文档库 最新最全的文档下载
当前位置:文档库 › 第六章-小波变换的应用

第六章-小波变换的应用

第六章-小波变换的应用
第六章-小波变换的应用

第六章 小波变换的应用

6.1 小波变换与信号处理

小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。

6.1.1 小波变换在信号分析中的应用

[例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为

???????≤≤++-≤≤++-=1000501)()3.0sin(500

10005001)()3.0sin(500

1

)(t t b t t t t b t t t s

应用db5小波对该信号进行7层分解。xiaobo0601.m

100

200

300

400500600

700

800

900

1000

-4-3-2-1012345

6样本序号 n

幅值 A

图6-1含躁的三角波与正弦波混合信号波形

分析:

(1) 在图6-2中,逼近信号a7是一个三角波。

(2) 在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)

与正弦信号相关。

01002003004005006007008009001000

-101a 7

01002003004005006007008009001000

-202a 6

01002003004005006007008009001000

-202a 5

01002003004005006007008009001000

-202a 4

01002003004005006007008009001000

-505a 3

01002003004005006007008009001000

-505a 2

010*******

4005006007008009001000

-5

05a 1

样本序号 n

图6-2 小波分解后各层逼近信号

01002003004005006007008009001000

-101d 7

01002003004005006007008009001000

-101d 6

01002003004005006007008009001000

-101d 5

01002003004005006007008009001000

-202d 4

01002003004005006007008009001000

-202d 3

01002003004005006007008009001000

-202d 2

010*******

4005006007008009001000

-5

05d 1

样本序号 n

图6-3 小波分解后各层细节信号

6.1.2 小波变换在信号降躁和压缩中的应用

一、信号降躁

1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。 2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法:

(1)默认阈值消躁处理。该方法利用ddencmp 生成信号的默认阈值,然后利用wdencmp 函数进行消躁处理。

(2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh 。

(3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。

小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则:

1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

2.相似性:降噪后的信号和原始信号的方差估计应该是最坏情况下的方差最小。

4.一维信号消躁的步骤:

(1) 一维信号的小波分解。选择一个小波并确定分解的层次,然后进行分解计算。

(2)小波分解高频系数的阈值量化。对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理。

(3)一维小波重构。根据小波分解的最低层系数和各层高频系数进行一维小波重构。 关键:如何选择阈值和进行阈值量化。在某种程度上,它关系到信号消躁的质量。 5.消躁阈值选取规则

硬阈值法:.,,,,0,

j k j k j k

j k ωωλωωλ

≥?=?

软阈值法:,,,,,()(),0

j k j k j k j k

j k sign ωωλωλωωλ

??-≥?=?

图(a) 硬阈值图(b) 软阈值

图6-4估计小波系数的软阈值与硬阈值方法

图6-4表明了软阈值和硬阈值法的区别,图中横坐标表示小波分解系数ω,纵坐标表示由阈值法得到的小波系数估计值ω?,λ为阈值。可以看出,硬阈值法的ω?函数在λ点处不连续,这会给重构信号带来震荡;软阈值法虽然ω?函数连续

ω≥时,由性较好,但其导数并不连续,这就限制了它的进一步应用。并且当λ

软阈值法得出的估计值ω?与小波系数ω存在着恒定的偏差。

这些分析表明,软阈值法通常会使去噪后的信号平滑一些,但是也会丢掉某些特征;而硬阈值可以保留信号的特征,但是在平滑方面有所欠缺。一般来说,去噪中软阈值的作用会更多一些,但是到底选取哪种处理方法,还应视具体情况而定。

6.应用一维小波分析进行信号消躁处理的MATLAB函数

小波函数:wden和wdencmp

[例6-2] 利用小波分析对含躁正弦波进行消躁。xiaobo0602.m

分析:

(1)消躁后的信号大体上恢复了原信号的形状,并明显去除了噪声所引起的干扰。

(2)恢复后的信号与原信号相比有明显的改变。主要原因是,在进行消躁处理的过程中所用的分析小波和细节系数阈值不恰当。

010*******

4005006007008009001000

-1

1样本序号 n

(原始信号)幅值 A

010*******

4005006007008009001000

-2

2样本序号 n

( 含躁信号)幅值 A

010*******

4005006007008009001000

-2

2样本序号 n

( 消躁信号)幅值 A

[例6-3] 在电网电压值监测过程中,由于监测设备出现了一点故障,致使所采集到的信号受到噪声的污染。现在利用小波分析对污染信号进行消躁处理以恢复原始信号。

050010001500

200400

600原始信号

幅值 A

500100015000

200400

600强制消躁后的信号

样本序号 n

幅值 A

50010001500

200400

600默认阈值消躁后的信号样本序号 n

幅值 A

50010001500

200400

600给定软阈值消躁后的信号

样本序号 n

幅值 A

分析:

(1)强制消躁处理后信号比较光滑,但可能丢失有用信息。

(2)默认阈值消躁和给定软阈值消躁这两种处理方法在实际中应用的更广泛。

阈值函数图形如下:xiaobo0604.m

50100-1-0.8-0.6-0.4-0.200.20.40.60.8

1原始信号样本序号 n

幅值 A

50100-1

-0.8

-0.6

-0.4-0.200.20.40.60.8

1硬阈值信号样本序号 n

幅值 A

50100-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

软阈值信号样本序号 n

幅值 A

二、信号压缩 1.压缩依据: 一个比较规则的信号是由一个数据量很小的低频系数和几个高频层的系数所组成的。这里对低频系数的选择有一个要求,即需要在一个合适的分解层上选择低频系数。

2.压缩手段:小波分析和小波包分析两种手段。 3.压缩步骤:

(1)信号的小波(包)分解。

(2)对高频系数进行阈值量化处理。对第1层到第N 层的高频系数,均可选择不同的阈值,并且用硬阈值进行系数的量化。 (3)对量化后的系数进行小波(包)重构。 4.两种比较有效的信号压缩方法:

第一种方法:对信号进行小波尺度的扩展,并且保留绝对值最大的系数。在这种情况下,可以选择全局阈值,此时仅需输入一个参数即可。

第二种方法:根据分解后各层的效果来确定某一层的阈值,且每一层的阈值可以互不相同。

[例6-4] 利用小波分析对给定信号进行压缩处理。xiaobo0605.m

100

200

300400

500

600

100

200300400

500原始信号

样本序号 n 幅值 A

100

200

300400

500

600

100

200300400

500压缩后的信号

样本序号 n

幅值 A

6.2 小波变换在电力负载信号的应用

电力系统在线检测信号含有大量的现场背景噪声,给传统方式的数据采集与故障诊断带来很大的困难。将以处理瞬态信号、含宽带噪声信号等见长的小波分析应用于电力系统在线监测是大有前途的。

本小节的测量数据是从一个复杂的设备上采集的电力负载信号,每分钟采集一个样本,持续了5个星期,总共50400个数据样本。测量数据受到传感器误差和状态噪声两种噪声的影响。本小节将分析其中的两段数据,其中第一段是上午12:30至下午1:00间采集的样本,由于这段时间处于用电高峰,因此数据很复杂;第二段是下半夜采集的样本,数据比较简单。 一、信号分解

[例6-5] 利用小波分解分析第一段数据的信号成分。xiaobo0606.m

3600

3610

3620

3630

3640365036603670

3680

3690

3700

295300305310315320325330335340

345样本序号 n

幅值 A

图1

36003650

3700

250300

350a 5

36003650

3700

250300

350

a 4

36003650

3700

250300

350

a 3

36003650

3700

250300

350

a 2

3600

36503700

250300

350

a 1

样本序号 n

36003650

3700

-200

20d 5

36003650

3700

-200

20

d 4

36003650

3700

-100

10

d 3

36003650

3700

-50

5

d 2

3600

36503700

-50

5

d 1

样本序号 n

图2

分析:第一段电力载波信号如图1所示,利用db3小波对其进行5层小波分解,得到逼近信号和细节信号如图2所示。可以看出:

(1)细节信号d1和d2的值较小,可以认为是由传感器和状态噪声的高频分量引起的局部干扰;

(2)细节信号d4包含了3个相连的主要信号模式,它最接近于原始数据的曲线;

(3)细节信号d5含有的信息不多,因此第4层贡献最大,它提取了原始数据曲线的形状。 二、暂态信号检测

为保证电力系统的安全可靠运行,必须对电力设备进行状态监测根据电力信号来判别其运行的状态。电力系统暂态故障信号往往在故障时刻发生突变,若能捕获设备故障信息突变时刻和大小,有利于在故障初期及早采取措施使系统恢复正常,这对提高设备运行可靠性具有重要意义。

[例6-6] 利用小波分解分析检测第二段信号的突变点成分。xiaobo0607.m

1560

1580

1600

1620

164016601680

1700

1720

210220230240250260270280290300

310样本序号 n

幅值 A

分析:利用db3小波对其进行5层分解,得到逼近信号和细节信号如图所示。可以看出:

由细节信号d2可以检测突变点位置t=1625,由细节信号d1也能隐约看出t=1600处的突变点。

15501600

1650

1700

1750

200250

300a 5

15501600

1650

1700

1750

200250

300

a 4

15501600

1650

1700

1750

200300

400

a 3

15501600

1650

1700

1750

200300

400

a 2

1550

160016501700

1750

200300

400

a 1

样本序号 n

15501600

1650

1700

1750

-100

10d 5

15501600

1650

1700

1750

-50

5

d 4

15501600

1650

1700

1750

-50

5

d 3

15501600

1650

1700

1750

-200

20

d 2

1550

160016501700

1750

-50

5

d 1

样本序号 n

三、传感器故障检测

[例6-7] 利用小波分析检测传感器故障。xiaobo0608.m

2200

24002600

28003000320034003600

100150200250300350400450

500样本序号 n

幅值 A

22002400260028003000320034003600

-20020

40d 3

22002400260028003000320034003600

-500

50d 2

2200

24002600

28003000320034003600

-200

20

d 1

样本序号 n

利用db3小波对信号进行5层分解,得到第1~3层细节信号如图所示。可以看出每个细节信号都显示了在t =2400~t =3600之间的信号由于传感器故障而引入了传感器误差噪声。 四、奇异点定位消除

[例6-8] 利用小波分析检测信号中的奇异点并消除。xiaobo0609.m

由原始信号波形可以看出在t =1193和t =1215两处存在奇异值点。进一步利用db3小波对信号进行5层分解,得到第1、2、3层细节信号如图所示。发现奇异值点包含在细节信号d1和d2中,且与原信号中的奇异点是同步的。为了消除奇异点,重构信号时令细节信号d1、d2和d3等于零,得到的波形如图所示,比较可见奇异值点已经很不明显了。

1160

117011801190

12001210122012301240

320330340350360370380390

400样本序号 n

幅值 A

图 原信号

116011701180119012001210122012301240

-20020

40d 3

116011701180119012001210122012301240

-20020

40d 2

1160

117011801190

12001210122012301240

-200

20d 1

样本序号 n

图 小波分解的细节信号

1160

1170

1180

1190

120012101220

1230

1240

320325330335340345350355360365

370样本序号 n

幅值 A

图 消除奇异点后的波形

6.3 小波分析在图像消躁中的应用

图像消躁在信号处理中是一个经典问题,传统的消躁方法是采用平均或线性方法进行,常采用的是维纳滤波,但是消躁效果不好。随着小波理论日益完美,它以自身良好的时频特性在图像消躁领域受到越来越多的关注,开辟了用非线性方法消躁的先河。具体说来,小波能够消躁主要得意于小波变换具有如下特点: (1) 低熵性:小波系数的稀疏分布,使图像变换后的熵降低。

(2) 多分辨率特性:由于采用多分辨率的方法,所以可以非常好地刻画信

号的非平稳性,如突变和断点等,可以在不同分辨率下根据信号和噪声的分布来去除噪声。

(3) 去相关性:小波变换可以对信号去相关,且噪声在变换后有白化趋势,

所以小波阈比时域更利于去躁。

(4) 基函数选择灵活:小波变换可以灵活选择基函数,也可根据信号特点

和消躁要求选择多带小波、小波包等,对不同场合,可以选择不同的小波母函数。

一、小波图像消躁的基本原理

常用的图像消躁方法是小波阈值消躁方法,它是一种实现简单而效果好的消躁方法。阈值消躁方法的思想很简单,就是对小波分解后的各层系数模大于和小于某阈值的系数分别进行处理,然后利用处理后的小波系数重构出消躁后的图像。在阈值消躁中,阈值函数体现了对小波分解系数的不同处理策略以及不同估计方法,常用的阈值函数有硬阈值函数和软阈值函数。硬阈值函数可以很好的保留图像的边缘等局部特征,但图像会出现伪吉布斯效应等视觉失真现象;软阈值处理相对较平滑,但可能会造成边缘模糊等失真现象,为此人们又提出了半软阈

值函数。

小波阈值消躁方法处理阈值的选取,另一个关键因素是阈值的具体估计。如果阈值太小消躁后的图像仍然存在噪声;相反如果阈值太大,重要图像特征又将滤掉,引起偏差。直观上将,对给定的小波系数,噪声越大,阈值就越大。

图像信号的小波消躁步骤有三步,同一维信号的消躁步骤完全相同,不同的是二维小波变换代替一维小波变换。二维小波分析用于图像消躁的步骤如下:

