文档库 最新最全的文档下载
当前位置:文档库 › 二项分布的散点图与函数图方差及期望

二项分布的散点图与函数图方差及期望

二项分布的散点图与函数图方差及期望
二项分布的散点图与函数图方差及期望

二项分布的散点图与函数图-方差及期望

————————————————————————————————作者:————————————————————————————————日期:

?

2012—2013学年第2学期

合肥学院卓越工程师班

实验报告

课程名称: 概率论与数理统计

实验项目:二项、几何分布分布的性质研究

实验类别: 验证性

专业班级: 11级自动化卓越班

实验时间: 2013-6-10

组别: 第六组

指导教师:

一.小组成员(具体分工)

姓名学号具体分工

台路 1105031008实验内容、实验步骤

实验总结、实验程序与结果(分布图

像)

实验目的、实验程序与结果(期望与

方差)

二.实验目的

1.掌握一些matlab中基本的绘图函数命令,并学会用matlab绘图。

2.学会用matlab软件绘制出在不同参数下二项分布律散点图。

3.学会用matlab计算二项分布的数学期望及方差。

三. 实验内容

1.研究不同参数下二项分布的分布律的散点图,计算二项分布的数学期望及方差。

二项分布的概念:

考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的,且各次试验相互独立,这种试验在统计学上称为贝努里试验(Bernoulli trial)。如果进行n次贝努里试验,取得成功次数为X(X=0,1,…,n)的概率可用下面的二项分布概率公式来描述:

四.实验步骤

1.对实验任务及实验内容进行分析。

2.上网查找用matlab软件绘制二项分布图像的资料。

3.尝试编写用matlab软件绘制二项分布图像的代码。

3.分别改变不同的参数,分别用matlab绘制出二项分布的散点图。4.计算二项分布的数学期望及方差。

5.撰写实验报告。

五.实验程序(经调试后正确的源程序)

1.画出二项分布的分布律散点图(n=60,p=0.3)

源程序:

n=60

p=0.3

for k=1:1:n

y=binocdf(k,n,p)

plot(k,y,'*')

hold on;

title('二项分布散点图')

End

2.画二项分布的分布函数图(n=60 70 80 90 100 p=0.3时的二项分布散点图)

>> n=60

p=0.5

for k=1:1:n

y=binocdf(k,n,p)

plot(k,y,'*')

hold on;

title('n=60 7080 90 100 p=0.3时的二项分布散点图')

end

按照运行提示,输入参数,但由于n有5个值,所以要分别执行5次该程序

3. 画二项分布的分布律散点图(n=60,p=0.5)

>> n=60

p=0.5

for k=1:1:n

y=binocdf(k,n,p)

plot(k,y,'*')

hold on;

title('n=60 p=0.5的二项分布散点图')

end

4. 画二项分布的分布函数图(n=60,70,80,90,100,p=0.5)

>>n=60

p=0.5

for k=1:1:n

y=binocdf(k,n,p)

plot(k,y,'*')

hold on;

title('n=6070 8090 100 p=0.5时的二项分布散点图')

end

按照运行提示,输入参数,但由于n有5个值,所以要分别执行5次该程序

8.计算超几何分布的数学期望及方差E,D]=binostat(n,p)

,n为发生次数,p为事件概率,它们的值是变化的}

[E,D]=binostat(60,03)

[E,D]=binostat(70,0.3)

[E,D]=binostat(80,0.3)

[E,D]=binostat(90,0.3)

[E,D]=binostat(1000,0.3)

[E,D]=binostat(60,0.5)

[E,D]=binostat(70,0.5)

[E,D]=binostat(80,0.5)

[E,D]=binostat(90,0.5)

[E,D]=binostat(100,0.5)

六.实验结果

1.画出二项分布的分布律散点图(n=60,70,80,90,100,p=0.3)Matlab程序运行如下:

