文档库 最新最全的文档下载
当前位置:文档库 › 高等数学习题及解答(极限-连续与导数)

高等数学习题及解答(极限-连续与导数)

高等数学习题及解答(极限-连续与导数)
高等数学习题及解答(极限-连续与导数)

高等数学习题库

淮南联合大学基础部

2008年10月

第一章 映射,极限,连续

习题一 集合与实数集

基本能力层次:

1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B

解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.

2:

证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2

=4n 2

+4n+1,不能被2整除,故p =2n 。即结论成立。 基本理论层次:

习题二 函数、数列与函数极限

基本能力层次

1:

解:

2:

证明:由得cxy ay ax b -=+即 ay b

x cy a

+=

-,所以 ()x f y = 所以命题成立

3:

(1)2

2x y -= (2)lg(sin )y x =

(3 []y x = (4)0,01,0x y x ≥??

=??

解:

4:用极限定义证明: 1

lim

1n n n →∞-=(不作要求)

证明:因为 ω? 有11|1|n n n ω--=<成立,只要1n ω>取N =[1

ω

],则当n>N 时,就有

11|1|n n n

ω--=<有定义变知1lim 1n n n →∞-=成立

5:求下列数列的极限

(1)lim 3n n n

→∞ (2)222

3

12lim

n n n →∞+++

(3)

(4)lim n 解:(1) 233n

n n n <,又

2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n

→∞=0 (2)由于

222

3

312(1)(21)111

(1)(2)6n n n n n n n n n

++

+++=

=++

又因为:1111

lim (1)(2)63

n n n n →∞++=,所以:2223121

lim

3

n n n →∞+++ (3)因为:

所以:

(4) 因为:111n n ≤≤+,并且1

lim(1)1n n →∞+=, 故由夹逼原理得

1n =

6:

解:由于

7:

解:

8:

9:

习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次

1:

解:

同理:(3),(4)

习题四无穷小的比较、函数的连续及性质基本理论层次

1:

(1)(2)

2:

第二章 一元微分学及应用

习题一 导数及求导法则、反函数及复合函数的导数

.

基本理论层次

21,1

,,,,1

()(1)(1)lim lim 1x a b x bx x f x f bx x ?+≥??-+

222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。

解:首先必须f(x)在x=1处连续,f(1-0)=limf(x)=lim(-x +bx)=b-1

f(1+0)=limf(x)=lim(ax +1)=a+1,由f(1-0)=f(1+0)f(1) 得b-1=a+1,即b=a+2-x f'(1)(1){(1)}

lim 11

()(1)1(1)

,'(1)lim lim 2.

11

'(1)'(1)0,a x x a x x f x f a a f a x x f f a ++-+---+=---+-+====--==2ax 又因为由得从而b=2。

()()()

()()ln ln ln ln ln ln 2,(0),,1'1'ln 'ln ln '111ln ln ln 0.

x

x

x x x x

x

x x x

x

x x

x x

x e e y x e e y e x x x e

x x x x x x x x +>===++??∴=++?++ ??

??

?=+++?++> ??

?x

x x x

x x x x x x x x 2.求函数y=x+x x 解:设x x 所以x x x x x ()

()()()()()

()()()()

()()()()()()()()()()()()()

()()()()()2

22

22

2233113.(),32

111

12211111

'1212211212111"'12212111!21n n n n n

n n n f x f x x x f x x x x x f x x x x x x x x x x x x x n n f x x x ++=

-+==-

----????--∴==- ? ? ?

?------??

??????

??----=-=- ? ? ? ? ? ?------??????

-?-?=---求解:…由数学归纳法可得出:

!()()

()111

111!.21n n n n x x ++????=-?- ??? ?--??????

()()()()()()()()()

()()2

2

222232322

222

222

3

3

24.,33''''6132666'112122'16663322t dy dt at

y at y t dy dx x t at t a t t

at a t at

y t t t a t at t

x t t a a t at a t dy dx

a at =?????=????

???=

=??

?

??

+--+=

=

+++-=

+-+-+==-2

2

22求下面的参数方程所确定的函数的导数。2at

x=1+t 求1+t 1+t 解:又因为2at 1+t 2

3.

