定接触角来确定。将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h和它与岩石接触处的长度D,按下式计算接触角θ: 2h tg= 2D 式中,θ—润湿角,°; h—液滴高度,mm; D—液滴和固体表面接触的弦长,mm。 图1 投影法润湿角示意图 2.悬滴法测定液滴界面张力 悬滴法适用于密度差较大的测定液-液或气-液之间的界面张力,测量范围为10-1~10-2mN m。

液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。测量液滴的相关参数,利用下式计算界面张力: 2 gd =H ερσ? ,12=ρρρ?- ,sn n d =d S ε 式中,σ—界面张力,mN m ; 12ρρ、 —待测两相流体的密度,3 g cm ; ρ?—两相待测试样的密度差,3g cm ; d ε—实际液滴的最大水平直径,cm ; sn d —从液滴底部算起,高度为n d 10 ε高度处液滴的直径,cm ; n S —液滴 n d 10 ε高度处的直径与最大直径的比值; H —液滴形态的修正值,由n S 查表得到。 (a )烧杯中气泡或液滴形状 (b )气泡或液滴放大图 图2 悬滴法测界面张力示意图 三、实验仪器

孔隙度测定

一.孔隙度定义: 岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。孔隙度(?)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。表达式为 ?=V p V b ×100% 它是说明储集层储集能力的相对大小的基本参数。 二.孔隙度的分类 1.岩石的绝对孔隙度(?a ) 岩石的绝对孔隙度(?a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即 ?a =V a V b ×100% 2.岩石的有效孔隙度(?e ) 有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即: ?e =V e V b ×100% 计算储量和评价油气层特性时一般之有效孔隙度。 3.岩石的流动孔隙度(?f ) 微毛细管孔隙虽然彼此连通,但未必都能让流体流过。例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即: ?f =V f b ×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。在油气田开发中,流动孔隙度具有一定的实用价值。 三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度 三.孔隙度分级标准 四.双重介质岩石空孔隙度 双重孔隙介质储层具有两种孔隙系统。第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。 总孔隙度?t 、裂缝孔隙度?f 和岩石原生孔隙度?p 之间有如下关系: ?p =?p +?f

中国石油大学(华东)岩石孔隙度的测定实验

岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 岩石的体积分为几何体积、骨架体积和孔隙体积,我们可以根据其中两个数值求解剩余一个。孔隙度是孔隙体积与几何体积之比,反映了岩石中孔隙的发育程度,表征储集层储集流体的能力。储层的孔隙度越大,可容纳流体的量就越大,储集性能就越好。 根据玻义尔定律,在恒定温度下,岩心体积一定,放入岩心室岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 100%f s f V V V φ-= ? 三、实验流程与设备 (a )流程图

(b )控制面板 图1 QKY-Ⅱ型气体孔隙度仪 仪器由下列部件组成: (1)气源阀:供给孔隙度仪调节器低于1000kPa 的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 (2)调节阀:将1000kPa 的气体压力准确地调节到指定压力(小于1000kPa )。 (3)供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 (4)压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 (5)样品阀:能使标准室内的气体连接到岩心室。 (6)放空阀:使岩心室中的初始压力为大气压,也可使平衡后岩心室与标准室的气体放入大气。 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值(本次试验为560kPa )。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.打开放空阀,逆时针转动T 形转柄,将岩心杯向外推出,取出钢圆盘; 6.用同样的方法将3号、4号、全部(1~4号)及任意三种组合的钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力; 8.将上述数据填入原始记录表。 五、数据处理与计算 1.计算各个钢圆盘的体积f V ; 以2号圆盘的体积计算为例:22311 3.14 2.5 1.9629.63144 f V d L cm π==???=

