文档库 最新最全的文档下载
当前位置:文档库 › 永磁机构的结构及动作原理

永磁机构的结构及动作原理

永磁机构的结构及动作原理
永磁机构的结构及动作原理

永磁机构的结构及动作原理

1.概述

自1961年研制成功第一台真空断路器以来,真空断路器的技术水平迅速得到提高。随着新型触头结构和新材料的研制,真空断路器的开断能力不断提升,真空断路器作为控制和分配电能用的开关越来越广泛地应用于电力系统,并在中压领域保持着主导地位。而作为真空断路器的主要元件——操动机构,也历经了几代的发展,从最初的电磁机构,发展到现在广泛应用的弹簧操作机构,以及现阶段正迈向成熟并逐渐普及的永磁操作机构。真空断路器由于其真空电弧无与伦比的特性,使其电寿命大大增加。其机械寿命从传统的两千次跃增为几万次,因此与其配合的操动机构的机械性能及可靠性就成了较为突出的问题。

2. 真空断路器的分析及其发展

目前,国内外电力系统中使用的中压真空断路器品种繁多,型号众多,其特点各异,但概括起来从绝缘角度来讲有空气绝缘和复合绝缘,从总体结构上讲,有断路器和机构一体式和分体式(国内居多),从操动机构上讲作为中压产品主要是电磁机构和弹簧机构

3. 操动机构的发展

高压开关的一个最基本性能就是机械可靠性,电力运行和试验站的故障统计中表明,我国高压开关最突出的问题就是机械和绝缘问题,这与发达国家相比较为落后,在发达国家的先进公司,现在都纷纷提出并推出新一代免维护的电器产品。我国高压开关设备要真正做到产品免维护仍然很难。实际上,在产品设计上尽可能地简化结构,对提高产品的可靠性很有帮助。断路器的全部使命,归根到底是体现在触头的分、合动作使,而分、合动作又是通过操动机构来实现的,因此操动机构的工作性能和质量的优劣,对高压断路器的工作性能和可靠性起着极为重要的作用。最早的电磁机构,由于对电源要求较苛刻——需要专用的大容量电源屏供电,并且操作时冲击大,操作时间长,而逐渐被市场所淘汰,取而代之的是弹簧操作机构。其利用交直流两用电动机对弹簧进行预储能,利用弹簧能进行分合闸操作,从而对电源要求低,交直流均可操作,对电源无冲击,因此在近些年得到广泛应用。但弹簧机构也有其自身不可刻服的缺点:零件数量多,要求加工精度高,制造工艺复杂,成本高,产品可靠性不易保证。

研究表明,开关设备的故障率和其零件的数量成正比,弹簧操动机构的结构比较复杂,零件数量多(约为

200个),要求加工精度高、制造工艺复杂,成本高,产品的可靠性不易保证。电磁力合闸的操动机构称为电磁操动机构,电磁操动机构的优点是结构简单,零件数量少(约为120个),工作可靠,制造成本低,其缺点是合闸线圈消耗的功率太大,因而要求用户配备价格昂贵的蓄电池组,加上电磁机构的结构笨重,动作时间较长。

4. 永磁操动机构

真空断路器之所以如此迅速发展,在于其真空灭弧室优异的开断特性,使其电寿命大大增加。真空断路器的灭弧室动触头行程小,要求分闸速度高。动静触头合闸时为平面接触,为了防止真空断路器在短路时触头被强大的冲击力斥开,动静触头间要施以较大的触头压力,这样也有利于提高分闸速度。真空灭弧室的优异性,使其机械及电寿命从传统的两千次跃增为上万次,沿用传统断路器操动机构很难体现出其高寿命、高可靠性的优点。因此需要一结构高度简化、节能和高可靠性的机构来满足真空断路器的驱动要求。永磁操作机构的出现就是为了解决这一问题,为研制新一代免维护断路器奠定了基础。永磁机构是在真空灭弧被广泛应用后,人们为了克服传统机构的缺点,更充分发挥真空断路器的优点而研制开发的。

4.1永磁机构的结构及动作原理

下图1为双线圈永磁操动机构电磁系统的结构示意图。图示处于分闸位置,动铁心1上端气隙小,磁阻低;下端气隙大,磁阻高。永久磁铁2的磁场主要作用在动铁心的上端。图

(a)为在此位置时动铁心磁力线的分布图。永久磁铁的磁力线几乎全部穿过动铁心的上端,产生相应的吸力。该吸力通过传动机构传送至真空灭弧室的动触头上,使其保持分闸状态。合闸线圈3通电后产生磁场,其磁力线主要集中在动铁心的下端,并在上端与永久磁铁的磁力线相抵消。随着激磁电流的上升,下端吸力增加,上端吸力减少。当下端吸力大于反力,即线圈电流达到触动值后,动铁心开始向下运动。图(b)为动铁心移动之前磁力线的瞬态分布。当动铁心运动到终端位置时,位置传感器输出动作信号,切断线圈电流。动铁心位于下端时,其磁力线分布状况与图(a)上下相对称。

4.2 永磁机构的控制单元

永磁操动机构的操作控制及故障监测和诊断功能全部由电子控制单元提供。图2 所示为电子控制单元的方框图。电源2为电子控制单元提供工作电源,也为储能电容器3提供充电电能。储能电容器预先储备了足够的能量,在进行合闸或分闸操作时,它向合闸线圈6或分闸线圈7泄放高达数kW的脉冲电能,使断

路器完成接通或分断操作。每次放电后,它能在数秒钟内被重新充电。分、合闸线圈的接通与分断由电子半导体器件10进行控制。并联于线圈两端的续流二极管8能降低线圈开断时的自感电势,以保证半导体器件不被损坏。动铁心的位置和电容器的充电状态分别由位置传感器8、9和电子电路进行监测,它们同合、分闸命令一起被送入逻辑模块1。逻辑模块对这些信号和命令进行识别,闭锁误操作命令,完成相应的操作。当永磁操动机构异常时,能给出报警信号。