1t t -

习题二导数的运算、高阶导数、隐函数及参数方程确定的

函数的导数、函数的微分

习题三中值定理罗必达法则泰勒公式

基本理论层次

1.

2.

3.

4

5.]

6.

7.

习题四 导数的应用

基本理论层次

1.

综合练习题

一、 填空题

1、设()f x 在x a =可导,则0()()

lim x f a x f a x x →+--=

2、设(3)2f '=,则0______________(3)(3)

lim 2h f h f h

→--=

。 3、设1

()x

f x e -

=,则0

_____________(2)(2)

lim

h f h f h

→--=

。 4、已知00cos (),()2,(0)1sin 2

x f x f x x x π

'=

=<<-,则0_______________________()f x =

。 5、已知2220x y y x +-=,则当经x =1、y =1时,_______________

dy

dx =

。 6、()x f x xe =,则_______________

(ln 2)f '''=

7、如果(0)y ax a =>是21y x =+的切线,则__________

a =

8、若()f x 为奇函数,0()1f x '=且,则0_________________

()f x '-=。

9、()(1)(2)

()f x x x x x n =+++,则_________________

(0)f '=

10、ln(13)x y -=+,则____________________

y '=。

11、设0()1f x '=-,则0

___________00lim

(2)()

x x

f x x f x x →=---。 12、设tan x y y +=,则_________________________

dy =。

13

、设ln

y =_______________(0)y '''=。 14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是

______________________

15、1cos

0()0

0x x f x x

x λ

?≠?=??=?,其导数在0x =处连续,则λ的取值范围是

_______________________

16、知曲线323y x a x b =-+与x 轴相切 ,则2b 可以通过a 表示为____________

二、 选择题。

17、设()f x 可导,()()(1sin )F x f x x =+,则(0)0f =是()F x 在0x =处可导的( )。

A 充分了必要条件,

B 充分但非必要条件,

C 必要条件但非充分条件,

D 既非充分条件又非必要条件。 18、函数3221()3

1

x

x f x x

x ?≤?=??>?在1x =处 ( )

A 左右导数均存在,

B 左导数存在,右导数不存在,

C 左导数不存在,右导数存在,

D 左右导数均不存在。

19、设周期函数()f x 在(,)-∞+∞内可导,周期为4,又0(1)(1)

lim

12x f f x x

→--=-,则曲线 ()y f x =在点(5,(5))f 处的切线斜率为 ( )

A

1

2

, B 0 , C –10, D –2 。

20、设函数1

1cos (1)1()0a

x x f x ??

--=???

11

x x ≠= 则实常数a 当()f x 在1x =处可导时必满足( )

A 1a <-;

B 10x -≤<;

C 01x ≤<;

D 1a ≥

21、已知212

()2x x x ax b x ??->=?+≤? ,且(2)?'存在,则常数,a b 的值为 ( )

A 2,1;a b ==

B 1,5;a b =-=

C 4,5;a b ==-

D 3, 3.a b ==- 22、函数()f x 在(,)-∞+∞上处处可导,且有(0)1f '=,此外,对任何的实数,x y 恒有

()()()2f x y f x f y xy +=++,那么()f x '=( )

A ;x e

B ;x

C 21x +;

D 1x +。

23、已知函数()f x 具有任何阶导数,且2()[()]f x f x '=,则当n 为大于2的正整数时,

()f x 的n 阶导数()()n f x 是 ( )

A 1![()]n n f x +;

B 1[()]n n f x +;

C 2[()]n f x ;

D 2![()].n n f x

24、若函数()y f x =有01

()2

f x '=

,则当0x ?→时,该函数在0x x =处的微分dy 是x ?的( ) A 等价无穷小; B 同阶但不等价的无穷小; C 低阶无穷小; D 高阶无穷小。

25、设曲线1

y x =和2y x =在它们交点处两切线的夹角为?,则tan ?= ( )

A 1-;

B 1;

C 2;

D 3 。

26、设由方程组2110y x t te y =-??++=? 确定了y 是x 的函数,则20

2

t d y

dx ==( )

A 21e ;

B 212e ;

C 1e -;

