文档库 最新最全的文档下载
当前位置:文档库 › 集成运算放大器实验

集成运算放大器实验

集成运算放大器实验
集成运算放大器实验

一、实验目的

1.了解集成运算放大器的基本特性;

2.掌握集成运算放大器的正确使用方法;

3.掌握集成运放比例运算电路的调试和实验方法。

二、实验原理

1.运算放大器是具有两个输入端、一个输出端的高增益、高输入阻抗、低漂移的直流放大器。在它的输出端和输入端之间加上反馈网络,就可以实现各种不同的电路功能,如反馈网络为线性电路时,运算放大器可以实现放大、加、减、微分和积分等;如反馈网络为非线性电路时,可以实现对数、乘法、除法等运算功能;另外还可以组成各种波形产生电路,如正弦波、三角波、脉冲波等。

集成运算放大器是人们对“理想放大器”的一种实现。一般在分析集成运放的实用性能时,为了方便,通常认为运放是理想的,即具有如下的理想参数:

(1)开环电压增益 vd A =∞;

(2)差模、共模输入电阻 id R =∞,ic R =∞; (3)输出电阻 0o R =; (4)开环带宽 BW =∞; (5)共模抑制比 C M R K =∞;

(6)失调电压、失调电流0io V =,0io I =。

2.由于集成运放有两个输入端,因此按输入接入方式不同,可有三种基本放大组态,即反相放大、同相放大和差动放大组态,它们是构成集成运放系统的基本单元。

(1)反相比例放大器

电路如实图10-1所示,当开环增益为∞时,反相比例放大器的闭环增益为

1

F vf R A R =-

由上式可知,选用不同的电阻比值1F

R R ,vf A

大于1,也可以小于1。若取1F R R =,则

放大器的输出电压等于输入电压的负值,也称为反相跟随器。

实图10-1 反相比例放大器

(2)同相比例放大器

电路如图10-2所示,当开环增益足够大时,同相比例放大器的闭环增益为

1

1F vf R A R =+

由上式可见,vf A 恒大于1。若1R →∞,此时vf A

为1,于是同相放大器就转变为跟随器,如实图10-3所示。

实图10-2 同相比例放大器实图10-3 电压跟

随器

3.本实验用电路如图10-4所示,所用集成运放为双电源供电,提供±12V的电源。实验底板上的1V、2V、3V、4V为直流信号输出,供实验时选用,其中1 1.4

V=+V,20.7

V=+V,3

1

V=-V,4V可通过电位器调节,输出的直流电压范围为2-V~+2V。

实图10-4 集成运放实验电路板

三、实验内容

(一)反相比例放大器研究

1.直流反相比例放大

根据表10-1中对放大倍数vf A的要求,选择合适的元件,按实图10-1接好电路,完成要求的测试内容,计算并分析结果。

2.交流反相比例放大

根据实验电路板图10-4所列元件,实现() 3.3()o i V t V t =-,要求()2cos 2000i V t t π=(V )。正确选择电路元件,观测并记录输入、输出波形,分析结果,填入表10-2中。

3.反相放大器幅频特性的测试

按图10-1接好电路,选择100F R =K Ω,110R =K Ω,210R =K Ω。用函数发生器输出正弦信号,使放大器输入信号0.3i V =(V ),改变信号频率,测量输出电压o V ,确定半功率频率点H f ,记录数据,用坐标纸画出幅频特性曲线,填入表10-3。

(二)同相比例放大器研究

1.直流同相比例放大

根据表10-4中对放大倍数vf A

的要求,选择合适的元件,按图10-2接好电路,完成要求的测试内容,计算分析结果。

2.交流同相比例放大

根据实图10-3所示,实现()2()o i V t V t =,要求()2cos 2000i V t t π=(V )。观测并记录输入输出波形,分析结果,填入表10-5中。

