文档库 最新最全的文档下载
当前位置:文档库 › 线性代数期末试卷

线性代数期末试卷

线性代数期末试卷
线性代数期末试卷

合肥学院2008至2009学年第2学期 线性代数(文本) 课程考试(A )卷

系 08 级 专业 学号 姓名

一、填空题(满分21 分,每空3分) 1.排列347812596的逆序数为 . 2.设矩阵

1201002

10,02100

101

3A B ????

? ?

== ? ? ? ??

??

?

,则2A B += 3.已知矩阵???

?

?

?

?--=12

152

611

k A 的秩为2,则=k ___ ___ 4.设向量)

2,1,2(=α

,则它的单位向量为

5

.已知矩阵A 的全部特征值分别为2,2,-1,则A =

6.齐次线性方程组??

?=+-=++0

2 04231321x x x x x 的基础解系为 ____

7.已知实二次型31212322213212224

),,(x x x tx x x x x x x f ++++=是正定二次型,则 t 的取值范围为:

二、单项选择题(满分9分,每空3分) 1. 设A 、B 为同阶方阵,,下列等式中正确的是 ( )

(A)AB BA = (B) ()1

11A B A B ---+=+ (C)A B A B +=+ (D) ()T

T T A B A B +=+

2. 齐次线性方程组O AX =有非零解的充分必要条件是( ) (A )系数矩阵A 的任意两个列向量线性相关 (B )系数矩阵A 的任意两个列向量线性无关 (C )必有一列向量是其余列向量的线性组合 (D

3. 维向量组12,,,m ααα 线性无关必要条件的是( ) (A )12,,,m ααα 都不是零向量

装 订 线

(B )12,,,m ααα 中至少有一个向量可以由其余向量线性表示 (C )12,,,m ααα 中任意两个向量都不成比例 (D )12,,,m ααα 中任意一个部分组线性无关

三、计算与综合题

1. 计算行列式 (10分)

D =3111131111311

1

1

3

2. 设1302

1000

2A -?? ?= ? ??

?

,已知A X XA

+

=,求X 。 (10分)

3.求矩阵

211

020

413

A

-

??

?

=

?

?

-

??

的特征值和特征向量。(10分)

4.已知

011

101

110

A

-

??

?

=-

?

?

??

,试求一个正交矩阵将A化为对角阵。(10分)

5. 求向量组123412142345

,,,142141131αααα--????????????????--????????====????????-????????--????????

的秩,并将4α由123,,ααα线

性表出 (10分)

6. λ为何值时,下列方程组有解?有解时求出解 (10分)

123412341

234212427411x x x x x x x x x x x x λ

-++=??

+-+=??+-+=?

7. 化二次型434232413121222222x x x x x x x x x x x x f ++--+=为标准型,并确定其正惯性指数。(10分)

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

《线性代数A》教学大纲

《线性代数A》教学大纲 课程中文名称:线性代数A 课程性质: 必修 课程英文名称:Linear Algebra A 总学时:48学时,其中课堂教学48学时 先修课程:初等数学 面向对象:全校理工科学生(包括财经类等文科专业) 开课系(室):数学科学系 一.课程性质、目的和要求 线性代数是理工科及财经管理类本科生必需掌握的一门基础课,通过本课程的学习使学生掌握行列式的计算、矩阵理论、向量组和向量空间基本概念,用矩阵理论求解线性方程组、及用线性方程组解的结构理论讨论矩阵的对角化并进一步研究二次型,使学生掌握本课程的基本理论和方法,培养和提高逻辑思维和分析问题解决问题的能力,并为学习相关课程与进一步扩大知识面奠定必要的、必需的基础。 二、课程内容及学时分配 1. 行列式(6学时) 教学要求:了解行列式的定义、掌握行列式的基本性质。会应用行列式性质和行列式按行(列)展开定理进行行列式计算。 重点:行列式性质 难点:行列式性质和行列式按行(列)展开定理的应用 2.矩阵(12学时) 教学要求:理解矩阵的概念、掌握单位矩阵、对角矩阵与对称矩阵的性质。掌握矩阵的线性运算、乘法、方阵行列式、转置的定义及其运算规律。理解逆矩阵的概念及其性质,熟练掌握逆矩阵的求法。熟练掌握矩阵的初等变换及其应用。理解矩阵秩的概念并掌握其求法。了解满秩矩阵的定义及其性质。了解分块矩阵及其运算。 重点:矩阵的线性运算、矩阵的乘法、逆矩阵的求法、矩阵的初等变换 难点:矩阵的秩,矩阵的分块 3.向量组和向量空间(10学时) 教学要求:理解n维向量的概念及其运算。理解向量组的线性相关、线性无关与线性表示等概念,了解并会用向量组线性相关、线性无关的有关性质及判别法。了解向量组的极大线性无关组和秩的概念,并会求向量组的秩。了解n维向量空间及其子空间、基、维数与坐标等概念。了解向量的内积、长度与正交等概念,会用施米特正交化方法把向量组正交规范化。了解规范正交基、正交矩阵的概念、以及它们的性质。 重点:n维向量的概念、线性相关、线性无关、极大线性无关组、向量组秩的概念难点:线性无关的相关证明、向量组秩的概念、向量空间 4. 线性方程组(8学时)