4.3永磁机构的优点及现阶段的应用

从永磁机构的结构上可看出,其元件极少,动作过程简单,用其做的开关零件比弹簧机构减少80%,从而保证运行中的故障率极低,基本可达到免维护。另外其寿命特长,超过十万次,这就为研制真正免维护超长寿命的真空开关奠定了良好的基础。近几年来,永磁机构在12kV电压等级的断路器上已广泛应用,表明其与真空灭弧室配合的优点。

执行机构基本工作原理(一)1

执行机构基本工作原理(一) ——执行机构发展史 一、执行机构的由来 执行机构,又称执行器,是一种自动控制领域的常用机电一体化设备(器件),是自动化仪表的三大组成部分(检测设备、调节设备和执行设备)中的执行设备。主要是对一些设备和装臵进行自动操作,控制其开关和调节,代替人工作业。 按动力类型可分为气动、液动、电动、电液动等几类;按运动形式可分为直行程、角行程、回转型(多转式)等几类。由于用电做为动力有其它几类介质不可比拟的优势,所以电动型近年来发展最快,应用面较广。电动型按不同标准又可分为:组合式结构和机电一体化结构;电器控制型、电子控制型和智能控制型(带HART、FF协议);数字型和模拟型;手动接触调试型和红外线遥控调试型等。 它是伴随着人们对控制性能的要求和自动控制技术的发展而迅猛发展的: 1.早期的工业领域,有许多的控制是手动和半自动的,在操作中人体直接接触工业设备的危险部位和危险介质(固、液、气三态的多种化学物质和辐射物质),极易造成对人的伤害,很不安全; 2.设备寿命短、易损坏、维修量大; 3.采用半自动特别是手动控制的控制效率很低、误差大,生产效率低下。 基于以上原因,执行机构逐渐产生并应用于工业和其它控制领

域,减少和避免了人身伤害和设备损坏,极大的提高了控制精确度和效率,同时也极大提高了生产效率。随着电子元器件技术、计算机技术和控制理论的飞速发展,国内外的执行机构都已跨入智能控制的时代。 二、执行机构的应用领域 执行机构主要应用在以下三大领域: 1、发电厂典型应用有:火电行业应用送风机风门挡板、一次进风风门挡板、空气预热风门挡板、烟气再循环、旁路风门挡板、二次进风风门挡板、主风箱风门挡板、燃烧器调节杆、燃烧器摇摆驱动器液压推杆驱动器、叶轮机调速、烟气调节阀、蒸气调节阀、球阀和蝶阀控制、滑动门、闸门;其它电力行业的阀门执行器应用球阀、除尘控制喷水、叶轮机转速控制、控制大型液压阀、燃气控制阀、燃烧器点火启动、蒸气控制阀、冷凝水再循环, 脱氧机,锅炉给水,过热控制器,再加热恒温控制器,及其它相关阀门应用 2、过程控制用于化工、石化、模具、食品、医药、包装等行业的生产过程控制,按照既定的逻辑指令或电脑程序对阀门、刀具、管道、挡板、滑槽、平台等进行精确的定位、起停、开合、回转,利用系统检测出的温度、压力、流量、尺寸、辐射、亮度、色度、粗糙度、密度等实时参数对系统进行调整,从而实现间歇、连续和循环的加工过程的控制。 3.工业自动化用于较为广泛的航空、航天、军工、机械、冶金、开采、交通、建材等方面,对各类自动化设备和系统的运动点(运动

混床操作流程

混床 混床是通过离子交换的方法制取去离子水。当阴阳树脂吸附饱和后,分别用一定浓度的NaOH和HCl再生。本系统双柱混床再生方式采用酸碱分步再生方式。 1工艺参数 a.运行:运行流速15-30米/小时,出水水质达不到设计指标即为运行终点。 b.分层:反洗流速10米/小时,反洗时间15分钟。 c.进碱:碱用量120-160克/升树脂,再生液浓度3~5%,再生液流速3~5米/小时,时间约为30分钟。 d.置换:流速同再生流速,时间为30分钟,至出水pH与进水pH相同为止。 e.进酸:盐酸用量120-160克/升树脂,再生液浓度4~6%,再生液流速3~5米/小时,时间约为30分钟。 f.快冲洗:流速为20米/小时,至排水与进水pH接近为止。 g.混合:压缩空气压力0.1~0.15MPa,气量2.5~3.0米3/米2〃分,混合时间为1~5分钟。 h.正洗:正洗流速为15~30米/小时,以排水符合出水水质指标为终点,正洗结束后转入运行。 2混床操作步骤 ①运行:

a.混床运行前先进行排气,排气时开启上进阀、排气阀,当排气 管路出水时,排气完毕。 b.排气完毕后,打开下排阀,同时关闭排气阀,当柱子下排出水 符合指标,开启出水阀,同时关闭下排阀,混床投入运行。 ②反洗分层 当混床出水水质达不到指标时,树脂就要再生。再生之前,先要进行反洗分层,反洗分层根据阴、阳树脂的比重不同,通过树脂沉降来实现的。 a.开启上排阀,逐渐调节下进阀,以缓慢增大下进流量,直至下 进流速10米/小时左右。使树脂得到充分展开,树脂碎粒、悬 浮物从塔顶部排掉。 b.约15分钟后,逐渐降低下进流量。使树脂颗粒逐步沉降。 分层效果可根据树脂沉降后界面是否清晰来判断,如果一次操作未达到要求,可重复操作直至分层清晰,都仍未达到要求,则须采取强迫失效方法。 ③失效 树脂分层不清是由于阳、阴树脂失效程度不同造的,遇到这种情况可用进碱的方法强制树脂失效。 a.打开下排阀、排气阀,将水排至树脂层上150mm左右。 b.关闭下排阀,打开进碱阀,碱喷水阀,吸碱阀,压力水阀,下 排阀,开启中间增压泵,调节下排阀,使混床进出碱量平衡, 此时碱液自上而下流经整个树脂层,使阳树脂失效。