输入n,p的值

运行结果:

n=

60

p =

0.3000

y =

1.3571e-008

y=

1.7873e-007

y=

1.5472e-006

y=

9.9046e-006 y =

5.0020e-005

y =

2.0762e-004

y=

7.2865e-004

y=

0.0022

y=

0.0059

y=

0.0139

y=

0.0295

y =

0.0568

y=

0.1000

y=

0.1621

y=

0.2438

y=

0.3422

y =

0.4514

y =

0.5632

y =

0.6692

y =

0.7622

y=

0.8382

y=

0.8959

y =

0.9368

y =

0.9638

y =

0.9804

y=

0.9900

y=

0.9952

y =

0.9978

y=

0.9991

y =

0.9996

y =

0.9999

y =

1.0000

y =

1.0000

y=

1.0000

y =

1.0000

y=

1.0000

y =

1.0000

y=

1.0000

y=

1.0000

y =

1.0000

y=

1.0000

y=

1.0000

y =

1.0000

y =

1.0000

y=

1.0000

y =

1.0000

y=

1.0000

y=

1.0000

y=

1

y =

1

y =

1

y =

1

y=

1

y=

1

y =

y =

1

y=

y=

1

y=

y=

1

2.画出二项分布的分布律散点图(n=60,70,80,90,100,p=0.5)

n =

60

p=

0.5000

y =

5.2909e-017

y =

1.5881e-015

y=

3.1269e-014

y =

4.5423e-013

y=

5.1913e-012

y =

4.8615e-011

y =

3.8360e-010

y=

2.6028e-009

y=

1.5425e-008

y =

8.0819e-008

y =

3.7806e-007

y =

1.5918e-006

y =

6.0734e-006

y=

2.1119e-005

y =

6.7257e-005

y=

1.9702e-004

y =

5.3288e-004

y=

0.0013

y =

0.0031

y =

0.0067

y =

0.0137

y=

0.0259 y =

0.0462

y =

0.0775 y=

0.1225

y =

0.1831

y=

0.2595

y=

0.3494

y =

0.4487

y =

0.5513

y =

0.6506 y=

0.7405

y =

0.8169

y =

0.8775

y =

0.9225

y =

0.9538

y =

0.9741 y =

0.9863

y =

0.9933y =

0.9969

y =

0.9987 y =

0.9995 y =

0.9998 y=

0.9999

y =

1.0000

y =

1.0000

y =

1.0000y =

1.0000

y=

1.0000

y=

1.0000

y=

1.0000

y =

1.0000

y =

1.0000

y=

1.0000

y=

1.0000

y =

1.0000

y=

1.0000

y=

y=

y =

1

3.计算超几何分布的数学期望及方差>> [E,D]=binostat(60,0.3)

E =

18

D =

12.6000

>>[E,D]=binostat(70,0.3)

E=

21

D=

14.7000

>>[E,D]=binostat(80,0.3)

E=

24

D =

16.8000

>> [E,D]=binostat(90,0.3)

E=

27

D =

18.9000

>>[E,D]=binostat(100,0.3)

E =

30

D =

21

[E,D]=binostat(60,0.5)

E =

30

D =

15

[E,D]=binostat(70,0.5)

E =

35

D =

17.5000

E,D]=binostat(80,0.5)

E =

40

D=

20.0000

E,D]=binostat(90,0.5)

E =

45

D=

27.5000

E,D]=binostat(100,0.5)

E=

50

D =

25.0000

由E(x)=np, D(x)=np(1-p)可得,

E 1= 18,D1 =12.60

E2 =21,D 2=14.7

E 3=24,D 3=16.8

E4 =27,D4 =18.90

E5 =30,D5 =21

E 6=30,D6 =15

E7=35,D7 =17.50

E8=40,D8= v20.0

E9 =40,D9=27.5

E10 =50,D10 =25

通过公式法的计算比较,求出的期望和方差和matlab求出的值基本上一致,于是可得出matlab求解期望和方差还是很可靠的。

七.实验总结(围绕心得体会、创新之处、改进方案等方面)

心得体会:

本次的实验主要研究二项分布的性质,主要包括散点图(离散型散点图的与函数图一致)、期望和方差。通过本次实验使我们进一步认识和掌握了二项分布的性质,通过实验让我们对概率论的知识有了进一步的掌握,使我们充分的认识到实验的重要性,让我们对以后的学习有了更大的信心。在用matlab 软件绘制图像的过程让我们熟悉了matlab软件的操作,也熟悉了如何计算并用matlab软件求二项分布的分布律、期望和方差的命令形式。在matlab

软件中分布律的命令:Px=binocdf(30,100,0.4)期望和方差命令:[E,D]=binostat((n,p)。

创新之处:

为了研究不同参数下超几何分布的分布律的图像规律,我们用matlab软件画图时分别考虑到5种不同的情况,即变事件数n,又改变发生的成功概率p,相同变换条件的图像画在同一个坐标轴之下,并用不同的颜色表示出来信息,这样便可以很清楚的比较出图像之间的规律。在算期望与方差是将笔算结果与实验结果进行比较,增加可信度。