(三)电压跟随器的研究

按实图10-3连接电路,完成表10-6的测试,分析结果。

四、实验报告要求

1.完成实验表格中的测试、计算,分析结果。用坐标纸正确描绘波形图; 2.总结用运放构成放大电路的方法; 3.分别说明产生误差的原因; 4.回答思考题。

五、实验仪器

名称 型号

数量

双踪示波器 VP —5220或GOS6220 1台 函数发生器 EE —1641B1或FGl617 1台 晶体管毫伏表 DA —16 1台 数字万用表 DT890 1台 直流稳压电源 JWY —30 1台 实验板

双电源运放电路

1块

六、思考题

1.实验发现,当R F 较大以后,V 0不再随R F 的增加而增大,且输出交流波形限幅。试说明原因。

2.试分析比较反相放大器和同相放大器性能的异同。

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

第16章习题_集成运放

16-001、同相比例运算放大电路通常比反相运算放大电路输入阻抗 。 16-002、设图中A 为理想运放,请求出各电路的输出电压值。(12分) U 016V U 026V U 03V U 04 10V U 052V U 062V 16-003、在图示电路中,设A 1、A 2、A 3均为理想运算放大器,其最大输出电压幅值为± 12V 。 1. 试说明A 1、A 2、A 3各组成什么电路? 2. A 1、A 2、A 3分别工作在线形区还是非线形区? 3. 若输入为1V 的直流电压,则各输出端u O1、u O2、u O3的电压为多大?(10分) U o3 U o1 U o2 20 k 10 k 2V (1) A + + 8 2V (2) 10 k 20 k A + + 8 2V 1V (3) 20 k 10 k A + + 8 (4) 2V 3V U o4 20 k 10k 10 k 20k A + + 8 (5) 2 V U o5 20 k A + + 8 U o6 (6) 2V A + + 8 +k R 1 u I O3 k k

1.A 1组成反相比例电路,A 2 组成过零比较器,A 3 组成电压跟随器; 2.A 1和A 3 工作在线性区,A 2 工作在非线性区; 3.u O1 = -10V,u O2 = -12V,u O3 = -6V。

16-301、试求图所示各电路输出电压与输入电压的运算关系式。 图 解:在图示各电路中,集成运放的同相输入端和反相输入端所接总电阻均相等。各电路的运算关系式分析如下: (a )f f f O I1I2I3I1I2131212 (1)225//R R R u u u u u u u R R R R =-?-?++?=--+ (b ) 3f f f 2 O I1I2I3I1I2131123123 (1)(1)1010R R R R R u u u u u u u R R R R R R R =- ?++?++?=-++++ (c ))( 8)(I1I2I1I21 f O u u u u R R u -=-= (d ) 3f f f 4f O I1I2I3I41212431243I1I21314 (1)(1)////202040R R R R R R u u u u u R R R R R R R R R R u u u u =- ?-?++?++?++=--++ 16-302、在同相输人加法电路如图题8.1.1所示,求输出电压o v ;当R 1=R 2=R 3=R f 时,o v =? 解 输出电压为 P f O v R R v ???? ? ?+=31 式中 21 121212 P S S R R v v v R R R R = +++ 即)(112112213S S f O v R v R R R R R v +???? ??+???? ? ?+=

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运放线性运算实验.(精选)

集成运放线性运算实验 一、实验目的 1、研究由集成运算放大器组成的比例、加法和减法等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 3、熟悉典型集成运放应用电路的接线和使用方法。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。 (2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路

电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2 =R 1 // R F 。 图1 反相比例运算电路 图2 反相加法运算电路 2) 反相加法电路 电路如图2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 4) 差动放大电路(减法器) 对于图3所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 )U (U R R U i1i21 F O -= 图3 减法运算电路图 i 1F O U R R U -=