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

南林2018线性代数期末卷

南京林业大学南方学院样卷 课程线 性 代 数 A 一、填空题(每题3分,共15分) 1.已知行列式131112 2 31101114D -=---,用ij A 表示D 的元素ij a 的代数余子式,则 31323323 A A A --+=。 2.已知矩阵??????=??????=4032,2011B A ,则1[2]T T B A --= 。 3.设3阶矩阵A 满足2||=A ,则132*A A --= 。 4. 已知二次型22212312132355266f x x cx x x x x x x =--++-+矩阵的秩为2 ,则参数 =c 。 5.设12021,039αα-???? ? ?== ? ? ? ?????是三元非齐次线性方程组b Ax =的解,若()2R A =,则齐 次线性方程组0Ax =的通解为 。 二、选择题(每题3分,共15分) 1.设A ,B 均为n 阶方阵,则必有( ) )(A A B A B -=- )(B BA AB = )(C 111()A B A B ----=- )(D BA AB = 2. 非齐次线性方程组b AX =中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 ( ) )(A n r <时,方程组b AX =有无穷多解 )(B n r =时,方程组b AX =有唯一解 )(C n m =时,方程组b AX =有唯一解 )(D m r =时,方程组b AX =有解 3. 若向量组γβα,,线性无关;δβα,,线性相关,则( ) )(A α必可由δγβ,,线性表示 )(B β必不可由δγα,,线性表示 )(C δ必不可由γβα,,线性表示 )(D δ必可由γβα,,线性表示

大一线性代数期末考试试卷

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数与概率统计及答案

线性代数部分 第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 5. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 6.设行列式 n a a a a =22 2112 11 , m a a a a =21 2311 13 ,则行列式 23 2221131211--a a a a a a 等于() A. m n - B.)(-n m + C. n m + D.n m - 二、填空题 1. 行列式=0 100111010100111.

2.行列式010...0002... 0......... 00 0 (10) 0 0 n n = -. 3.如果M a a a a a a a a a D ==333231 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 4.行列式= --+---+---1 1 1 1 111111111111x x x x . 5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为 . 6.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 7.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =. 三、计算题 2.y x y x x y x y y x y x +++; 3.解方程 00 11 01110111 0=x x x x ; 6. 111...1311...1112... 1 ... ...... 1 1 1 ...(1)b b n b ----

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

大学线性代数期末考试试题

大学线性代数期末考试试 题 The Standardization Office was revised on the afternoon of December 13, 2020