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n 次伯努利试验中,试验k 次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k 次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n 次伯努利实验,n 的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n 次成功,m 的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ; , 。 概率为p 的事件A ,以X 记A 首次发生所进行的试验次数,则X 的分布列: , 具有这种分布列的随机变量X ,称为服从参数p 的几何分布,记为X ~Geo (p )。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ= 1,(2)D p p ξ=-12,而未加以证明。本文给出证明,并用于解题。

(1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k

则S q p =-=11122 () 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++ x x x x k '()'()'()'23 6 12322221+++++-q q k q k =+++++()'q q q kq k 2323

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

常见分布的期望和方差

常见分布得期望与方差 ?概率与数理统计重点摘要 1、正态分布得计算:。 2、随机变量函数得概率密度:就是服从某种分布得随机变量,求得概率密度:。(参见P66~72) 3、分布函数具有以下基本性质: ⑴、就是变量x,y得非降函数; ⑵、,对于任意固定得x,y有:; ⑶、关于x右连续,关于y右连续; ⑷、对于任意得,有下述不等式成立: 4、一个重要得分布函数:得概率密度为: 5、二维随机变量得边缘分布: 边缘概率密度: 边缘分布函数:二维正态分布得边缘分布为一维正态分布、 6、随机变量得独立性:若则称随机变量X,Y相互独立、简称X与Y独立。 7、两个独立随机变量之与得概率密度:其中Z=X+Y

8、两个独立正态随机变量得线性组合仍服从正态分布,即。 9、期望得性质:……(3)、;(4)、若X,Y 相互独立,则。 10、方差: 。 若X,Y 不相关,则,否则, 11、协方差:,若X,Y 独立,则,此时称:X 与Y 不相关。 12、相关系数:,,当且仅当X 与Y存在线性关系时,且 13、k 阶原点矩:,k 阶中心矩:。 14、切比雪夫不等式:{} {}2 2 () () (),()1D X D X P X E X P X E X εεε ε -≥≤ -<≤- 或、贝努利大数定律:。 15、独立同分布序列得切比雪夫大数定律:因,所以。 16、独立同分布序列得中心极限定理: (1)、当n 充分大时,独立同分布得随机变量之与得分布近似于正态分布。 (2)、对于得平均值,有,,即独立同分布得随机变量得均值当n 充分大时,近似服从正态分布、 (3)、由上可知:{}{}lim ()()()()n n n P a Z b b a P a Z b b a →∞ <≤=Φ-Φ?<≤≈Φ-Φ。 17、棣莫弗-拉普拉斯中心极限定理:设m就是n次独立重复试验中事件A 发生得次数,p 就是事件A 发生得概率,则对任意, , 其中。 (1)、当n 充分大时,m 近似服从正态分布,。 (2)、当n充分大时,近似服从正态分布,。 18、参数得矩估计与似然估计:(参见P 200) 19 20、关于正态总值均值及方差得假设检验,参见P243与P 248。

几何分布的期望与方差

几何分布的期望与方差 康永清 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ=1,(2)D p p ξ=-12 ,而未加以证明。本文给出证明,并用于解题。 (1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 () 两式相减,得 ()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 由01<

记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k 则S q p =-=11122() 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++=+++++x x x x x x x x k k '()'()'()'()' 2323 =-=----=-( )'()()()()x x x x x x 111112 2 上式中令x q =,则得 1231112122 +++++=-=-q q kq q p k () (2)为简化运算,利用性质D E E ξξξ=-22()来推导(该性质的证明,可见本刊6页)。 可见关键是求E ξ2 。 E p qp q p k q p k ξ22222123=+++++- =+++++-p q q k q k ()12322221 对于上式括号中的式子,利用导数,关于q 求导:k q kq k k 21-=()',并用倍差法求和,有

