文档库 最新最全的文档下载
当前位置:文档库 › 专题:定义法解决解析几何问题

专题:定义法解决解析几何问题

专题:定义法解决解析几何问题
专题:定义法解决解析几何问题

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

数学必修二第二章解析几何初步试卷及答案.doc

数学必修二第二章解析几何初步 宝鸡铁一中 王芳芳 2010.11 一、选择题: 1.x 轴上任一点到定点(0,2)、(1,1)距离之和最小值是(C ) A .2 B .22+ C .10 D .15+ 2.点(4,0)关于直线5x+4y+21=0对称的点是(B ) A .(-6,8) B .(-6,-8) C .(-8,-6) D .(6,8) 3.直线 032=+-y x l : 关于x y -=,对称的直线方程是(C ) A .032=+-y x B .032=-+x y C .032=--y x D .032=--y x 4.过点P (2,1),且倾斜角是直线l :01=--y x 的倾斜角的两倍的直线方程为(B ) A .012=--y x B .2=x C .)2(21-=-x y D .012=--y x 5.以点A (-5,4)为圆心,且与x 轴相切的圆的方程是(C ) A .25)4()5(22=-++y x B .16)4()5(22=++-y x C .16)4()5(22=-++y x D . 25)4()5(22=++-y x 6.一条直线过点P (-3,23 -),且圆 252 2=+y x 的圆心到该直线的距离为3,则该直线的方程为(C ) A .3-=x B . 23 3- =-=y x 或 C .015433=++-=y x x 或 D .01543=++y x

7.过点A (1,-1),B (-1,1),且圆心在直线02=-+y x 上的圆的方程是(B ) A .4)1()3(22=++-y x B .4)1()1(2 2=-+-y x C .4)1()3(22=-++y x D . 4)1()1(22=+++y x 8.已知圆C :4)2()(2 2=-+-y a x (0 a ),有直线l :03=+-y x ,当 直线l 被圆C 截得弦长为32时,a 等于(A ) A .12- B .2-2 C .2 D .12+ 9.直线)(0)11()3()12(R k k y k x k ∈==--+--,所经过的定点是(B ) A .(5,2) B .(2,3) C .(-21 ,3) D .(5,9) 10.若直线12++=k kx y 与直线2 21 +-=x y 的交点位于第一象限,则实数k 的 取值范围是(C ) A .26-- k B .0 61 k - C .061 k - D . 21 k 11.三条直线 155,02,0321=--=-+=-ky x l y x l y x l :::构成一个三角形, 则k 的范围是(C ) A .R k ∈ B .R k ∈且0,1≠±≠k k C .R k ∈且10,5-≠±≠k k

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含解析

【最新】《平面解析几何》专题 一、选择题 1.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则 OP FP →→ g 的最大值为( ) A .4 B .5 C .6 D .7 【答案】C 【解析】 【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ?u u u r u u u r 表示成为x 的二次函数,根 据二次函数性质可求出其最大值. 【详解】 设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则 22OP FP x x y ?=++u u u r u u u r , 因为点P 为椭圆上,所以有:22143 x y +=即2 2334y x =-, 所以()2222 23132244 x x y x x x FP x OP =++=?++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ?u u u r u u u r 的最大值为6 故选:C 【点睛】 本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题. 2.已知直线21y kx k =++与直线1 22 y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .1 2 k > B .16k <- 或1 2 k > C .62k -<< D .1162 k - << 【答案】D 【解析】 【分析】 联立21 1 22y kx k y x =++???=-+?? ,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线

高中数学 第二章 解析几何初步 章末复习

解析几何初步章末复习 知识网络构建 高频考点例析 考点一直线的方程 例1直线l过点P(8,6),且与两条坐标轴围成等腰直角三角形,求直线l的方程. [解]解法一:直线l与两条坐标轴围成的三角形为等腰直角三角形,必须且只需直线l在两条坐标轴上的截距的绝对值相等且不为0, 故设直线l的方程为x a +y a =1或x a +y -a =1(a≠0), 当直线l的方程为x a +y a =1时, 把P(8,6)代入得8 a +6 a =1,解得a=14, ∴直线l的方程为x+y-14=0; 当直线l的方程为x a +y -a =1时,