燃气锅炉的工作原理

燃气锅炉的工作原理 燃气锅炉是一种供暖、提供工业用途的特种设备。在家用供暖方面,主要有提供热水和蒸汽两种,例如家用生活热水、洗浴用水。工业主要提供蒸汽为其他设备提供制冷、动力等服务,例如船舶、机车、矿场等场所。锅炉工作原理比较复杂,主要有燃料系统、烟风系统、汽水系统等构成。不同类型的锅炉其工作原理也是不同的。下面就为您介绍燃气锅炉的工作原理。图1-1给出了燃气锅炉系统的原理图。水通过进水口进入锅炉,经过锅炉加热后的符合供热标准的水质通过循环水泵送入室内散热器,通过辐射和对流换热来供暖。流过散热器的水重新回到锅炉里面进行加热,然后重新流入散热器,如此循环往复的进行。用户还可以根据供热范围的大小,选择合适的循环水泵,比较经济方便。而且锅炉系统还可以供给用户热水,满足用户基本的热水需求,损失的水量可以通过进水口自动添加。锅炉内水质的温度和室内温度经过温度传感器处理后,把温度信号传送给单片机,通过相应的驱动电路来调节相应管道阀门的大小,进而通过控制水量来控制水温,达到供暖的目的。

燃气锅炉的进水口的阀门是单向阀,是为了避免锅炉内的热水倒流回自来水管道,影响经济效率。

炉温和室温的测量都采用集成的温度传感器,集成温度传感器测量比较方便,精确度也比较高,测温范围也符合本次设计的要求。燃烧器里的进气量由控制器发出的控制信号通过固体继电器的动作来控制进气阀门的大小来保证天然气充分的燃烧。散热器可以根据自己个人的喜好选择,选择外形美观便于清扫的散热器,一般为了三个效果比较好可以选择铝制的散热器,散热器的入水口的强制循环水泵保证了散热器内的水压,从而也保证了散热片的散热效果。

永磁操作机构与弹簧操作机构的区别!民熔电工!小白福利!必看!

永磁操作机构与弹簧操作机构的区别!民熔电工!小白福利!必看! 民熔永磁操动机构是一种用于高压真空断路器永磁保持,民熔电磁控制的操作机构,是一种全新的工作原理和结构。与传统操动机构相比较,具有主要部件少,是传统断路器操作机构零部件的7%,无需机械脱扣锁扣装置,故障点少,高可靠性,使用寿命长,其中民熔永磁操作机构寿命可达10万次以上,适于频繁操作及高可靠变电站等场所的应用。民熔永磁机构克服了传统弹簧机构和电磁机构的不足,同时通过永磁材料实现真空断路器分、合闸位置的保持及操作过程,从而达到高可靠性和频繁操作以及恶劣环境场所的稳定的操作。 主要性能特点: 1、提高真空断路器整体机械性能,使之能适应频繁开断和长寿命使用的要求,真空断路器的机械寿命高于10万次。 2、相比传统操动机构,无须机械脱、锁扣装置,零部件数量大为减少,工作时仅有一个运动部件,故障率极低,可实现少维护。 3、操动机构的性能与灭弧室开断、关合特性相吻合,延长真空灭弧室的使用寿命 4、采用高可靠的双稳态操作机构设计。通过分、合闸控制线圈产生的电磁力控制分、合闸操作,合闸和分闸位置均采用永磁保持。 5、永久磁材料与分闸、合闸控制线圈结合,解决了合闸时需要大功率能量的问题。手动分闸与电动分闸速度相同,能够可靠开断短路电流。

6、具有防跳功能,设计软连接和触头辅助压簧,解决了合闸弹跳问题。 7、采用智能化控制和液晶显示,能直观显示断路器各种工作状态。同时具有低电压拒合报警功能。 8、交直流储能操作,停电2后小时内可做一次分、合、分操作。 9、具有可靠的操作控制电路模块,可耐受雷击、电涌等严酷条件。永磁材料采用钕铁硼材料,其每一百年退磁为千分之0.510、该断路器具有免检修、少维护、无污染、无爆炸危险、噪音低等特点,并且适应频繁操作等苛刻的工作条件。

气动执行机构的结构原理

第十九章:气动执行机构检修 一、概述 气动执行器以无油压缩空气为动力,驱动阀门或挡板动作。主要有以下几种类型:气动调节阀、电磁阀、电信号气动长行程执行机构。 二、气动调节阀 气动调节阀由气动执行机构和调节阀两部分组成。气动执行机构以无油压缩空气为动力,接受气信号20~100kpa并转换成位移,驱动调节阀以调节流体的流量。为了改善阀门位置的线性度,克服阀杆的摩擦力和消除被调介质压力变化等的影响,提高动作速度,使用气动阀门定位器与调节阀配套,从而使阀门位置能按调节信号实现正确的定位。 气源质量应无明显的油蒸汽、油和其他液体,无明显的腐蚀气体、蒸汽和溶剂。带定位器的调节阀气源中所含固体微粒数量应小于0.1g/m3,且微粒执行应小于60цm,含油量应小于10 g/m3。 常用的气动调节阀由气动薄膜调节阀和气动活塞调节阀。 ⒈气动薄膜调节阀 气动薄膜执行机构气源压力最大值为500kpa。执行机构分正作用和反作用两种型式,正作用式信号压力增大,调节阀关小,又称气关式;反作用是信号压力增大,调节阀也开大,又称气开式。 ⒉气动活塞调节阀 气动活塞执行机构气源压力的最大值为700kpa。与气动薄膜执行机构相比,在同样行程条件下,它具有较大的输出力,因此特别适合于高静压、高差压的场合。 ⒊气动隔膜阀 气动隔膜阀根据所选择的隔膜或衬里材质的不同,可适用于各种腐蚀性介质管路上,作为控制介质流动的启闭阀。例如,化学水处理程序控制用的阀门,常采用气动隔膜发执行机构并与电磁阀配合,实现阀门的全开或全关控制。 ⒋阀门定位器 有电气信号和气信号两种。 气动阀门定位器与气动调节阀配套使用。定位器的气源压力大小与执行机构的型式及其压力信号范围(或弹簧压力范围)有关。例如ZPQ—01定位器与ZM系列气动薄膜执行机构配套时,若执行机构压力信号范围为0.02~0.1Mpa,则气源压力为0.14Mpa;若压力信号范围为0.04~0.2Mpa,则气源压力为0.28Mpa;若ZPQ—02定位器与ZS—02系列活塞式执行机构配套时,压力信号范围为0.02~0.1Mpa时,气源压力为0.5Mpa。 电信号阀门定位器也可称电-气阀门定位器,可将0~10mA或4~20mA DC电信号转换成驱动调节阀的标准气信号。 ⒌气动保位阀 气动保位阀用于重要的气动控制系统作为安全保护装置。当仪表气源系统发生故障时,它能自动切断调节器与阀门的通路,使阀门保持在原来的位置上。气动保位阀型号为ZPB—201,给定压力调整范围为0.08~0.25Mpa,通道压力为0.02~0.2Mpa。 气动阀门定位器与气动调节阀配套使用。根据气动阀不同每种阀门都有配套的阀门定位器。阀门定位器的气源压力大小与执行机构的型式及其压力信号范围有关(或弹簧压力范围)有关。 三、调试 气动执行器的调试主要任务是吹扫气源管、阀门的动作方向、阀门定位器调整、阀门的线性度调整。