a 0 0 一、选择题 线性代数测试 a 1 b 1 c 1 c 1 b 1 + 2c 1 a 1 + 2b 1 + 3c 1 1. 设行列式 D = a 2 b 2 c 2 ,则 D 1 = c 2 b 2 + 2c 2 a 2 + 2b 2 + 3c 2 = ( ) A. - D a 3 b 3 c 3 B. D c 3 C. 2D b 3 + 2c 3 a 3 + 2b 3 + 3c 3 D. - 2D 2. 下列排列是偶排列的是 . (A )13524876; (B )51324867; (C )38124657; (D )76154283. 3. 设 A m ?s , B t ?n , C s ?t ,则下列矩阵运算有意义的是( ) A. ACB ; B. ABC ; C. BAC ; D. CBA . 4. 设 A 是n 阶方阵, A 经过有限次矩阵的初等变换后得到矩阵 B ,则有() A. A = B ; B. A ≠ B ; C. R ( A ) = R (B ) ; D. R ( A ) ≠ R (B ) . 5. 设 A 是 4×5 矩阵, A 的秩等于 3,则齐次线性方程组 Ax = 0 的基础解系中所含解向量的个数为( ) A. 4 B.5 C.2 D.3 6. 向量组a 1 , a 2 , , a m ( m ≥ 2 )线性相关,则( ). A. a 1 , a 2 , , a m 中每一个向量均可由其余向量线性表示; B. a 1 , a 2 , , a m 中每一个向量均不可由其余向量线性表示; C. a 1 , a 2 , , a m 中至少有一个向量可由其余向量线性表示; D. a 1 , a 2 , , a m 中仅有一个向量可由其余向量线性表示. ? a b + 3 0 ? ? 7. 矩阵 A = a - 1 a 0 ? 为正定矩阵,则 a 满足 . ? ? ? 1 1 (1) a > 2 ; (B ) a > ; (C ) 2 a < ; (D )与b 有关不能确定. 2 8. 设 A , B 均为 n 阶方阵,并且 A 与 B 相似,下述说法正确的是 . (A ) A T 与 B T 相似; (B ) A 与 B 有相同的特征值和相同的特征向量; (C ) A -1 = B -1 ; (D )存在对角矩阵 D ,使 A 、 B 都与 D 相似. 二、判断题 1、如果n (n > 1) 阶行列式的值等于零,则行列式中必有两行元素对应成比例。 2、设向量组的秩为 r ,则向量组中任意 r 个线性无关的向量都是其极大无关组。 3、对 A 作一次初等行变换相当于在 A 的右边乘以相应的初等矩阵。 4、两个向量α1 ,α2 线性无关的充要条件是α1 ,α2 对应成比例. 5、若 A 是实对称矩阵,则 A 一定可以相似对角化. 三、填空题

线性代数期末试卷及解析(4套全)2018科大

线性代数期末试卷一 一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上) (5)设矩阵210120001?? ? = ? ??? A ,矩阵 B 满足*2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是 单位矩阵,则||=B __________. 解:||=B 1 9 . 显然||3=A ,在等式*2=+ABA BA E 两端右乘A 得 36=+AB B A (36)-=A E B A 上式取行列式 03 03 0||3003 =-B 故 1||9 = B . 方法二:因||3=A ,则*31 ||||9-==A A 将** 2=+ABA BA E 移项得 * (2)-=A E BA E 两端取行列式得 1||91??=B ,故1||9 =B . 二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.) (11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为 (A )010100.101?? ? ? ??? (B )010101001?? ? ? ???. (C )010100011?? ? ? ???. (D )011100001?? ? ? ??? . 解:(D )正确. 由题意 12=AE B ,其中12010100001?? ? = ? ??? E 为第一种类型初等矩阵, 23(1)=BE C ,其中23100(1)011001?? ? = ? ??? E 为第三种类型初等矩阵.

清华大学线性代数考试样题

第1页/共2页

二·计算题(每题 18 分,合计 54 分) 9.设 3 阶实对称矩阵A 有 3 个特征值3, 3,?3,已知属于特征值? 3的特征向量为 T )1,2,1(1?=α,求矩阵A 及. 1?A 10.设321,,ααα是3维线性空间V 的一个基,σ是V 上的线性变换,已知 321122)(αααασ++?=,321222)(αααασ??=,321322)(αααασ??=, (1) 求线性变换σ在基321,,ααα下的矩阵; (2) 设由基321,,ααα到基321,,βββ的过渡矩阵为,向量???? ???????=200010021P γ在基 321,,ααα下的坐标是,求()T X 2,1,0?=)(γσ在基321,,βββ下的坐标. 11.设元()齐次线性方程组 n 4≥n ???????=+++?=+=+=+++++000041 31 214321n n ax ax bx ax bx ax bx bx bx bx bx ax L L 其中.试讨论取何值时,方程组只有零解;取何值时,方程组有非零解?在有非零解时,写出方程组的基础解系. 0≠b n b a ,,三·证明题(第 12 题 8 分,第 13 题 6 分,共 14 分) 12.设A 是矩阵,n m ×β是m 维非零列向量,已知β是非齐次线性方程组的b Ax =一个解,r ααα,,,21L 是导出组0=Ax 的基础解系,试证明 (1)r αβαβαββ+++,,,,21L 线性无关; (2)的解集合的极大线性无关组含有b Ax =1+r 个向量. 13.设A 为任意阶实反对称矩阵(即n A A T ?=),试证明2A I ?是正定矩阵. 第2页/共2页