把P (8,6)代入得8a -6 a =1,解得a =2, ∴直线l 的方程为x -y -2=0. 综上所述,直线l 的方程为x +y -14=0或x -y -2=0. 解法二:设所求直线l 的方程为y =kx +b (k ≠0,b ≠0), 令x =0,得y =b ;令y =0,得x =-b k . ∵直线与两条坐标轴围成等腰直角三角形, ∴|b |=??????-b k . ∵b ≠0,∴k =±1. 当k =1时,直线l 的方程为y =x +b , 把P (8,6)代入得6=8+b ,解得b =-2, ∴直线l 的方程为y =x -2, 即x -y -2=0; 当k =-1时,直线l 的方程为y =-x +b , 把P (8,6)代入得6=-8+b ,解得b =14, ∴直线l 的方程为y =-x +14,即x +y -14=0. 综上所述,直线l 的方程为x +y -14=0或x -y -2=0. 类题通法 常用待定系数法求直线方程 求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件具备时要另行讨论条件不满足的情况.

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程. 2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜 率为 2 2 ,求椭圆的方程. 3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切. (1)求动圆圆心的轨迹C的方程; (2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q, 证明:AQ⊥BQ . 4.已知圆(x-2)2+(y-1)2=20 3 ,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为 2 2 ,若圆与椭圆相交于A、B, 且线段AB是圆的直径,求椭圆的方程.

5.已知m 是非零实数,抛物线)0(2:2 >=p px y C 的焦点F 在直线2 :02 m l x my --=上. (I )若m=2,求抛物线C 的方程 (II )设直线l 与抛物线C 交于A 、B 两点,F AA 1?,F BB 1?的重心分别为G,H. 求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。 6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB | =8,动点P 满足AP u u u r =35 PB u u u r ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一 点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值. 7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.

第7章 向量代数与空间解析几何 习题 7- (4)

第四节 空间直线及其方程 习题 7-4 1. 求过点(1,1,2)?且与平面20x y z +?=垂直的直线方程. 解 取已知平面的法向量(1,2,1)=?n 为所求直线的方向向量, 则直线的对称式方程为 112 .121 x y z ?+?==? 2. 求过点(1,3,2)??且平行两平面35202340x y z x y z ?++=+?+=及的直 线的方程. 解 因为两平面的法向量12(3,1,5)(1,2,3)=?=?n n 与不平行, 所以两平面相交 于一直线, 此直线的方向向量为 1231 5(7,14,7)7(1,2,1),1 2 3 =×=?=?=??i j k s n n 故可取所求直线的方向向量为(1,2,1)?, 由题设, 所求的直线方程为 132 .121 x y z ++?==? 3. 用点向式方程及参数方程表示直线 10 2340 x y z x y z +++=?? ?++=?. 解 先在直线上找一点. 令1x =, 解方程组2, 36,y z y z +=????=? 得0,2y z ==?, 故(1,0,2)?是直线上一点. 再求直线的方向向量s . 交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==?n n , 12,,⊥⊥s n s n ∵

121 11(4,1,3),213 ∴=×==???i j k s n n 故所给直线的点向式方程为 12 ,413x y z ?+==?? 参数方程为 14,,23.x t y t z t =+?? =???=??? 4. 求过点(2,0,3)?且与直线2470, 35210x y z x y z ?+?=?? +?+=? 垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取 1212 4(16,14,11),3 5 2 ==×=?=??i j k n s n n 由点法式可得 16(2)14(0)11(3)0,x y z ??+?++= 即161411650x y z ???=为所求的平面方程. 5. 求过点(3,1,2)?且通过直线 43521 x y z ?+==的平面的方程. 解 法1 所求平面过点0(3,1,2)M ?及1(4,3,0)M ?, 设其法向量为n , 则01,M M ⊥⊥ n n s , 其中(5,2,1)=s . 取01(1,4,2)(5,2,1)(8,9,22)M M =×=?×=?n s , 则平面方程为 8(3)9(1)22(2)0,x y z ??+?++= 即8922590x y z ???=. 法2 直线L 的交面式方程为25230, 230,x y y z ??=???+=? 过L 的平面束方程为 (23)(2523)0.y z x y λ?++??= 点(3,1,2)?在平面上, 因此(143)(6523)0λ+++??=, 解得4 11 λ=, 因此平面的方程为