新型单稳态永磁操动机构的研究

新型单稳态永磁操动机构的研究 工作面,增加了静态吸力并减小了启动电流。应用有限元软件对新型单稳态永磁机构进行了静态磁场分析和动态特性仿真,给出了理论计算与实验结果对比,证明了计算结果的准确与可靠。 【关键词】永磁机构单稳态新型磁材 永磁操动机构结构简单、零部件少、可靠性高、操作寿命长、动作分散性小,非常适合配用真空断路器,目前已广泛的应用于中等电压等级的真空断路器上。按照永磁机构在分合闸位置的保持方式的不同,可分为双稳态和单稳态永磁机构。双稳态是指动铁芯在开断与关合行程的2个位置,不需要任何能量或锁扣即可保持;单稳态是指永久磁能只处于合闸位置的保持,而分闸位置要靠分闸弹簧保持。对比这两种永磁操动机构,可知在合闸动作时动作特性较为相似,都是通过线圈产生的电磁力合闸,永磁磁力保持。而在分闸时动作特性存在较大差别,单稳态永磁机构的分闸速度特性跟弹簧操动机构比较相似,刚分点前加速,刚分点后减速。通过合理设计分闸及触头弹簧参数可获得理想的分闸速度曲线。双稳态永磁机构却存在刚分速度不足,分闸末端速度过快的缺点,并且双稳态永磁机构一次分合闸循环的能耗明显高于单稳态永磁机构,因此单稳态永磁操动机构更适合于与真空断路器配合。 现有单稳态永磁操动机构使用的是钕铁硼永磁材料,这种材料往往是事先充磁然后再装配到机构上使用。而单稳态永磁操动机构在分闸过程中需要对永磁体去磁以合闸减小保持力完成分闸,由于多次分合闸操作极易造成永磁体的退磁,这一问题始终困扰着设计人员。本文应用了一种可反复充退磁的新型永磁材料来替代钕铁硼,设计了新的磁路结构。并对样机进行了模拟仿真和试验测试,给出了仿真和试验结果。

执行机构原理修订稿

执行机构原理集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

摘要:是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组 成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了 不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围 进行了探讨,为调节阀的选择提供指导作用。1引言 调节阀广泛应用于火力发电、核电、等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。 2调节阀执行机构 按操作的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。 气动执行机构 气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。 气动薄膜调节阀 将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程: 方程式(1) 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。 图2系统运动受力模型

《安全管理》之锅炉的工作原理及工作特性

锅炉的工作原理及工作特性 1)工作原理 锅炉由“锅”和“炉”以及相配套的附件、自控装置、附属设备组成。“锅”是指锅炉接受热量,并将热量传给水的受热面系统,是锅炉中储存或输送锅水或蒸汽的密闭受压部分。“锅”主要包括:锅筒(或锅壳)、水冷壁、过热器、再热器、省煤器、对流管束及集箱等。“炉”是指燃料燃烧产生高温烟气,将化学能转化为热能的空间和烟气流通的通道——炉膛和烟道。“炉”主要包括:燃烧设备和炉墙等。 2)工作特性 (1)爆炸的危害性。锅炉具有爆炸性。锅炉在使用中发生破裂,使内部压力瞬时降至等于外界大气压的现象叫爆炸。 (2)易于损坏性。锅炉由于长周期运行在高温高压的恶劣工况下,因而经常受到局部损坏,如不能及时发现处理,会进一步导致重要部件和整个系统的全面受损。 (3)使用的广泛性。由于锅炉为整个社会生产、生活提供能源和动力,因而其应用范围极其广泛。 (4)连续运行性。锅炉一旦投用,一般要求连续运行,不能任意停用;否则,会影响一条生产线、一个厂,甚至一个地区的生活和生产,其间接经济损失巨大,

有时还会造成恶劣的后果。 3)锅炉的分类 (1)按用途分为:电站锅炉、工业锅炉、生活锅炉、机车锅炉,船舶锅炉等。 (2)按锅炉产生的蒸汽压力和蒸发量分为:高压锅炉、中压锅炉、低压锅炉及大型、中型、小型锅炉。工业锅炉一般是小型低压锅炉,电站锅炉一般为大中型、中高压锅炉。 (3)按载热介质分为:蒸汽锅炉、热水锅炉和有机热载体锅炉。 (4)按热能来源分为:燃煤锅炉、燃油锅炉、燃气锅炉、废热锅炉。 (5)按锅炉结构分为:锅壳式锅炉、水管锅炉。 (6)在燃煤锅炉中按燃烧方式分为:·层燃炉、沸腾炉、煤粉炉(室燃炉)。层燃炉又分手烧炉、链条炉、往复炉、抛煤机炉、振动炉排炉。 (7)按蒸发段工质循环动力分为:自然循环锅炉、强制循环锅炉和直流锅炉。