D 1

2e

-

一、 填空题的答案 1、2

)(a f ' 2、-1 ; 3、21

4

1-

e ; 4、3 5、-1

6、6+2ln2

7、2

8、1

9、n! 10、

-x

x --+313ln 3 11、1 12、dx y dy 1sec 12-=

13、2

3

-

14、0=-y x 15、2>λ 16、 624a b = 二、选择题答案:

17、A 18、B 19、D 20、A 21、C 22、C 23、A 24、B 25、D 26、B 三、综合题:

27、求曲线cux y =上与直线1=+y x 垂直的切线方程。 剖析:求曲线的切线议程关键有垂点,一是求切点,二是求切线斜线。

解:设切点为

)

(00y x 则点

)

.(00y x 处的切线斜度为

01

|x x x y k =

='=

依题意知所求切线()坐y x +1=垂直,从而11

=x 10=x 利切点为)01(、;切线()为.1=k

故所求切线方程为10-=-x y 即:1-=x y 设x

e

x f 1

)(-= 则2

1

04

1)2()2(lim

-→-=--e tc f tc f t 9、如果)(x f 为偶函数,且)0(-f 存在 证明0)0(=-f 证明:因为

)

(x f 为偶函数,所以

)

()(x f x f =-从而

)0(0

)

0()()(lim 0)0()(lim

)0(00

f x f x f x f x f x f f x x '-=---=-=--=→-→ ∴:0)0(2='f 故0)0(='f

28、讨函数

?????=≠=0

01sin 2

x x x

x y 在0=x 处方程连续性与可得

解:)0(1

sin lim lim 20

0y x

x y x x ==→→,所以函数y 在0=x 处连续 又01sin lim 1

sin

lim

)0(lim 020

0===--→→→x

x x x x x y y x x x 故函数y 在0=x 处可导、值0|

='=x y x

29、已知??

?<-≥=0

)(2x x x x x f 求)0().0(-+''f f 及是否存在)0(2f ' 解:

0lim 0)0()(lim )0(2

00==--='++→→+x

x x f x f f x x 1lim 0)0()(lim

)0(00

-=-=--='--

→→-x

x

x f x f f x x 故不存在)0(f ' 30、已知)(00

sin )(,

x f x x

x x x f '??

?≥<=求

解: x x f x cos )(.0='<时当

1

)(.0='>x f x 时当

11lim )(lim )0(0

=='='++→→+x x x f f

所以:1)0(1=f 从而 ??

?≥<='0

1

cos )(x x x x f

31、证明:双曲线22a xy =上往一点处切线与两坐标轴构成的三角形的面积都等于22a 。

证明:设),(00y x 为双曲线2a xy =上的一点,则该点处切线的斜

率为,202x a k -=从而切线方程为)(00

2

02x x x a y y --=-

0=x 得y 轴上的截距为0

2

0202

x a x a y y =+=

令0=y 得x 轴上的截距为02x x =

从而 20

2

02|2.2|21|||21a x a x y x s ===

32、设x

e y x

1sin

1tan

=求y '

解:)1

(sin 1sin )(1

tan 1tan

'+'='x

e x e

y x x

)1

(1cos 1sin )1)(1(sec 21

tan 22

1

tan x x e x x

x e

x x

-+-=

33、设)2323(

+-=

x x f y 在2arcsin )(x x f =' 求0

=x dx

dy

解:设2

323),(+-==x x u u f y

则:

2)

23()23(3)23(3)()2323)((+--+'='+-'=x x x u f x x u f dx dy 2

2)23(12

)

(arcsin +=x u 2

22312

)2

323arcsin(+?

+-=x x x

从而π

2

31arcsin 3|0===x dx dy

34、设

??

???

=≠=0

001arctan )(22

x x x

x x f ,讨论0)(='x x f 在点处连续性

剖析:本题需先求)(x f '的表达式,再讨论)(x f '在点0=x 处的连续性

解:当2

232)1(121arctan )(0x

x x

x

x f x +-

+='≠时

4

2

2121arctan x x x +-

=

2

1

arctan

lim 0

)

0()(lim

200

π==--='→→x x x x f x f f x x 从而:

??

?

???

?=≠+-='0

20121arctan )(4

2

2x x x x x x f π

由于)0(2121arctan lim )(lim 42200f x x x x f x x '==?????