常见分布的期望和方差

5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

二项分布期望和方差的推导过程

二项分布期望和方差推导 若随机变量),(~p n B X ,则np X E =)(,)1()(p np X D -= 二项分布数学期望的证明: 注意到11--=k n k n nC kC (证明:11)]! 1()1[()!1()!1()!()!1()!1()!(!!--=---?--?=-?--?=-??=k n k n nC k n k n n k n k n n k n k n k kC ) 所以n n p p C X E )1(0)(00-?=111)1(1--?+n n p p C Λ+-?+-222) 1(2n n p p C Λ+-?+-k n k k n p p C k )1( 111)1()1(p p C n n n n -?-+--0)1(p p C n n n n -?+ 1101)1(---?=n n p p C n Λ+-?+--2211)1(n n p p C n Λ+-+---k n k k n p p nC ) 1(11 1121)1(p p C n n n n -?+---011 )1(p p C n n n n -?+-- 101)1([---=n n p C np Λ+-+--2111)1(n n p p C Λ+-+----k n k k n p p C )1(1111221)1(p p C n n n -+---])1(0111p p C n n n -+--- np p p np n =+-=-1])1[(,故np p p C i X E n i i n i i n ∑=-=-?=0)1()(; 二项分布方差的证明:)1()(p np X D -= 证明:i n i i p X E x X D ?-= ∑-12)]([)(i n i i i p X E X E x x ∑-?+-=122)]()(2[∑-??+?-?=n i i i i i i p X E p X E x p x 122])()(2[ ∑∑∑-=-?+?-?=n i n i i n i i i i i p X E p X E x p x 11 212 )()(2)()(22X E X E -= 故任何离散随机变量的方差均满足式子:)()()(22X E X E X D -= 当随机变量),(~p n B X 时,=)(X D 20 2)()1(np p p C i i n i n i i n --?-=∑ i n i n i i n p p C i i -=-?-=∑)1()1(0 220)1(p n p p C i i n i n i i n --?+-=∑(注意np p p C i X E n i i n i i n ∑=-=-?=0)1()() i n i n i i n p p iC i -=-?-=∑)1()1(222p n np -+i n i n i i n p p nC i -=---?-=∑)1()1(21122p n np -+ i n i n i i n p p C i n -=---?-?=∑)1()1(21122p n np -+i n i n i i n p p C n n --=---?-?=∑)1()1(22 2222p n np -+ i n i n i i n p p C n n -=---?-=∑)1()1(22222p n np -+i n i n i i n p p C p n n --=---?-=∑)1()1(22 22222p n np -+ (指数之后凑组合数下标2-n ,利用展开式i i n n i i n n b a C b a ---=--∑=+22022) () i n i n i i n p p C p n n ---=--?-=∑22 022 )1()1(22p n np -+

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

二项分布中方差的计算

二项分布中方差的计算 假设ξ~B (n ,p ), 即k n k k n q p C k P -==}{ξ 考虑E [ξ(ξ-1)]=Eξ2-Eξ 而 ∑∑ ∑∑=----=-=-=--=-----?-?=--=-=-n k k n k k n n k k n k n k k n k n k k n k k n q p C p n n q p k n k n n n q p k n k n k k q p C k k E 2 222222 )1()]!2(2[)!2()!2()1()! (!! ) 1()1()]1([ξξ 令2-=k i 上式=222220 22 2 )1()1(np p n p n n q p C p n n n i i n i i n -=-=-∑-=--- 即2222np p n E E -=-ξξ, 再将E ξ=np 代入上式,得)1(222222p np p n np np p n E -+=+-=ξ 最后得npq np p np p n E E D =--+=-=22222)()1()(ξξξ 例1的分布图 例2的分布图 4.2 超几何分布 例1的图形:

例2的图形: 定义4.2 设N 个元素分为两类, 有N 1个属于第一类, N 2个属于第二类(N 1+N 2=N ). 从中不重复抽样取n 个, 令ξ表示这n 个中第一类元素的个数, 则ξ的分布称为超几何分布, ),....,1,0()(2 1n m C C C m P n N m n N m N == =-ξ 规定: 如n

常见分布的期望和方差

常见分布的期望和方差

概率与数理统计重点摘要 1、正态分布的计算:()()()X F x P X x μ σ-=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞=??具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx +∞-∞ +∞-∞==? ? 边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞ -∞+∞-∞-∞=+∞==+∞=???? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

二项分布的数学期望和方差

4EX np ∴== 100.40.6 2.4DX npq ==??= 222() 2.4418.4EX DX EX =+=+= 12. 解:8n =,0.2p = 根据二项分布的数学期望和方差的公式 1.6EX np == (1) 1.28DX npq np p ==-= 求解得 8n =,0.2p = 13. 解: ~(1,)B p ξ 2(1)9D p p ξ∴=-= 解方程2209 p p -+=,得23p =或13p = ξ∴的概率函数为 {}1(1)(0,1)k k p k p p k ξ-==-= 将13p =或23 p =代入,得ξ的概率函数为 {}121()()33 k k p k ξ-== 或 {}112()()(0,1)33k k p k k ξ-=== 14. 解:设ξ的概率密度为 1,()0, a x b f x b a ?≤≤?=-???其他 =3E ξ,1=3D ξ ∴得方程组2+=32()1 =12 3a b b a ????-???,解得24a b =??=?