永磁机构断路器的工作原理

永磁机构断路器的工作原理 自1961 年美国GE 公司研制成功第一台真空断路器以来,真空断路器的技术水平迅速得到提高。随着新型触头结构和新材料的研制,真空断路器的开断能力不断提升。而作为真空断路器的主要元件———操动机构,也历经了几代的发展,从最初的电磁机构,发展到现在广泛应用的弹簧操作机构,以及现阶段正迈向成熟并逐渐普及的永磁操作机构。 真空断路器及操动机构的分析 真空断路器之所以如此迅速发展,在于其真空灭弧室优异的开断特性,使其电寿命大大增加。真空断路器的灭弧室动触头行程小,要求分闸速度高。动静触头合闸时为平面接触,为了防止真空断路器在短路时触头被强大的冲击力斥开,动静触头间要施以较大的触头压力,这样也有利于提高分闸速度。真空灭弧室的优异性,使其机械及电寿命从传统的2000次跃增为上万次,沿用传统断路器操动机构电磁机构和弹簧机构很难体现出其高寿命、高可靠性的优点。因此需要一结构高度简化、节能和高可靠的机构来满足真空断路器的驱动要求。 永磁机构以其结构简单、运行可靠、经久耐用等优点被广泛应用于真空断路器的驱动,它克服了传统机构的缺点,充分发挥了真空断路器的优点,为研制新一代免维护断路器奠定了基础。它已成为电力系统选型热点,具有良好的经济效益和市场前景。本文以ZNY1-10P630-12.5型永磁真空断路器为例来分析永磁断路器的结构及工作原理。 永磁机构断路器工作原理及主要技术参数 主要技术参数 该真空断路器采用双稳态内设欠压脱扣器永磁机构,并与机械手动脱扣器结为一体化设计,使手动分闸轻便可靠。永磁机构分闸与弹簧分闸相结合,使分闸速度的分配更理想。与弹簧操作机构断路器比较,可动部件大大减少,使其可靠性和机械寿命大幅提高,是弹簧操作机构类型断路器的理想替代产品。ZNY1-10P630-12.5型永磁真空断路器的主要技术参数如下: 额定电压PkV 10 最高电压PkV 12 额定电流PA 630 额定频率PHz 50 额定短路开断电流PkA 12. 5

锅炉结构 及工作原理

锅炉结构及工作原理 锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。

汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,

永磁高爆工作原理

689

电气原理:见图 6KV三相电源从配电装置电源接线腔引入,经上隔离插销GS1、三相五柱式电压互感器TV、真空断路器QF、三相电流互感器TA1、压敏电阻RV、零序电流互感器TA0、下隔离插销GS2,再经后腔下室的底板电缆口输出到负载,上下隔离插销GS1、GS2由操作者手动操作进行分合闸;真空断路器能电动分合闸,也能手动分合闸。按合闸按钮QA和分闸按钮TA完成电动分合真空断路器的操作。 1、电动合闸 上下隔离插销GS1、GS2插合到位关闭前面后,行程开关接点XK1、XK2都闭合,三相五柱式电压互感器TV二次侧有输出电压,分别给综合保护器ZBT11-1和永磁机构本体提供100V交流电压(K为风电闭锁点),综合保护器检测无故障时保护接点闭合,此时按下启动按钮QA,永磁机构中的合闸线圈得电,使真空管QF的动

触头向上运动,QF的主触点闭合,接通主回路,完成合闸。合闸完成后,合闸线圈失电。由永磁体提供的磁场力实现合闸保持。 2、遥控合闸 按动遥控器上的合闸按钮,则保护器内的遥控合闸接点闭合,此时短接启动按钮QA,代替了QA启动,合闸线圈得电,最终使真空断路器QF的主触点闭合,接通主回路,完成合闸。 3、电动分闸 分闸时按动电动分闸按钮TA,永磁机构中的分闸线圈得电,使真空管QF的动触头向下运动,QF的主触点断开,切断主回路,完成分闸,分闸完成后,分闸线圈失电。由永磁体提供的磁场力实现分闸保持。 4、保护动作分闸 当出现过载、短路、漏电、绝缘监视等任一项故障时,故障信号通过三相电流互感器输入给综合保护器,保护器分析、处理故障,输出跳闸

信号,闭合保护器内分励节点,短接电动分闸按钮TA,使分闸线圈得电,分断主回路,实现保护跳闸(其中,过载保护采用反时限特性完成自动分闸)。当故障发生后显示相应的故障并长期记忆,只有当故障消除后,按复位按钮,记忆才能消除。 5、合分位检测 真空断路器QF主触点合闸后,永磁机构本体中的辅助触点闭合,将给综合保护器一个合位检测信号,保护器接收到此信号后,将此信息通过液晶屏显示出来。同理,真空断路器QF主触点分闸后,永磁机构本体中的辅助触点断开,将给综合保护器一个分位信号,并将此信息通过液晶屏显示出来。 6、手动合分闸(如图) 在箱体右侧有操作合闸手柄,顺时针转动1000左右,断路器合闸动作,然后将手柄恢复到起始位置即可,永磁体保持合闸状态,显示屏显

混床操作详细-很有用

混床操作维护手册 1、结构形式 设备本体是带上下碟形封头的圆柱形钢结构,内壁衬5mm耐酸耐碱硬橡胶防 腐;设备内部中排装置由不锈钢管、不锈钢缠绕管焊制而成;集水装置为衬胶多 孔板配滤水帽。进水配水采用喇叭口布水。设备本体内装填强酸强碱型树脂。 成套设备的本体外部装配有各种控制阀门并留有各种仪表接口,便于用户现 场装接和实现水站正常运行。 床内装填料高度: 混床:阳树脂 001x7 600 mm 阴树脂 201x7 1200 mm 混床的运行、再生专门配置了UPVC操作屏。 2、操作说明 2.1 正洗 打开混床进水阀一、排气阀,水流自上而下,当水充满设备时打开下排阀, 关闭排气阀,正洗流速同制水流速,当出水电阻率大于出水要求时,转入制水。 2.2 制水 正洗结束,打开出水阀,关闭下排阀,稳定制水流量,直至出水电阻率小于 要求时,制水周期结束。 2.3 再生 2.3.1 反洗预分层 打开混床反洗阀、反洗排放阀,控制反洗分层流速10 m/h左 右,以树脂充分膨胀流动,且正常颗粒树脂不被水冲出为最佳控 制流速,以阴阳树脂基本分层为反洗终点。 2.3.2 沉降 打开排气阀,使反洗预分层后展开的树脂自然、均匀地沉降下 来,而后打开下排阀,使容器内液面降至树脂层面以上10~20cm 处,避免进再生液时不必要的稀释。 2.3.3 失效 打开混床进碱阀、进水阀二、下排阀,浓度按4%左右控制,并注意当喷射 混床操作屏示意图