?+-='→→π

处连续在点0)(='∴x x f 35、

:,)(dx dy

y x f 的导数

求下列函数可导设

(1))(2x f y = (2))(cos )(sin 22x f x f y += 解:(1))(22)(22x f x x x f y '=?'='

(2)))(cos (cos ))(sin (sin 2222''+''=

'x x f x x f y

=x x x f x x x f sin cos 2)(cos cos sin 2)(sin 22'-' =[])(cos )(sin 2sin 2121x f x f x -

37、设)(,)1

1(lim )(2t f x

t x f tx x '+=∞

→求 提示:t

te t f 2)(=。答案:

t

e t t

f 2)21()(+='

38、求2

12arcsin

t t y +=导数

解:2

222

2

)1(22)1(2)12(11t t t t t

t y +?-+?

+-=

'

=

22221)

1(2)

1(1

t t t +-?- =?????>+-

<+1

12

112

22

22

t t t t

39、y f x x f y ''-=求二阶可导,),(2 解x x u u f y -==2),( )12()()(2-?-'=''=

'x x x f u u f y

)()12()(2222x x f x x x f y -''-+-'=''

40、设

)

(26

51n y

x x y 求++=

剖析:此类函数直接求导,很难找出规律,先对

而后求导再将又拆项分解因式,,652++x

1

1)(4

43

322)3(!

)

1()2(.!)1()3(2

.3)2(2.3)3(2

)2(2)3(1

)2(13

121)3)(2(1+++-++-=++

+-='''+-

+=''++

+-='+-

+=++=n n n

n x n x n y x x y x x y x x y x x x x y

41、求下列函数的n 阶导数的一般表达式 x y 2sin )1(= x x y ln )2(= x xe y =)3(

3,2,)!2()1(2

3211

ln 1)2(2)1(2sin 2)2

22sin(2)2

2cos(2)

2

2sin(22cos 22sin )1(:1

)

(4

)5(3

)4(21)(2=--=?-

==-='''=

''+='??????

-+

=+

=+='''+==''='--n x

n y

x y x y x y x

y x y 、n x y x x y x x y x y 、n n n n n

πππ

π

x

n x x x x x x x x e x n y e x y e x xe e e y e x xe e y 、)()3()2()1()3()(+=+='''+==++=''+=+='

44、求曲线???==t

y t x 3

3sin cos 上对应于6

π=t 点处的法线方程

从而所求法线方程为

当则解法切,8

1

8

336

333|tan tan )sin (cos 3cos sin 36

3

2==

=

-=-

=-=-=-??==

y x t K t K t t t t t dx dy :t π

π

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高等数学偏导数第一节题库

【090101】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z y x y x y =++arctan 122 ,求该函数的定义域。 【试题答案及评分标准】x ≠0为该函数的定义域。 10分 【090102】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】求函数u x y z =+?? ? ? ??arcsin 22的定义域。 【试题答案及评分标准】-≤+≤1122 x y z 10分 【090103】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z xf y x =(),其中x ≠0,如果当 x =1时,z y =+12,试确定f x ()及z 。 【试题答案及评分标准】 x =1时,z f y y ==+()12,所以f x x ()=+12 5分 z x y x x x x y =+?? ???= +12 22 10分 【090104】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z x y f x y =++-(),已知y =0时, z x =2,求f x ()和z 。 【试题答案及评分标准】y =0时,z x =2,得x f x x +=()2 所以f x x x ()=-2 5分

所以z x y x y x y x y y =++---=-+()()()222 10分 【090105】【计算题】【中等0.5】【多元函数的概念】【多元函数的定义域】 【试题内容】设z y f x =+-()1,其中x y ≥≥00,,如果y =1时z x =,试确定函数f x ()和z 。 【试题答案及评分标准】 y =1时,z f x x =+-=11() 所以f x x ()-=-11 3 分 令x t x t -==+112,()所以 f t t t t f x x x ()(),()=+-=+=+1122222 7分 所以()z y x x y x x y =+-+-=+-≥≥()(),1211002 10分 【090106】【计算题】【较易0.3】【多元函数的极限】【极限的计算】 【试题内容】求极限lim sin x y y x xy →→+-0 211 。 【试题答案及评分标准】 解:lim sin x y y x xy →→+-0 211 =?++→→lim sin () x y y x xy xy 00 211 6分 = 4 10分 【090107】【计算题】【较易0.3】【多元函数的极限】【极限的计算】