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

(完整版)集成运算放大器练习题

集成运算放大器测试题 指导老师:高开丽班级:11机电姓名: _____________ 成绩: 一、填空题(每空1分,共20分) 1、集成运放的核心电路是__________ 电压放大倍数、_________ 输入电阻和_______ 输出电阻的电路。(填“低”、“高”) 2、集成运由_____________ 、______________ 、________________ 、___________ 四个部分组成。 3、零漂的现象是指输入电压为零时,输出电压_________________ 零值,出现忽大忽小得现象。 4、集成运放的理想特性为:________________ 、______________ 、_________ 、_____________ 。 5、负反馈放大电路由__________________ 和__________________ 两部分组成。 6、电压并联负反馈使输入电阻__________ ,输出电阻___________ 。 7、理想运放的两个重要的结论是_______________ 和_____________ 。 &负反馈能使放大电路的放大倍数________________ ,使放大电路的通频带展宽,使输出信号波形的非线性失真减小,__________ 放大电路的输入、输出电阻。 二、选择题(每题3分,共30分) 1、理想运放的两个重要结论是() A 虚断VI+=VI-,虚短i l+=il- B 虚断VI+=VI-=O ,虚短i l+=il-=O C 虚断VI+=VI-=O ,虚短i I+=iI- D 虚断i I+=iI-=0 ,虚断VI+=VI- 2、对于运算关系为V0=10VI的运算放大电路是() A反相输入电路B同相输入电路C电压跟随器D加法运算电路 3、电压跟随器,其输出电压为V0,则输入电压为() A VI B - VI C 1 D -1 4、同相输入电路,R仁10K,Rf=100K ,输入电压VI为10mv,输出电压V0为 () A -100 mv B 100 mv C 10 mv D -10 mv

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大电路实验报告

北京邮电大学 实验报告 课程名称:电子电路基础 实验名称:集成运算放大器的运用 通信工程系23班姓名:郭奥 教师:魏学军成绩: 2011年11月28日

一:实验目的 1.研究有集成运算放大器组成的比例,加法,减法,和积分等基本运算电路功能 2.了解运算放大器在实际应用时应考虑的一些问题 3.提高独立设计和独立完成实验的能力 二:实验器材

三:预习思考题 1. 本实验哪些电路需要调零?若需要如何操作? 所有需要放大含有直流分量的应用场合,都必须进行调零,即对运放本身(主要是差动输入级)的失调进行补偿,以保证运放闭环工作时,输入为零时输出也为零。操作时分两种情况: ① 有的运放已有引出的补偿端,只需按照器件手册的规定接入调零电路即可。 ② 对于没有设调零端的运放,可将电路的输入端接地,用万用表直流电压档或示波器的DC 耦合档接在电路的输出端,调节电位器,使输出为零。 2. 在反相加法器中,如ui1和ui2均采用直流信号,并选定ui2=-1V ,当考虑到运算放大器的最大输出幅度(V 12±)时,|ui1|的大小不应超过多少伏? 答:2/)2(1uo ui ui --=故|ui1|max=6.5V 3. 在积分电路中,如F C k R μ7.4,1001=Ω=,求时间常数。 假设ui=0.5V,问要使输出电压uo 达到5V ,需要多长时间? 答:47.0*1==C R τ)0(1)(0uc uidt RC t uo t +-=?t=4.7s 4. 为了不损坏集成芯片,试验中要注意什么问题? 答:切记正、负电源极性接反和输出端短路。

四:实验电路图: 反相比例运算电路 反相加法运算电路 积分运算电路五:实验步骤:

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

集成运放大器的基础知识

课题集成运放大器的基础知识所属章节第三章:集成运算放大器 教学目的1、了解集成运放的组成的符号 2、掌握理想运放的两个重要结论 教学重点1、运算放大器的组成 2、运算放大器的电路符号 3、运算放大器的主要参数 4、理想运算放大器 教学方法讲授法、多媒体课件教学 课题引入 集成运算放大器最早应用于模拟计算机中,如完成加法、减法等数学运算。而今主要有来完成信号的产生、转换、处理等,集成运算放大器已得到广泛应用。 授课内容 一、集成运算放大器的组成及符号 集成运算放大器实质上是一种双端输入、单端输出,具有高增益,高输入阻抗、低输出阻抗的多极直接耦合放大电路。 1、电路组成 集成运放内部组成框图如图所示。 ①输入级 输入级又称前置级,它往往是一个双端输入的高性能差分放大电路。一般要求其输入电阻高,差模放大倍数大,抑制共模信号的能力强,静态电流小。 ②中间级 中间级是整个放大电路的主要放大电路。其作用是使集成运放具有较强的放大能力,多采用共射(或共源)放大电路。而且为了提高电压放大倍数,经常采用复合管做放大管,以恒流源作集电极负载。其电压放大倍数可达千倍以上。 ③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载能力强),非线性失真小等优点。多采用互补对称发射极输出电路。 ④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与分 授课内容立元件不同,集成运放多采用电流源电路为各级提供合适的集电

极(或发射极、漏极)静态工作电流,从而确定了合适的静态工作点。 2、电路符号 旧标准新标准 二、集成运放的主要参数 1、开环差模电压放大倍数Avd 在集成运放无外加反馈时的直流差模放大倍数称为开环差模电压放大倍数。 2、共模抑制比K CMR 共模抑制比等于差模放大倍数与共模放大倍数之比的绝对值, 3、差模输入电阻R id 集成运放在输入差模信号时的输入电阻。 4、输出电阻Ro 集成运放开环状态下的输出电阻。 5、输入失调电压v IO 理想集成运放,当输入为零时,输出也为零。但实际集成运放的差分输入级不易做到完全对称,在输入为零时,输出电压可能不为零。为使其输出为零,人为的在输入端加一补偿电压,称此补偿电压为输入失调电压,用v IO表示。 6、输入失调电流I IO 集成运放在常温下,当输出电压为零时,两输入端的静态电流之差,称为输入失调电流,用I IO表示, 三、理想集成运算放大器 理想运算放大器的条件: 1、开环差模增益(放大倍数)A vd=∞; 2、差模输入电阻R id =∞; 3、输出电阻Ro=0; 4、共模抑制比K CMR=∞; 两条重要结论: ①理想集成运放两输入端的净输入电压等于零。即 v i =v N -v P =0 v N =v P, 通常称为“虚短”。 ②理想集成运放的两输入端电流均为零。即 i N -i P =0,通常称为“虚断” 。 课堂练习1、集成运放电路是一种高增益的放大器,它的内部电

运算放大器稳定性实验

●Hello,and welcome to the TI Precision Lab supplement for op amp stability. ●This lab will walk through detailed calculations,SPICE simulations,and real-world measurements that greatly help to reinforce the concepts established in the stability video series. ●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定 性环节。 ●这个实验会包括计算,SPICE仿真和实际测试。这些环节帮助大家对视频中 的概念加深理解。

●The detailed calculation portion of this lab can be done by hand,but calculation tools such as MathCAD or Excel can help greatly. ●The simulation exercises can be performed in any SPICE simulator,since Texas Instruments provides generic SPICE models of the op amps used in this lab. However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation. ●Finally,the real-world measurements are made using a printed circuit board,or PCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5?digit multimeter for convenient and accurate measurements. This lab is optimized for use with the VirtualBench. ●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会 更好。

第16章集成运算放大器

河北工业大学课程教案 200 7 ~ 200 8 学年 第 2 学期 学 院 ( 部 ) 电气与自动化学院 系 (教 研 室 ) 电工电子教学中心 课 程 名 称 电工与电子技术(二) 任课专业、年级、班级 土木 主 讲 教 师 姓 名 黎霞 职 称 、 职 务 讲师 使 用 教 材 电工学(第六版)