器进水流量发生变化时, NaOH吸入量也会发生变化,要加以调整; 进碱时间45分钟左右。 2.3.4 反洗分层 打开混床反洗阀、反洗排放阀,控制反洗分层流速10 m/h左右,以树脂充分膨胀流动,且正常颗粒树脂不被水冲出为最佳控制流速,以阴阳树脂分层界限分明为反洗终点。反洗结束时应缓慢关闭反洗阀,使树脂颗粒逐步沉降,以达到最佳分层效果。如一次操作未达要求,可重复操作以达到满意的效果。 2.3.5 沉降 打开排气阀,使反洗分层时展开的树脂自然沉降下来,并打开中排阀,使容器内液面降至树脂层面以上10~20 cm处,避免进再生液时不必要的稀释。 2.3.6 再生:采取分步再生 ①进碱 打开混床进碱阀、中排阀、反洗进水阀,进碱阀进碱与反洗进水阀进水同步进行,碱、水从中排口排出。再生液浓度、再生时间同“失效”步骤相同。 ②进酸: 打开混床进酸阀、进水阀二、反洗进水阀,进酸阀进酸与进水阀进水同步进行,酸、水从中排口排出。再生液浓度按4%左右控制,并注意当喷射器进水流量发生变化时,HCl吸入量也会发生变化,要加以调整;进酸时间30分钟左右。 2.3.7 置换清洗 由进酸、进碱阀中吸入适量清水(混床出水),由中排阀排出,然后打开混床进水阀二、反洗进水阀,以上下等量水流量进行清洗。清洗时间为半小时或以排水基本中性为终点。 2.3.8 混合 ①排水 打开排气阀、中排阀,将容器内积水排至树脂层面以上10~20 cm处,使树脂层有充分的混合空间。 ②混合 打开反洗排水阀、排气阀、进气阀,氮气(或压缩空气、真空抽气等)压力:1~1.5 kg/cm2,混合时间为10分钟左右,或以容器内两种树脂充分混合而定。 ③排水

(完整版)锅炉原理知识点总结

一.名词解释 1.自然循环锅炉:蒸发受热面内的工质,依靠下降管中的水与上升管中的汽水 混合物之间的密度差所产生的压力差进行循环的锅炉。 2.直流锅炉:给水靠给水泵的压头,一次通过锅炉各受热面产生蒸汽的锅炉。 3.强制循环锅炉:蒸发受热面内的工质,除了依靠水与汽水混合物的密度差以 外,主要依靠锅水循环泵的压头进行循环的锅炉。 4.控制循环锅炉:在水冷壁上升管的入口处加装了节流圈的强制循环锅炉。 5.层燃炉:燃料在锅炉中的三种燃烧方式为层状燃烧、沸腾式燃烧、悬浮式燃 烧。层状燃烧就是将燃料置于固定或移动的炉排上,形成均匀的、 有一定厚度的燃料层,空气从炉排底部通入,通过燃料层进行燃烧 反应,采用层状燃烧的锅炉叫层燃炉。 6.流化床锅炉:流化床燃烧方式就是燃料颗粒在大于临界风速(由固定床转化 为流化床的风速)的空气流速作用下,在流化床上呈流化状态 的燃烧方式。采用流化床燃烧方式的锅炉称为流化床锅炉。 7.煤粉炉:将煤磨制成煤粉,然后送入锅炉炉膛中燃烧,这种锅炉便是煤粉炉。 8.锅炉效率:锅炉效率是指锅炉有效利用热与单位时间内所消耗燃料的输入热 量的百分比。 9.锅炉净效率:指扣除了锅炉机组运行时的自用能耗(热耗和电耗)以后的锅 炉效率。 10.余热锅炉:指利用各种工业过程中的废气、废料或废液中的余热及其可燃物 质燃烧后产生的热量把水加热到一定工质的锅炉。 11.火管锅炉:火管锅炉就是燃料燃烧后产生的烟气在火筒或烟管中流过,对火 筒或烟管外水、汽或汽水混合物加热。火管锅炉又称锅壳式锅炉。 12.水管锅炉:所谓水管锅炉就是水、汽或汽水混合物在管内流动,而火焰或烟 气在管外燃烧和流动的锅炉。 13.温室气体:温室气体指的是大气中能吸收地面反射的太阳辐射,并重新发射 辐射的一些气体,如水蒸气、二氧化碳、大部分制冷剂等。它们 的作用是使地球表面变得更暖,类似于温室截留太阳辐射,并加 热温室内空气。 14.省煤器:是为了是给水在进入汽包先在尾部烟道吸收烟气热量,以降低排烟 温度,提高锅炉效率,节约燃煤量,所以称为省煤器。 15.锅筒:锅筒是水管锅炉中用以进行汽水分离和烟汽净化,组成水循环回路并 蓄存锅水的筒形压力容器,又称汽包。 16.下降管:水循环回路中,由锅筒向下集箱的供水管路。 17.水冷壁:锅炉炉膛四周炉墙上敷设的受热面通常称为水冷壁。 18.过热器:是锅炉中将一定压力下的饱和水蒸气加热成相应压力下的过热水蒸 气的受热面。 19.再热器:将汽轮机高压缸或中压缸的排汽再次加热到规定温度的锅炉受热面。 20.联箱:锅炉汽水系统中用以汇集、分配蒸汽和水的受压部件。按结构型式, 有圆形和方形联箱两种 21.管间距:两相邻水冷壁管的中心线之间的距离。 22.卫燃带:涂覆水冷壁的耐火层称为卫燃带(燃烧带)。

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速、及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理 永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理是通过磁体和导体之间的相对运动产生。也就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况下,在电动机满转时,PMD的