最全大学高等数学函数、极限与连续

第一章 函数、极限和连续 §1.1 函数 一、 主要容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ??∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x

高数偏导数复习

1. 偏导数求解方法: 例题:求22z=3x xy y ++在(1,2)处的偏导数. 解:把y 看作常量,得 23z x y x ?=+? 把x 看作常量,得 32z x y y ?=+? 将(1,2)带入上述结果,就得 1 2|21328x y z x ==?=?+?=? 1 2|31227x y z y ==?=?+?=? 2. 高阶偏导数求解方法. 设函数z (x,y)f =在区域D 内具有偏导数 (x,y)x z f x ?=? (x,y)y z f y ?=? 按照对变量求导次序不同有下列四个二阶偏导数: 22()(x,y)xx z z f x x x ???==???, 2()(x,y)xy z z f y x x y ???==???? 2()(x,y)yx z z f x y y x ???==????, 22()(x,y)yy z z f y y y ???==???

3. 全微分.(求偏导数后加上,dx dy ) 函数(x,y)z f =的全微分: z z dz dx dy x y ??= +??. 例题:计算函数xy z e =在点(2,1)处的全微分. 解: ,x y x y z z ye xe x y ??==?? 222211 |,|2x x y y z z e e x y ====??==?? 所以 222dz e dx e dy =+ 4. 多元复合函数求导法则(先求偏导数,再对复合函数求偏导数). 例题1:设z uv sin t =+,而t u e =,cos v t =,求全导数dy dt 。 解:sin cos t dz z du z dv z ve u t t dt u dt v dt t ???=++=-+??? cos sin cos (cos sin )cos t t t e t e t t e t t t =-+=-+ 例题2:求2 2 (xy ,x y)z f =的22z x ??(其中f 具有二阶连续偏导数). 解: 22'' 122'2'1 222'''''2''2''1112221224''3''22''111222 ()(2)2() (y 2)2(2) y 44z z y f f yx x x x x f y y f x x x y f xyf y f xy f x yf f xy f x y f ????==+??????=+??=++++=++ 5. 隐函数求导公式.

高等数学基础极限与连续

第二章 极限与连续 一、教学要求 1.了解极限概念,了解无穷小量的定义与基本性质,掌握求极限的方法. 2.了解函数连续性的概念,掌握函数连续性的性质及运算. 重点:极限的计算,函数连续性的性质及运算。 难点:极限、连续的概念。 二、课程内容导读 1. 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例1 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =21613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即

x x x 10)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即 222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+? 2. 知道一些与极限有关的概念 (1) 知道数列极限、函数极限、左右极限的概念,知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等; (2) 了解无穷小量的概念,了解无穷小量与无穷大量的关系,知道无穷小量的性质; (3) 了解函数在某点连续的概念,知道左连续和右连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点; 例2 填空、选择题 (1) 下列变量中,是无穷小量的为( ) A. )0(1ln +→x x B. )1(ln →x x C. )0(e 1 →-x x D. )2(422→--x x x 解 选项A 中:因为 +→0x 时, +∞→x 1,故 +∞→x 1ln ,x 1ln 不是无穷小量; 选项B 中:因为1→x 时,0ln →x ,故x ln 是无穷小量; 选项C 中:因为 +→0x 时,-∞→-x 1,故0e 1 →-x ;但是-→0x 时,x 1- +∞→,故+∞→-x 1 e ,因此x 1 e -当0→x 时不是无穷小量。 选项D 中:因为21422+=--x x x ,故当2→x 时,41422→--x x ,4 22--x x 不是无穷小量。 因此正确的选项是B 。 (2) 下列极限计算正确的是( )。 A.=→x x x 1sin lim 001sin lim lim 00=→→x x x x