1,24()=20x f x ?≤≤?∴???其他 ξ为连续型随机变量 {}=2=0p ξ∴ {}3312111<<3=()==22 p f x dx dx ξ?? 15. 解:设ξ表示直到取到废品为止所要取的产品个数,则ξ的概率函数 {}-1 ==0.050.95(=1,2,)k p k k ξ???? 当{}-1 ==(1)(=1,2,)k p k p p k ξ-???时,由幂级数 -12=1 1= (1)n n nx x ∞-∑ 2-13 =11=(1)n n x n x x ∞+-∑ 可计算 -1=11=(1)=k k E kp p p ξ∞-∑ 2-122=1 1=(1)()= k k p D k p p E p ξξ∞---∑ 本题中=0.05p 1==200.05 E ξ∴, 210.05==19.490.05 D ξ- 16. 解:8 22[()]DX EX E x =- 222[()]428EX DX E x ∴=+=+= 17. 解:由题意X 的分布律为 {}=(0)!k p X k e k λλλ-=>

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

第十讲 二项分布及应用 随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2. 互斥事件概率的加法公式:如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ). 3.对立事件的概率:若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 4.条件概率的加法公式:若B 、C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ) 5.独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=Ck n p k ·(1-p ) n -k (k =0,1,2,…, n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n 次独立重复试验.(2)随机变量是否为在这n 次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X 的分布列为P (ξ=x i )=p i ,i =1,2,…,n . (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望. (2)方差:D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,其算术平方根D X 为随机变量X 的标 准差. (3)均值与方差的性质:(1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 8.两点分布与二项分布的均值、方差 变量X 服从两点分布: E (X )=p , D (X )=p (1-p ); X ~B (n ,p ): E (X )=np ,D (X )=np (1-p ) 典例精析 例1.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n次伯努利试验中, 试验k次才得到第一次成功的机率。详细的说,是:前 k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,…』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: 概率为p的事件A,以X记A首次发生所进行的试验次数,则 X的分布列: P(X二灯二加(打二(1-P尸% 口23…"?? 具有这种分布列的随机变量X,称为服从参数 p的几何分布,记为 X~Geo(p)。几何分布的期望 II )比原来的修订本新增加随机变量的几何分布,但书中 (1)E = -,(2)D二匕当,而未加以证明。本文给出证明,并用于解题。p P (1)由P「二k) =q k'p,知 高中数学教科书新版第三册(选修 只给出了结论:

< 2 k 1 2 k 1 E 二 p 2pq 3q p M p ,(1 2q 3q kq _ ) p 下面用倍差法(也称为错位相减法)求上式括号内的值。记 2 k 1 S k -1 2q 3q kq qSk =q 2q 2 (k -1)q k , kq k 两式相减,得 2 k 1 k (1 一 q)S k =1 q q 恥川q - kq 1 _q k kq k (1 -q)2 k 由 0 : p :: 1,知 0 : q : 1,则 lim q = 0,故 1 2p 3q 2 卡q k j 二 lim S k k _SC 从而E J p _ a 1 S — (|q|:::1)(见教科书91页阅读材料),推导如下: 1 -q 记 S = 1 2q 3q 2 侶 - ^kq k 亠 qS = q 2q 2 亠亠(k - 1)q k ° 相减, 2 k 1 1 (1 -q)S =1 q q q 1 -q 1 (1 -q)2 也可用无穷等比数列各项和公式