最新专题五平面解析几何

专题五平面解析几何

专题五平面解析几何 第14讲直线与圆 [云览高考] 二轮复习建议 命题角度:该部分主要围绕两个点展开命题.第一个点是围绕直线与圆的方程展开,设计考查求直线方程、圆的方程、直线与圆的位置关系等问题,目的是考查平面解析几何初步的基础知识和方法,考查运算求解能力,试题一般是选择题或者填空题;第二个点是围绕把直线与圆综合展开,设计考查直线与圆的相互关系的试题,目的是考查直线与圆的方程在解析几何中的综合运用,这个点的试题一般是解答题. 预计2013年该部分的命题方向不会有大的变化,以选择题或者填空题的形式重点考查直线与圆的方程,而在解答题中考查直线方程、圆的方程的综合运用.复习建议:该部分是解析几何的基础,涉及大量的基础知识,在复习时要把知识进一步系统化,在此基础上,在本讲中把重点放在解决直线与圆的方程问题上. 主干知识整合

1.直线的概念与方程 (1)概念:直线的倾斜角θ的范围为[0°,180°),倾斜角为90°的直线的斜率不存在,过 两点的直线的斜率公式k =tan α=y 2-y 1x 2-x 1(x 1≠x 2 ); (2)直线方程:点斜式y -y 0=k (x -x 0),两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1 ≠x 2,y 1≠y 2),一般式Ax +By +C =0(A 2+B 2≠0); (3)位置关系:当不重合的两条直线l 1和l 2的斜率存在时,两直线平行l 1∥l 2?k 1=k 2,两直线垂直l 1⊥l 2?k 1·k 2=-1,两直线的交点就是以两直线方程组成的方程组的解为坐标的点; (4)距离公式:两点间的距离公式,点到直线的距离公式,两平行线间的距离公式. 2.圆的概念与方程 (1)标准方程:圆心坐标(a ,b ),半径r ,方程(x -a )2+(y -b )2=r 2,一般方程:x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F >0); (2)直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; (3)圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 要点热点探究 ? 探究点一 直线的概念、方程与位置关系 例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0 (2)[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a + 1)y +4=0平行”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 点评] 直线方程的四种特殊形式(点斜式、斜截式、两点式、截距式)都有其适用范围,在解题时不要忽视这些特殊情况,如本例第一题易忽视直线过坐标原点的情况;一般地,直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0平行的充要条件是A 1B 2=A 2B 1且A 1C 2≠A 2C 1,垂直的充要条件是A 1A 2+B 1B 2=0. 变式题 (1)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为( A ) A .y =-13x +13 B .y =-13x +1 C .y =3x -3 D .y =13 x +1 (2)“a =-2”是“直线ax +2y =0垂直于直线x +y =1”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ? 探究点二 圆的方程及圆的性质问题 例2 (1)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( C ) A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425 C .(x -1)2+y 2=1 D .x 2+(y -1)2=1 (2)[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( A ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可能 [点评] 确定圆的几何要素:圆心位置和圆的半径,求解圆的方程就是求出圆心坐标和

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

专题11 平面解析几何大题强化训练(省赛试题汇编)(原卷版)

专题11平面解析几何大题强化训练(省赛试题汇编) 1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围. 2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于 A、B两点. ⑴求证:△AOB的面积S是定值; ⑵求△AOB的外心P的轨迹方程. 3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为 在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:. 5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线 交于点,记点的轨迹为曲线. (1)求曲线的方程; (2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围. 6.【2018年甘肃预赛】已知椭圆过点,且右焦点为. (1)求椭圆的方程;

(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值. 7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l 交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由. 8.【2018年山东预赛】已知圆与曲线为曲 线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上. 10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5 3; B 5; C 3;

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

平面解析几何高考专题复习

第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 1.直线的倾斜角 (1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0,π). 2.直线的斜率 (1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率. (2)过两点的直线的斜率公式: 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2 x 1-x 2. 3.直线方程

1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况. 2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误. 3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B . [试一试] 1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12 D .2或-1 2 解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-3 2时,在x 轴上截距为4m -12m 2+m -3= 1,即2m 2-3m -2=0, 故m =2或m =-1 2 . 2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4 -2-m =1,∴m =1. 答案:1 3.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-4 3, 所以y =-4 3x ,即4x +3y =0. ②若直线不过原点. 设x a +y a =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0 1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