混床离子交换器的优点和工作原理

混床离子交换器就是阳、阴两种离子交换树脂,互相充分地混合在一个离子交换器内,同时进行阳、阴离子交换的设备。简称混床。所谓混床,就是把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。由于阳树脂的比重比阴树脂大,所以在混床内阴树脂在上阳树脂在下。一般阳、阴树脂装填的比例为1:2,也有装 填比例为1:1.5的,可按不同树脂酌情考虑选择。混床也分为体内同步再生式混床和体外再生式混床。同步再生式混床在运行及整个再生过程均在混床内进行,再生时树脂不移出设备以外,且阳、阴树脂同时再生,因此所需附属设备少,操作简便。 一、混床离子交换器的优点 (1)出水水质优良,出水pH值接近中性。 (2)出水水质稳定,短时间运行条件变化(如进水水质或组分、运行流速等)对混床出水水质影响不大。 (3)间断运行对出水水质的影响小,恢复到停运前水质所需的时间比较短。 混床设备比较好用一点的还是有机玻璃柱的那种,因为分层的时候比较容易看得清楚。 操作起来,再生效果好。以前我用的那种A3钢的,有个视孔,操作起来真的好麻烦,分层都看不到。 二、混床离子交换器的工作原理 混床床离子交换法,就是把阴、阳离子交换树脂放置在同一个交换器中,在运行前将它们均匀混合,所以可看着是由无数阴、阳交换树脂交错排列的多级式复床,水中所含盐类的阴、阳离子通过该项交换器,则被树脂交换,而得到高度纯水。在混合床中,由于阴、阳树脂是相互混匀的,所以其阴、阳离子交换反应几乎同时进行,或者说,水的阳离子交换和阴离子交换是多次交错进行的,经H型交换所产生的H+和经过OH型交换所产生的OH-都不能积累起来,基本上消除反离子的影响,交换进行得比较彻底。由于进入混合床的初级纯水质较好,交换器的负载较轻,树脂的交换能力很长时间才被子耗竭。本混合床采用体内再生法,再生时首先利用两种树脂的比重不同,用反洗使用权阴、阳离子交换树脂完全分离,阳树脂沉积在下,阴树脂浮在上面,然后阳树脂用盐酸(或硫酸)再生,阴树脂用烧碱再生。 三、混床离子交换器的结构 1、再生装置:阴离子交换树脂再生碱液在高于阴离子交换树脂面300毫米处母管进液(Φ400、500、600采用单母管进液,Φ800、2500采用双母管进液),管上小孔布液,管外采用塑料窗纱60目尼龙网布包覆。阳离子交换树脂再生酸性由底部排水装置的多孔板上排水帽进入。 2、中排装置:中排装置设置在阴、阳树脂的分界面上,用于再生排泄酸、碱还原液和冲洗型,型式分为双母管或支母管式,管子小孔外包覆塑料窗纱及60目尼龙网各一层。 3、排水装置:采用多孔板上装设PB2-500型叠片式排水帽,或宝塔式ABS型排水帽,多孔板材质按设备规格不同而异。(Φ400、500、600型采用硬聚氯乙烯多孔,Φ800、2500型采用钢衬胶多孔板)。

DDC 控制器原理及结构

DDC 控制器原理及结构 的输入/输出信号根据物理性质通常分为模拟输入量(Analogy Input,缩写为AD〉、模拟输出量(Analogy Output,缩写为AO)、数字输入量(Digital input,缩写为DI和数字输出量〈digital output,缩写为DO)四类. 在系统设计和使用中,需要掌握DDC输入和输出的连接, (1)模拟量输入的物理量有温度、湿度、压力、流量等,这些物理量由相应的传感器感应测得,往往经过变送器转变为电信号送入DDC的模拟输入口(AI).此电信号可以是电流信号 (0-10mA),也可以是电压信号〈0?5 V或0?10 V〉。一般一个DDC 控制器可有多个AI输入口,若变送器输出为电流信号,通常由接在输入端口的电阻转变为电压信号. (2)DDC计箅机能够直接判断D1通道上的电平高低(相当于开/关)两种状态,并将其转换为数字量〈1或0〉,进而对其进行逻辑分析和计箅.对于以开关状态为输出的传感器,如水 流开关、风速开关、压差开关等,可以直接接到DDC的DI通道上.除了測量开关状态外,DI通道还可以直接对脉冲信号进行測量,如测量脉冲頻率及高电平或低电平的脉冲宽度,或对脉冲个数进行计数. (3)DDC的模拟量输出(A0〉信号是0?5 V、0?10 V的电压或0?10mA、4?20mA的电流.其输出电压或电流的大小由控制软件决定.由于DDC计算机内部处理的信号都是数字信号,所以这种可连续变化

的模拟量信号是通过内部数字

/模拟拟转换器(D/A)产生的。 通常,模拟量输出(A0)信号控制风阀、水阀等执行器动作。风阀、水阀有气动执行器和电动执行器两种类型,采用气动执行器时需要将控制器的棋拟量输出信号(A0〉接至电气转换器,电气转换器根据输入的电压或电流的大小产生0?0.1 Mpa的空气,再通过气路送至气动执行器的气室中,推动活塞或隔膜完成对阀的调节.也有的气动执行器本身带有电动定位装置,可以直接将控制器输出的模拟量信号接到电动定位装置接线端子上.气动风阀、水阀动作可靠,故障率低,可以在较恶劣的环境下运行,在有现成的压缩空气源的场合,应该优先选择气动执行器。由于阀门执行机构是气动的,因此一般都没有阀位的电反馈信号,故这种控制器不能获得真实的阀门位置信号,无法判别阀门的机械故障.在选择电气转换器或阀门定位器时,一定要注意它所要求的输人信号的形式、范围。 风阀、水阀的电动执行器一般由一台三相或单相电动机通过机械减速系统与阀连接,由此控制速系统还与一可变电阻器相连,这样阀门的不同位置将使可变电阻器输出不同电阻值,成为反映阀位状态的电反馈信号.为了防止阀门全开或全关后电动机继续运转,执行器内还在相应位置设有限位开关.当阀门到达全开或全关位置时,可以通过机械装置直接切断限位开关,使电动机停止 (4)数字量输出D0也称开开量输出,它可由控制软件将输出通道变成高电平或低电平,通过驱动电动机电路即可带动继电器或其他幵关元件动作,也可使指示灯处于显示状态。