线性代数期末试题及参考答案

线性代数期末试卷及参考答案 一、单项选择题(每小题3分,共15分) 1.下列矩阵中,( )不是初等矩阵。 (A )001010100?????????? (B)100000010?? ?? ?? ???? (C) 100020001????????? ?(D) 100012001????-?????? 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。 (A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+ 3.设A 为n 阶方阵,且2 50A A E +-=。则1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1() 3A E + 4.设A 为n m ?矩阵,则有( )。 (A )若n m <,则b Ax =有无穷多解; (B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量; (C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。 5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则 () (A )A 与B 相似(B )A B ≠,但|A-B |=0 (C )A=B (D )A 与B 不一定相似,但|A|=|B| 二、判断题(正确填T ,错误填F 。每小题2分,共10分) 1.A 是n 阶方阵,R ∈λ,则有A A λλ=。() 2.A ,B 是同阶方阵,且0≠AB ,则 111)(---=A B AB 。()

清华版线性代数课件线性代数§

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加

到另一行的对应元素上行列式的值不变对行列式做倍加行变换其值不变即在行列式的计算中性质35以及下面的性质6经常用到为书写方便我们先引入几个记号用表示第 i 行表示第 i 列交换行列式的第 i j 两行列记作把行列式的第 j 行列的各元素乘以同一数 k 然后加到第 i 行列对应的元素上去记作行列式的第 i 行列乘以数k 记作注意和含义不同性质6 反对称性质行列式的两行对换行列式的值反号证明课程简介线性代数是代数学的一个分支主要处理线性关系问题线性关系是指数学对象之间的关系是以一次形式来表达的最简单的线性问题就是解线性方程组行列式和矩阵为处理线性问题提供了有力的工具也推动了线性代数的发展向量概念的引入形成了向量空间的概念而线性问题都可以用向量空间的观点加以讨论因此向量空间及其线性变换以及与此相联系的矩阵理论构成了线性代数的中心内容它的特点是研究的变量数量较多关系复杂方法上既有严谨的逻辑推证又有巧妙的归纳综合也有繁琐和技巧性很强的数字计算在学习中需要特别加强这些方面的训练第一章行列式第二章矩阵第三章线性方程组第四章向量空间与线性变换基础基本内容用向量的观点讨论基本问题并介绍向量空间的有关内容第五章特征值与特征向量第六章二次型矩阵理论中心内容参考及辅导书目 1《线性代数学习指南》居余马林翠琴编著清华大学出版社 2《线性代数》第四版同济大学应用数学系编高等教育出版社一二阶行列式的引入用消元法解二元一次线性方程组§11 n阶行列式的定义与性质 1 2 1 a22 a11a22x1 a12a22x2 b1a22 2 a12 a12a21x1 a12a22x2 b2a12 两式相减消去x2 得a11a22 – a12a21 x1 b1a22 – b2a12 当 a11a22 – a12a21 0时方程

厦门大学线性代数期末试题及答案

一、填空题(每小题2分,共20分) 1.如果行列式2333231232221131211=a a a a a a a a a ,则=---------33 32 31 232221 13 1211 222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。 9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 322 2166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n =

四川大学2014级线性代数期末测验题(A卷)

四川大学2014级线性代数期末测验题(A 卷) 姓名:__________,学号:___________________,学院:___________,教师:杨荣奎 分) 分填空题一1553(.=×._______3A 2500230052A 3.123=?? ?????????A ,则相似于矩阵阶矩阵若.______003,14042531.2==≠? ?????????=a AB B a A ,则,满足阶矩阵若存在设. ____83344),,(.32322212332223121321=?+=?+?+?=a y y y QY X x x ax x x x x x x x x f ,则化为标准形变换可经过正交 设实二次型._________32,211-101.421212的过渡矩阵为到基,的基从?? ????=??????=??????=??????=ββααR . ___,2),,(,),1,1,2(,)2,0,1,1(,01-21.532132T 1=====a rank a T T 则若),,,(设αααααα分 分选择题二1553(.=×). ().(;)().(); ().(;).(. 0][)0(,,,2)(,4.132132122113221132211321βββββββββββββββββ?++?+++?+=≠==×k D k k k k C k k B k k A AX AX A rank m A 的通解为向量,则的三个线性无关解为矩阵是设.,,,).(;,,,).(; ,,,).(;,,,).(][ ,,,.2144332211443322114433221144332214321αααααααααααααααααααααααααααααααααααα??++?+++????++++D C B A 线性无关。线性无关,则向量组已知向量组. )().(;)2()5(n ).(;)2-(5-().(;25).(]. [,0103:A .32n A rank D n E A rank E A k ra C n E A rank E A rank B E A E A A E A A n ==++?=?++?===??)或则下列结论不正确的是满足阶矩阵设.3).(; 2).(;1).(;0).(]. [)2(,)(3,23.421D C B A A E rank A A A =?==则相似于对角阵,若一重(二重)的特征值为阶矩阵,为设λλ; ).().A ].[ .5合同矩阵等价合同矩阵的秩相同;(下列命题中不正确的是B

四川大学数一二线性代数期末考试试卷A

第 页 共6页 1 四 川大学期末考试试卷(A ) 科 目:《大学数学》(线性代数) 一、填空题(每小题3分,共15分) 1. 2 32 32 3 a a a b b b c c c = __abc()_____. 2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性___ ____. 3. 设A =378012002?? ??-????-?? , A *是A 的伴随矩阵, 则 |1 5-A*| = _________. 4. 当t 满足______的条件时, 2 2 2 12311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.