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

超几何分布的期望和方差详细证明

超几何分布的期望和方差 山西大学附属中学 韩永权 hyq616@https://www.wendangku.net/doc/c33315451.html, 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件 {}X k =发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --===, 其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布,记作:(,,)X H n N M 口诀记忆: 总N ,次M , 取n 1 求证:X 的数学期望()M E X n N = 0 ()k n k m M N M n k N k E X C C C --=?=∑ 11 1 (01)n n k n k m n m n M N M M N M M N M M N M N k m C C C C C C C C C -------= ??+??+ +??+ ?? ( 由1 1k k M M k M C C --=?得) 1 1 2 1111111 () n n k n k m n m n M N M M N M M N M M N M N M M M M C C C C C C C C C --------------= ??+??+ +??+ ?? 0 1 1 2 1 1 1111()n n k n k m n m n M N M M N M M N M M N M N M C C C C C C C C C --------------= ?+?+ +?+ ? 11 n n N N M C C --= (由 1 1 n n m n m n M N M M N M M N M N C C C C C C C -----+++=得) M n N = ∴()M E X n N = 和二项分布的期望()E X np =一致 2 X 的数学方差:()(1)1M M N n D X n N N N -=-- 证明:由22 ()()D X EX EX =-22 ()k n k m M N M n k N k M n N C C C --=?= -∑ x 0 1 m p n M N M n N C C C -? 1 1 n M N M n N C C C --? m n m M N M n N C C C --?

常见分布的期望和方差78835

常见分布的期望和方差 5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ;

, 。 概率为p的事件A,以X记A首次发生所进行的试验次数,则X的分布列: , 具有这种分布列的随机变量X,称为服从参数p的几何分布,记为X~Geo(p)。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II)比原来的修订本新增加随机

变量的几何分布,但书中只给出了结论:(1)E p ξ= 1,(2)D p p ξ=-12,而未加以证明。本文给出证明,并用于解题。 (1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 () 两式相减,得 ()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 由01<

几何分布的期望与方差

几何分布的期望与方差 (1),(2),本文给出证明,并用于解题。 (1)由,知 下面用倍差法(也称为错位相减法)求上式括号内的值。记 两式相减,得 由,知,则,故 从而 也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下:

记 相减, 则 还可用导数公式,推导如下: 上式中令,则得 (2)为简化运算,利用性质来推导(该性质的证明,可见本刊6页)。可见关键是求。

对于上式括号中的式子,利用导数,关于q求导:,并用倍差法求和,有 则,因此 利用上述两个结论,可以简化几何分布一类的计算问题。 例1. 一个口袋内装有5个白球和2个黑球,现从中每次摸取一个球,取出黑球就放回,取出白球则停止摸球。求取球次数的数学期望与方差。 解:每次从袋内取出白球的概率,取出黑球的概率。的取值为1,2,3,……,有无穷多个。我们用表示前k-1次均取到黑球,而第k次取到白球,因此 。可见服从几何分布。所以

例2. 某射击运动员每次射击击中目标的概率为p(0 解:射手射击次数的可能取值为1,2,…,9,10。 若,则表明他前次均没击中目标,而第k次击中目标;若k =10,则表明他前9次都没击中目标,而第10次可能击中也可能没击中目标。因此的分 布列为 用倍差法,可求得 所以

说明:本例的试验是有限次的,并且,不符合几何分布的概率特征,因而随机变量不服从几何分布,也就不能套用几何分布的相关公式。但求解过程可参照相关公式的推导方法。

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下:

高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给 出了结论:(1),(2),而未加以证明。本文给出证明,并用于解题。 (1)由,知 下面用倍差法(也称为错位相减法)求上式括 E p ξ=1D p p ξ=-12 P k q p k ()ξ==-1E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 ()

号内的值。记 两式相减,得 由,知,则,故 从而也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下: 记相减, S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 ()()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 01<

二项分布的期望和方差的详细证明

二项分布的期望的方差的证明 山西大学附属中学 韩永权 hyq616@https://www.wendangku.net/doc/c33315451.html, 离散型随机变量的二项分布: 在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(0,1,2k n = p q -=1) 于是得到随机变量ξ的概率分布如下: ξ 1 2 3 ... 1n - n P 0n n C q 11n n C pq - 222n n C p q - 333 n n C p q - ... 11 n n n C p q -- n n n C p 称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记k n k k n q p C -=b(k ;n ,p). 1 求证:服从二项分布的随机变量ξ的期望E np ξ=. 证明如下:预备公式: 1 1k k n n kc nc --= 100110220211(1)()11011111()(......)n n n n k k n n k n n n n n n n p q c p q c p q c p q c p q c p q ----------------+=++++++因为()(1),k k n k k k n k n n p k c p p c p q ξ--==-= 所以 001112220012......n n n k k n k n n n n n n n E c p q c p q c p q k c p q nc p q ξ---=?+?++?++?++ =00110220211(1)()11011111(......)n n n k k n n k n n n n n n n np c p q c p q c p q c p q c p q ---------------++++++ =1()n np p q np -+= 所以E np ξ= 方法二: 证明:若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。

相关文档
相关文档 最新文档