高等数学偏导数

授课单元7教案 课题1 偏导数 一、复习 x处的导数,y=f(x)的导数 一元函数y=f(x)在 二、偏导数的概念、 我们已经知道一元函数的导数是一个很重要的概念,是研究函数的有力工具,它反映了该点处函数随自变量变化的快慢程度。对于多元函数同样需要讨论它的变化率问题。虽然多元函数的自变量不止一个,但实际问题常常要求在其它自变量不变的条件下,只考虑函数对其中一个自变量的变化率。

例如,一定量的理想气体P ,体积V ,热力学温度T 的关系式为常数)R V RT P (,= (1)当温度不变时(等温过程),压强P 关于体积V 的变化率为2T V RT )(-=为常数dV dP (2)当体积V 不变时(等容过程),压强P 关于温度T 的变化率为 V R dT dP V = =常数)( . 这种变化率依然是一元函数的变化率问题,这就是偏导数概念,对此给出如下定义。 1、z=f(x,y)在),(00y x 处的偏导数 (1) z =f (x , y )在点(x 0, y 0)处对x 的偏导数 设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量?x 时, 相应地函数有增量 f (x 0+?x , y 0)-f (x 0, y 0). 如果极限 x y x f y x x f x ?-?+→?) ,(),(lim 00000 存在, 则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作 ),(00y x x z ??, ) ,(00y x x f ??, ) ,(00y x x z ' , 或),(00y x f x '. 即 x y x f y x x f y x f x x ?-?+=' →?) ,(),(lim ),(00000 00 (2)z =f (x , y )在点(x 0, y 0)处对y 的偏导数 ) ,(00y x y z ??= ) ,(00y x y f ??=) ,(00y x y z ' =),(00y x f y '=y y x f y y x f y ?-?+→?) ,(),(lim 00000 2、偏导函数(简称偏导数) (1)z =f (x , y )对自变量x 的偏导函数 如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作 x z ??= x f ??= 'x z =),(y x f x 'x y x f y x x f x ?-?+=→?),(),(lim 0. (2) z =f (x , y )对y 的偏导函数 y z ??=y f ??= 'y z =),(y x f y '=y y x f y y x f y ?-?+→?),(),(lim 0 说明 (1)由偏导数的定义可知,求二元函数的偏导数并不需要新的方法求 x z ??时,把y 视为常数

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续 习题一 一.选择题 1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2 B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2 C.f(x)=x D.f(x)=x,g(x)=-x 2.函数y=4-x+sinx的定义域是( ) A.[0,1] B.[0,1)(1,4] C.[0,+∞) D.[0,4] 3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-132 3 B.y=x2 C. y=x3 D.y=x-2 4.函数y=x2-1单调增且有界的区间是( ) A. [-1,1] B. [0,+∞) C. [1,+∞) D. [1,2] 5.设y=f(x)=1+logx+3 2,则y=f-(x)=( ) A.2x+3 B. 2x-1-3 C. 2x+1-3 D. 2x-1+3 6.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=( A.-4 B.-2 C.-3 D.6 二.填空题 1.f(x)=3-x x+2的定义域是 2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。 3.设f(2x)=x+1,且f(a)=4,则a= 。 4.设f(x+11 x)=x2+x2,则f(x) 5.y=arcsin1-x 2的反函数是。 6.函数y=cos2πx-sin2πx的周期T。 ) ?π?sinx,x<17.设f(x)=?则f(-)=。 4??0,x≥1 2??1,x≤12-x,x≤1??8.设f(x)=?,g(x)=?,当x>1时,g[f(x)]= 。 x>1x>1???0?29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。 10.设f(x)=2x,g(x)=x2,则f[g(x)]=。 三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-3 3.limx→52x-1-3+2x2-1 4. lim x→0xx-5 x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-2 7.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1

高等数学课件-- 极限与连续(可编辑)