锅炉结构及工作原理

锅炉结构及工作原理锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。

而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,从汽包中引出饱和蒸汽,再经过加热,使饱和蒸汽成为一定温度的过热蒸汽。 省煤器:布置在锅炉尾部烟道内,利用烟气的余热加热锅炉给水的设备,其作用就是提高给水温度,降低排烟温度,减少排烟热损失,提高锅炉的热效率。 减温装置:保证汽温在规定的范围内。汽温调节:1、蒸汽侧调节(采用减温器)2、烟气侧调节(采用摆动式喷燃器)炉炉就是锅炉的燃烧系统,由炉膛、烟道、喷燃器及空气预热器等组成。工作原理:送风机将空气送入空气预热器中吸收烟气的热量并送进热风道,然后分成两股:一股送给制粉系统作为一次风携带煤粉送入喷煤器,另一股作为二次风直接送往喷煤器。煤粉与一、二次风经喷燃器喷入炉膛集箱燃烧放热,并将热量以辐射方式传给炉膛四周的水冷壁等辐射受热面,燃烧产生的高温烟气则沿烟道流经过热器,省煤器和空气预热器等设备,将热量主要以对流方式传给它们,在传热过程中,烟气温度不断降低,最后由吸风机送入烟囱排入大气。 炉膛:炉膛是由一个炉墙包围起来的,供燃料燃烧好传热的主体空间,其四周布满水冷壁。炉膛底部是排灰渣口,固态排渣炉的炉底是由前后水冷壁管弯曲而形成的倾斜的冷灰斗,液态排渣炉的炉底是水平的熔渣池。炉膛上部是悬挂有屏式过热器,炉膛后上方烟气流出炉膛的通道叫炉膛出口。 空气预热器:是利用锅炉排烟的热量来加热空气的热交换设备。它是装在锅炉尾部的垂直烟道中。

浅谈燃油注汽锅炉的基本结构及原理

浅谈燃油注汽锅炉的基本结构及原理 【摘要】目前随着原油价格的不断上涨,人们越来越关注稠油的开采,燃油(气)注汽锅炉作为油田开采稠油的专用注汽设备,在稠油开采过程中发挥着重要的作用。 【关键词】燃油(气)注汽锅炉辐射段对流段过渡段 1 概述 稠油热采是目前世界上开采稠油的最有效的方法,油田燃油(气)注汽锅炉是油田开采稠油的专用注汽设备。它是利用所生产的高温高压湿蒸汽注入油层,加热油层中的原油以降低稠油的粘度,从而增加稠油的流动性,能够大幅度地提高稠油的采收率。因此,它被广泛应用在我国各油田稠油及超特稠油的开采中,是稠油开采的核心设备。 燃油(气)注汽锅炉是专为高质高粘度的稠油注入蒸汽的锅炉,它主要是由锅炉本体和辅助设备两大部分组成的,通常将其结构概括为“三大段(辐射、对流、过渡);三大系统(水汽、燃烧、自控);若干小器(加热、分离、过滤等);三大辅机(供水泵、燃烧器及空压机)。” 燃油(气)注汽锅炉利用燃料燃烧产生的热能,将水汽化,产生高温、高压、蒸汽湿度大于20%的湿饱和蒸汽,注入并加热油层,从而降低稠油的粘度,便于开采。 2 本体结构说明 燃油(气)注汽锅炉主要是由锅炉本体和辅助设备两大部分组成的。锅炉本体是注汽锅炉的骨架,它是由辐射段、对流段、过渡段和水换热器组成。锅炉辅助设备是保证锅炉本体正常运行所必需的附属设备。它分别组成了锅炉的汽—水系统、燃烧系统、燃油系统、燃油雾化系统、取样冷却系统、燃气系统和自动控制系统。主要本体结构分为: 2.1 辐射段 辐射段是注汽锅炉的主要受热面,将水汽化,产生具有一定压力和温度的蒸汽。它是由钢板卷制而成的多节组焊的圆筒结构,内衬硅酸铝耐火纤维以保护辐射段外壳,避免炉内热量外散,向炉管反射热量,减少散热损失,正常运行时外壁表面平均温度小于80℃。 2.2 对流段 对流段是注汽锅炉的辅助受热面。它布置在锅炉尾部烟道里,利用烟气的余热加热锅炉给水,这样可以节省燃料,提高锅炉的热效率。为加大传热面积,减少对流段管束的长度,采用翅片管,这样可以缩小2∕3的体积;为防止烧坏翅片

永磁机构断路器的工作原理

书山有路勤为径,学海无涯苦作舟 永磁机构断路器的工作原理 自1961 年美国GE 公司研制成功第一台真空断路器以来,真空断路器的技术水平迅速得到提高。随着新型触头结构和新材料的研制,真空断路器的开断能力不断提升。而作为真空断路器的主要元件操动机构,也历经了几代的发展,从最初的电磁机构,发展到现在广泛应用的弹簧操作机构,以及现阶段正迈向成熟并逐渐普及的永磁操作机构。 真空断路器及操动机构的分析真空断路器之因此如此迅速发展,在于其真空灭弧室优异的开断特性,使其电寿命大大增加。真空断路器的灭弧室动触头行程小, 要求分闸速度高。动静触头合闸时为平面接触,为了防止真空断路器在短路时触头被强大的冲击力斥开,动静触头间要施以较大的触头压力,这样也有利于提高分闸速度。真空灭弧室的优异性,使其机械及电寿命从传统的2000 次跃增为上万次,沿用传统断路器操动机构电磁机构和弹簧机构很难体现出其高寿命、高可靠性的优点。因此需要一结构高度简化、节能和高可靠的机构来满足真空断路器 的驱动要求。 永磁机构以其结构简单、运行可靠、经久耐用等优点被广泛应用于真空断路器的驱动,它克服了传统机构的缺点,充分发挥了真空断路器的优点,为研制新一代免维护断路器奠定了基础。它已成为电力系统选型热点,具有良好的经济效益和市场前景。本文以ZNY1-10P630-12.5 型永磁真空断路器为例来分析永磁断路器的结构及工作原理。 永磁机构断路器工作原理及主要技术参数主要技术参数该真空断路器采用双稳态内设欠压脱扣器永磁机构,并与机械手动脱扣器结为一体化设计,使手动分闸轻便可靠。永磁机构分闸与弹簧分闸相结合,使分闸速度的分配更理想。与弹簧

相关文档