电工与电子技术(二)课程说明 一、课程基本情况 课程类别:技术基础课 总学时: 64 实验、上机学时:20 二、课程性质 本课程是高等学校非电类各专业本科生必修的一门技术基础课,它是学生系统学习电工、电子技术理论和培养、掌握基本实验技能的重要技术基础课程。随着科学技术的发展,电工与电子技术的应用日趋广泛且日益渗透到工程领域的各学科及相关专业,在国民经济的发展中占有越来越重要的地位。 三、课程的教学目的和基本要求 通过电工技术、电子技术课程的学习,使学生获得必要的基本理论、基本知识和基本操作技能,了解电工、电子技术的应用和我国电工、电子技术的发展概况,为与电工、电子技术相关联的后续课程的学习奠定必要的理论基础。提高学生从事与所修专业相关联的工程技术中电与非电接口知识的运用能力。 四、本课程与其它课程的联系 本课程作为高数和物理课程的工程应用实例,同时也为后续模拟电子技术、数字电子技术、PLC控制、测控技术、电机等课程奠定了理论基础。

电工与电子技术(二)课程教案 授课题目(教学章、节或主题): 课时安排4学时 第十六章 集成运算放大器 授课时间第11 周 教学目的和要求(分掌握、熟悉、了解三个层次): 1.掌握:集成运算放大气的线性应用和非线性应用的基本条件和分析依据;集成运放线性应用的三种基本输入方式及其电路的特点;集成运放负反馈类型的判断 2.熟悉:比例放大、反相器、同相器、加法器、减法器、积分器、微分器等基本运算放大电路的结构、工作原理、特点和功能及有这些电路组成的其他电路 3.了解:集成运算放大器的基本组成和特点、各主要参数的意义;由运放构成的电压比较器的工作原理。 教学内容(包括基本内容、重点、难点): 1.基本内容:集成运放的组成和特点、主要参数、理想化条件、信号运算方面的应用 2.重点:集成运算放大气的线性应用的基本电路结构、运算关系及主要特点 3.难点: 运放线性应用和非线性应用的特点及分析方法 讲课进程和时间分配: 16.1 集成运放的简介 1学时 16.2 运放在运算方面的应用(1):比例、加法、减法运算 1学时 16.2运放在运算方面的应用(2):积分、微分 1学时 16.3.3 运放在信号处理方面的应用:电压比较器 0.5学时 17.2 放大电路的负反馈 0.5学时 授课内容: 集成电路是相对于分立电路而言的,就是把整个电路的各元件以及相互之间的联接同时制造在一块半导体芯片上,组成一个不可分割的整体。它与分立元件联成的电路比较,体积更小,重量更轻,功耗更低,又由于减少了电路的焊接点而提高了工作的可靠性。本章所讨论的集成运算放大器是具有高开环放大倍数并带有深度负反馈的多级直接耦合放大电路。由于它首先应用于电子模拟计算机上,作为基本运算单元,完成加减、积分和微分、乘除等数学运算,故由此得名,现在运算放大器的应用远远地超出模拟计算机的界限,在信号运算、信息处理、信号测量及波形产生等方面获得广泛应用。

运算放大器实验报告

竭诚为您提供优质文档/双击可除运算放大器实验报告 篇一:5集成运放电路实验报告 实验报告 姓名:学号: 日期:成绩: 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的

各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽fbw=∞失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:(1)输出电压uo与输入电压之间满足关系式 uo=Aud(u+-u-) 由于Aud=∞,而uo为有限值,因此,u+-u-≈0。即u+≈u-,称为“虚短”。 (2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIb=0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路1)反相比例运算电路 电路如图6-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 uo?? RF uiR1 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF。

图6-1反相比例运算电路图6-2反相加法运算电路 2)反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为 uo??( RFR ui1?Fui2)R3=R1//R2//RFR1R2 3)同相比例运算电路 图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 uo?(1? RF )uiR2=R1//RFR1 当R1→∞时,uo=ui,即得到如图6-3(b)所示的电压跟随器。图中R2=RF,用以减小漂移和起保护作用。一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算电路(b)电压跟随器 图6-3同相比例运算电路 4)差动放大电路(减法器) 对于图6-4所示的减法运算电路,当R1=R2,R3=RF 时,有如下关系式uo? RF

相关文档
相关文档 最新文档