第 页 共6页 2 二、选择题(每小题3分,共15分) 1. 设矩阵,23?A ,32?B 33?C , 则下列式子中, ( )的运算可行. (A) AC; (B) C AB -; (C) CB ; (D) BC CA -. 2. 设D=123 012247 -, ij A 表示D 中元素ij a 的代数余子式, 则3132333 A A A ++= ( ) .(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ?矩阵, 秩(A)=2, 123,,X X X 是非齐次线性方程组AX =β的三个线性 无关解向量, 则( )为AX =0的通解. (A) 11223;k X k X X +- (B) 123();X k X X +- (C) 1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+ 4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ). (A) 1 1 --=BC A X ; (B) 1 1 --=C BA X ; (C) 1 1 --=A BC X ; (D) 1 1 --=BA C X . 5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值. (A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件 三、计算下列各题(每小题10分,共30分) 1. 计算行列式 1112 0132.1223 1 420 ------

数值分析实验报告_清华大学__线性代数方程组的数值解法

线性代数方程组的数值解法 实验1.主元的选取与算法的稳定性 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 n n n R b R A b Ax ∈∈=?,, 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ???? ? ?????????=???????????? ? ?? ?=141515 7,68 168 16816 b A ,则方程有解T x )1,,1,1(* =。取n=10 计算矩阵的条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 1.1程序清单 n=input('矩阵A 的阶数:n='); A=6*diag(ones(1,n))+diag(ones(1,n-1),1)+8*diag(ones(1,n-1),-1); b=A*ones(n,1); p=input('计算条件数使用p-范数,p='); cond_A=cond(A,p) [m,n]=size(A); Ab=[A b]; r=input('选主元方式(0:自动;1:手动),r=');

线性代数期末试卷及解析(4套全)2019科大

线性代数期末试卷(一) 一、填空题(每小题3分) (4)设12243311t -?? ? = ? ?-?? A , B 为3阶非零矩阵,=AB 0,则t =_________. 解:3-. 若||0≠A ,则A 可逆,由=AB 0知,=B 0,与B 为非零矩阵矛盾, 故 有||0=A . 122||0 811(8)77117(3)0 7 7 t t t -==-=-?+?=+-A 行 , 所以 3t =-. 二、选择题(每小题3分) (4)设111122232333,,a b c a b c a b c ?????? ? ? ? === ? ? ? ? ? ??????? ααα,则三条直线 1110a x b y c ++= 2220a x b y c ++= (其中22 0,1,2,3i i a b i +≠=) 3330a x b y c ++= 交于一点的充要条件是 (A )123,,ααα线性相关; (B )123,,ααα线性无关; (C )秩123(,,)r =ααα秩12(,)r αα; (D )123,,ααα线性相关,12,αα线性无关. 解:(D )正确. 1 12 2123 3(,)a b a b a b ?? ?== ? ???A αα,1 1 12 221233 33(,,)a b c a b c a b c -?? ? =-=- ? ?-??A ααα 三条直线交于一点的充要条件是方程组3x y ?? =- ??? A α有唯一解,当且仅当()()r r =A A ,且r n =时成 立,即()()2r r ==A A ,这说明12,αα线性无关,123,,-ααα线性相关,也就是123,,ααα线性相关, 12,αα线性无关,故选(D ). 仅123,,ααα线性相关,不足以保证()()r r =A A ,可能无解,故(A )不对. 123,,ααα线性无关,()2()3r r =<=A A ,无解,(B )不对. 当12312(,,)(,)r r =ααααα,说明方程组有解,但无法确保解唯一,故(C )不对. 七、(本题共2小题,第(1)题5分,第(2)题6分,满分11分) (1)设B 是秩为2的54?的矩阵,T T 12(1,1,2,3),(1,2,4,1),==--αα T 3(5,1,8,9)=--α是齐次 线性方程组=Bx 0的解向量,求x =B 0的解空间的一个标准正交基.

相关文档
相关文档 最新文档