岩石润湿性对油层的损害

岩石的润湿性对油气层的损害 周杨 摘要: 储层岩石的润湿性决定流体的流动性, 对油藏岩石润湿性的研究可以有效的指导油藏的开发, 提高油藏采收率。本文从岩石的润湿性对剩余油饱和度分布、相对渗透率大小、毛管力、微粒的运移以及油层的采收率等方面的影响, 具体分析油气层损害原因在现象, 为推荐和制定各种油气层保护和解除油气层损害方案提供借鉴。 关键字:岩石润湿性剩余油饱和度分布渗透率毛管力微粒运移采收率油气层损害 引言 油田进入中后期开发, 油气藏地层都受到了不同程度的损害, 不仅降低了油气井的产出或注入能力及油气的采收率, 还可能损失宝贵的油气资源, 增加勘探开发成本。因此了解生产过程中造成的油气层损害的机理, 不但有助于采取保护油气层的措施,而且也是判断油气层损害程度的基础。润湿性是研究外来工作液注入(或渗入)油层的基础,是岩石—流体间相互作用的重要特性。了解岩石的润湿性是对储层最基本的认识之一,它至少是和岩石孔隙度、渗透率、饱和度、孔隙结构等同样重要的一个储层基本特性参数。特别是油田注水时,研究岩石的润湿性,对判断注入水是否能很好地润湿岩石表面,分析水驱油过程水洗油能力,选择提高采收率方法以及进行油藏动态模拟试验等方面都具有十分重要的意义。本文通过对岩石润湿性油水的微观分布、相对渗透率大小、毛管力、微粒的运移以及油层的采收率等可能产生的各种影响分析其对油气层的损害。 1 润湿机理 液体和固体接触时, 会产生不同的形状。如果我们在固体表面上滴一滴液体, 这液滴可能沿固体表面立即扩散开来, 也可能仍以液滴形状附着于固体表面。我们将液滴或气体在固体表面的扩散现象称为润湿作用, 当液滴在固体表面立即扩散, 即称给该种液体润湿固体表面, 当液滴呈圆球状, 不沿固体表面扩散, 则称为该液体不润湿固体表面。在一般情况下, 水可以润湿固体表面, 而油则不润湿固体表面 [ 1]( 见图 1) 。 液体对固体的润湿程度用润湿接触角表示,它是固体表面与液体——空气或液体——液体界面之间的夹角, 并规定从密度大的液体一方算起。当< 90°, 液体润湿固体( 见图 1a) , = 0°, 为完全润湿;当 > 90°, 液体不润湿固体, ( 见图1b) ; = 180°, 为完全不润湿。凡能被液体所润湿的, 称亲液性固体, 常见的是水, 在这种情况下, 就说固体是亲水的; 不能液体所润湿的, 称憎液性固体, 对水来说就是憎水的。 2 影响润湿性的因素 岩石润湿性是岩石与地层流体在特定条件下综合作用的结果, 同一岩石的润湿性也不是一成不变的, 它会随着各种外在条件( 如润湿顺序, 时间, 地层压力和温度等) 的不同而改变, 但影响岩石润湿性的

岩石润湿性的测定实验报告

中国石油大学 油层物理 实验报告 实验日期: 2010.12.17 成绩: 班级: 石工10-15班 学号: 10131504 姓名: 于秀玲 教师: 王玉靖 同组者: 秘荣冉 宋文辉 岩石润湿性的测定 一.实验目的 1.了解光学投影法测定岩石润湿角的原理及方法; 2.加深对岩石润湿性的认识。 二.实验原理 液体对固体表面的润湿情况可以通过直接测定接触角来确定。将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液 滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ: D h tg 22 = θ 式中, θ—润湿角,°; h —液滴高度,mm ; D —液滴和固体表面接触的弦长,mm 。