专题55 平面解析几何专题训练(新高考地区专用)(解析版)

专题55 平面解析几何专题训练 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若2222c b a =+(0≠c ),则直线0=++c by ax 被圆122=+y x 所截得的弦长为( )。 A 、 2 1 B 、22 C 、1 D 、2 【答案】D 【解析】∵圆心)00(,到直线0=++c by ax 的距离2 2 2 2= += b a C d , 因此根据直角三角形的关系,弦长的一半就等于2 2)22( 12=-,∴弦长为2,故选D 。 2.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。 A 、 59 B 、1029 C 、518 D 、5 29 【答案】B 【解析】∵ 5 12 8463-≠ =,∴两直线平行,将直线01243=-+y x 化为02486=-+y x , 由题意可知||PQ 的最小值为这两条平行直线间的距离,即 10 29 865242 2= +--,故选B 。 3.若圆4)()(22=-+-a y a x 上有且仅有两个点到原点的距离为2,则实数a 的取值范围为( )。 A 、)022(, - B 、)220()022(,, - C 、)221()122(,, -- D 、)220(, 【答案】B 【解析】由题意已知圆与圆422=+y x 相交,∴222222+<+<-a a , 解得2222<<-a 且0≠a ,故选B 。 4.双曲线122=-my x 的实轴长是虚轴长的2倍,则=m ( )。 A 、 41 B 、2 1 C 、2 D 、4 【答案】D 【解析】12 2 =-my x 可化为1122 =-m y x ,则12=a ,m b 12=,∵实轴长是虚轴长的2倍, ∴b a 222?=,即b a 2=,即224b a =,∴4=m ,故选D 。

(完整版)§7空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 22y x z += (2))(42 2 y x z += 四、

巧用平面向量解解析几何问题

巧用平面向量解析几何问题 一:课堂教学设计: 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。所以本节课就这一方面做一归纳。 二:教学目标:利用平面向量的加法,减法,数量积的几何意义解决解析几何问题。 三:教学方法:启发式教学 四:重点难点:把解析几何问题转化为向量问题。 五:例题解析 例1、椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是 。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠Θ为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?-u u u r u u u u r ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),M 是圆1)1(2 2=-+y x 上的一动点, +的最大值和最小值; ②求22MB MA +的最大值和最小值 分析:因为O 为AB 的中点,所以MO MB MA 2=+的最值。

北师大版必修二第二章解析几何初步综合测试题

北师大版必修二第二章解析几何初步综合测试题 一、单选题 1.已知圆C 的标准方程为222 1x y ,则它的圆心坐标是( ) A .()2,0- B .()0,2- C .()0,2 D .()2,0 2.直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =( ) A .1- B .1 C .3- D .3 3.直线x +(m +1)y ﹣1=0与直线mx +2y ﹣1=0平行,则m 的值为( ) A .1或﹣2 B .1 C .﹣2 D .12 4.已知直线1l :210x ay +-=,与2l :()12102a x ay --+ =平行,则a 的值是( ) A .0或1 B .0或14 C .0 D .14 5.已知两条直线()1:3450l a x y ++-=与()2:2580l x a y ++-=平行,则a 的值是( ) A .7- B .1或7 C .133- D .1-或7- 6.已知点(2,A 0,1),(4,B 2,3),P 是AB 的中点,则点P 的坐标为( ) A .(3,1,2) B .(3,1,4) C .()0,2,1-- D .(6,4,5) 7.直线210x y --=与圆221x y +=的位置关系是( ) A .相切 B .相交且直线过圆心 C .相交但直线不过圆心 D .相离 8.已知点A (-1,0),B (0,2),点P 是圆22:(1)1C x y -+=上任意一点,则△P AB 面积的最大值与最小值分别是( ) A .2,2 B .2,2 C ,4 D . +1-1 9.已知圆O 1的方程为x 2+(y +1)2=6,圆O 2的圆心坐标为(2,1).若两圆相交于A ,B 两点,且|AB |=4,则圆O 2的方程为( ) A .(x -2)2+(y -1)2=6

相关文档
相关文档 最新文档