步骤1:二维图像信号的小波分解

步骤2:对分解后的高频系数进行阈值量化。 步骤3:二维小波重构图像信号。 二、例程分析

[例6-9] 利用小波分析对给定一个二维含躁图像进行消躁处理。xiaobo0610.m

原始图像

50

100

150

200

250

50100150200

250

含躁图像

50

100

150

200

250

50100150200

250

第1层重构图像

50

100

150

200

250

50100150200

250

第2层重构图像

50

100

150

200

250

50100150200

250

[例6-10] 利用二维小波变换对给定图像进行消躁处理。xiaobo0611.m

原始图像

50

100

150

200

250

50100150200

250

含躁图像

50

100150200250

50100150200

250

第一次消躁后的图像

50

100

150

200

250

50100150200

250

第二次消躁后的图像

50

100150200250

50100150200

250

6.4 小波分析与图像压缩

所谓图像压缩就是去掉各种冗余,保留重要信息。虽然图像的数据是非常巨大的,但是可以采用适当的坐标变换去除相关从而达到压缩数据的目的。 [例6-11] 利用二维小波变换对给定图像进行压缩处理。xiaobo0612.m

原始图像

5010015020025050100150200

250

分解后的低频和高频信息

100

200

300

400

500

100200300400

500

第一次压缩后的图像50100150200250

50100150200

250

第二次压缩后的图像20

40

60

20

40

60

第一次压缩后图像的大小:

Name Size Bytes Class

ca1 135x135 145800 double array

Grand total is 18225 elements using 145800 bytes

第二次压缩后图像的大小:

Name Size Bytes Class

ca2 75x75 45000 double array

Grand total is 5625 elements using 45000 bytes

分析:

第一次压缩,压缩比较小,约为4

1;

第二次压缩,压缩比较大,约为14

1。视觉效果也可以。

我们一般不仅在前两层压缩,理论上可以获得任意压缩比的压缩图像,但在对压缩比和图像质量要求较高的情况下,不如其他的编码方法。

小波分析还可以用于图像平滑、融和、增强以及边缘检测等。

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

基于傅里叶变换和小波变换的图像稀疏表示

基于二维傅里叶变换和小波变换的图像稀疏表示 一、基于二维傅里叶变换的图像稀疏表示 傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。 经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。二维离散傅里叶变换及逆变换可以表示为: 其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。空间域是由f(x,y)所张成的坐标系。 傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。下图为cameraman原图像及其频谱分布图: cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。 图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下: PSNR=10*log10((2^n-1)^2/MSE)

MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。通过取不同的大系数个数观察图像变化,单独取第1个大系数时: N=1 PSNR=12.2353所取频谱系数对应图 单独取第9个系数时: N=1 PSNR=6.3108第9个频谱系数对应图

N=2 PSNR= 13.1553所取频谱系数对应图 N=10 PSNR=15.4961 所取频谱系数对应图 N=50 PSNR=17.1111 所取频谱系数对应图

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 C =0.2247

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换 的对比异同 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

几种时频分析综述1——傅里叶变换和小波变换

几种时频分析方法综述1——傅里叶变换和小波变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:传统的信号理论,是建立在Fourier 分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier 变换进行各种改进,小波分析由此产生了。小波变换与Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier 变换不能解决的许多困难问题。本文对傅里叶变换和小波变换进行了详细介绍,并用算例分析指出了两者的差别。 关键词:傅里叶变换;小波变换;时频分析技术; 1 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2 小波变换(Wavelet Transform ) 2.1 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数[][]11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由 于1()t χ在t= a,b 处突然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连 续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点, D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ +∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

小波变换及其应用

实验三小波变换及其应用 实验目的 1、通过观察小波变换系数建立对小波变换及其有关性质的感性认识。 2、掌握小波变换及重构方法;了解小波变换基本应用。 实验内容 1、图像二维离散小波变换及其重构; 2、小波变换在去噪、压缩、图像增强上的应用。 实验原理 1、“小波”就是小区域、长度有限、均值为0的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与 Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。 小波转换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续转换在所有可能的缩放和平移上操作,而离散转换采用所有缩放和平移值的特定子集。 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的。它要求的就是一个个小波分量的系数也就是“权”。其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地“量”信号,也就是去比较信号与小波的相似程度。信号局部与小波越相似,则小波变换的值越大,否则越小。当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据。如此这般循环,最后得出的就是信号的小波分解(小波级数)。 当尺度及位移均作连续变化时,可以理解必将产生大量数据,作实际应用时并不需要这么多的数据,因此就产生了离散的思想。将尺度作二进离散就得到二进小波变换,同时也将信号的频带作了二进离散。当觉得二进离散数据量仍显大时,同时将位移也作离散就得到了离散小波变换。 2、二维离散小波变换常用函数

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f 是平方可积分函数,即)()(2R L t f ∈,则该连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1 ),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则)(a t ψ越宽,该函数的时间分辨 率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中的带通 函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。

相关文档