三.实验仪器 HARKE-SPCA接触角测定仪如图2所示 四.实验步骤 1.将直流电源的插头一端插入接线板内另一端插入仪器后面的电源插座内。 2.将通讯线连接主机与计算机COM2通讯口。 3.打开接线板的电源开关。 4.旋转仪器后面的光源旋钮,顺时针旋转,看到光源亮度逐渐增强。 5.打开接触角软件图标。 6.开启视频。 7.调整滴液针头。初次使用接触角测定仪对焦比较繁琐,首先向下移动滴液针头,停在变倍显微镜水平线以下的位置,然后旋转固定在上下移动器上的水平移动旋钮,左右调整针头,当软件图像显示窗口出现针头虚影时停止。 8.调整调焦手轮,直到图像清晰。 9.将显微镜放大倍数调整到1.5倍。 10.将吸液管吸满液体安装在固定夹上。旋转测微头,液体将缓缓流出,形成液滴。11.用脱脂巾擦干针头上的液体,再在工作台上放置被测的固体试样。最好是长条的20×60mm左右。 12.点击配置栏,在试验设置对话框,在相关栏添入相关数值。 13.上升移动工作台至界面上红色水平线的下方(1mm左右),见图3。 14.旋转测微头,当针头流出大约3-5ul左右的液体时停止。 15.旋转工作台升降手轮,使试样表面接触液滴,然后下降一点。液滴显示在视窗内,见图4。 16.点击开始试验绿色三角形图标,试验将按照设置的时间间隔自动拍摄图像,直至完毕。17.关闭视频,点击软件界面下面的电影图片任意一张,图片将显示在大窗口中,见图5。 图3 图4 图5五.接触角分析方法 1. 切线法

油层物理-岩石润湿性测定实验-中国石油大学

中国石油大学油层物理实验报告 实验日期: 2014、10、10成绩: 班级:石工学号: 姓名:教师: 同组者: 岩石润湿性测定实验 一、实验目得 1.了解光学投影法测定岩石润湿角得原理及方法; 2.了解界面张力得测定原理及方法; 3.加深对岩石润湿性、界面张力得认识。 二、实验原理 1.光学投影法测定岩石润湿角 液体对固体表面得润湿情况可以通过直接测定接触角来确定。将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面上滴一滴水(或油),直径约1~2mm,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴得高度h与它与岩石接触处得长度D,按下式计算接触角θ: 式中θ—润湿角,(); h—液滴高度,mm; D—液滴与固体表面接触得弦长,mm。 图1 投影法测润湿角示意图 2.悬滴法测定液滴界面张力 悬滴法适用于密度差较大得测定液-液或气-液之间得界面张力,测量范围为10-1~10-2 mN/m。 液体自管口滴落时,当液滴接近最大直径时,用光学设备记录下液滴图像。测量液滴得相关参数,利用下式计算界面张力: 式中—界面张力,mN/m; 、—待测两相流体得密度,g/cm3; —两相待测试样得密度差,g/cm3; —实际液滴得最大水平直径,cm; —从液滴底部算起,高度为高度处液滴得直径,cm; —液滴高度处得直径与最大直径得比值; —液滴形态得修正值,由查表得到。

(a)烧杯中气泡或液滴形状(b)气泡或液滴放大图 图2 悬滴法测界面张力示意图 三、实验流程 图3接触角测定仪 四、实验操作步骤 1、打开接线板得电源开关。 2、顺时针旋转仪器后面得光源旋钮,光源亮度逐渐增强。 3、打开接触角软件图标,开启视频。 4、调整滴液针头:先向下移动滴液针头,停在变倍显微镜水平线以上得位置,然后旋转固定在上下移动器上得水平移动旋钮,左右调整针头,当软件图像显示窗口出现针头虚影时停止。 5、调整调焦手轮,直到图像清晰。 6、将显微镜放大倍数调整到1、5倍。 7、将吸液管吸满液体安装在固定夹上。旋转测微头,液体将缓缓流出,形成液滴。 8、用脱脂巾擦干针头上得液体,再在工作台上放置被测得固体试样。 9、上升移动工作台至界面上红色水平线得下方(1mm左右),见图4。

相关文档