第一节极限的定义二、两个重要极限三、无穷小的比较二、初等函数的连续性三、闭区间上连续函数的性质五、函数连续性的定义***** 六、函数的间断点间断点分类: 例如: 内容小结练习备用题确定函数间断点的类型. 2. 求三、极限3. 无穷小例6. 求下列极限:令例7. 确定常数a , b , 使显然为其可去间断点. (4) (5) 为其跳跃间断点. 左连续右连续第一类间断点可去间断点跳跃间断点左右极限都存在第二类间断点无穷间断点振荡间断点左右极限至少有一个不存在在点间断的类型在点连续的等价形式⑸利用分子、分母消去共同的非零公因子求形式的极限;⑹利用分子,分母同除以自变量的最高次幂求形式的极限;⑺利用连续函数的函数符号与极限符号可交换次序的特性求极限;⑻利用“无穷小与有界函数之积仍为无穷小量”求极限. 4. 定理左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性, 极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系初等函数的连续性,闭区间上连续函数的性质. 二、学法建议1 .本章的重点是极限的求法及函数在一点的连续的概念,特别是求极限的方法,灵活多样.因此要掌握这部分知识,建议同学自己去总结经验体会,多做练习.2 .本章概念较多,且互相联系,例如:收敛,有界,单调有界;发散,无界;无穷大, 极限,无穷小,连续等.只有明确它们之间的联系,才能对它们有深刻的理解,因此同学们要注意弄清它们之间的实质关系.3 .要深刻理解在一点的连续概念,即极限值等于函数值才连续.千万不要求到极限存在就下连续的结论; 特别注意判断分段函数在分段点的连续性.三、例题精解例1 求下列极限: (1) (2) (3) (4) (5) 例2 设问当为何值时,

大一高数第一章 函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高等数学教案ch82偏导数

§8.2 偏导数 一、偏导数的定义及其计算法 对于二元函数z =f (x ,y ),如果只有自变量x 变化,而自变量y 固定,这时它就是x 的一元函数,这函数对x 的导数,就称为二元函数z =f (x ,y )对于x 的偏导数. 定义 设函数z =f (x ,y )在点(x 0,y 0)的某一邻域内有定义,当y 固定在y 0而x 在x 0处有增量?x 时,相应地函数有增量 f (x 0+?x ,y 0)-f (x 0,y 0). 如果极限 x y x f y x x f x ?-?+→?),(),(lim 00000 存在,则称此极限为函数z =f (x ,y )在点(x 0,y 0)处对x 的偏导数,记作 00y y x x x z ==??,00 y y x x x f ==??,00y y x x x z ==,或),(00y x f x . 例如: x y x f y x x f y x f x x ?-?+=→?),(),(lim ),(00000 00. 类似地,函数z =f (x ,y )在点(x 0,y 0)处对y 的偏导数定义为 y y x f y y x f y ?-?+→?),(),(lim 00000, 记作 00y y x x y z ==??,00y y x x y f ==??,00y y x x y z ==,或f y (x 0,y 0). 偏导函数:如果函数z =f (x ,y )在区域D 内每一点(x ,y )处对x 的偏导数都存在,那么这个偏导数就是x 、y 的函数,它就称为函数z =f (x ,y )对自变量x 的偏导函数,记作 x z ??,x f ??,x z ,或),(y x f x . 偏导函数的定义式:x y x f y x x f y x f x x ?-?+=→?),(),(lim ),(0 . 类似地,可定义函数z =f (x ,y )对y 的偏导函数, 记为 y z ??,y f ??,z y ,或),(y x f y .

热力学一般关系(热学-高等数学-偏微分)

第二部分工质的热力性质 六热力学函数的一般关系式 由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S )及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。 这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。 热力学函数一般关系式全微分性质+基本热力学关系式 6.1 状态函数的数学特性 对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的 一些基本定理。

设函数z f(x,y)具有全微分性质 则必然有 (1)互易关系 N(x,y) N (6-2) x y 而且是充分条件。因此,可反过来检验某一物理量是否具有 全微分。 (2)循环关系 ,亠 z y x “ 故有 1 (6-3) dz — dx — dy x y y x (6-1) 令式 (6-1 )中 M(x,y), 互易关系与门dz 0等价 它不仅是全微分的必要条件, 当保持 z 不变,即 dz 0时,由式(6-1),得

y x x z z y 此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即(zyx)(yxz)(xzy)循环就行了。 (3)变换关系 将式(6-1)用于某第四个变量不变的情况,可有 dz z dx z dy X y y x 两边同除以dx,得 z z z y x x y y x x (6-4) 式中:z x 是函数z(x,y)对x的偏导数;疋以(x, x 独立变量时,函数z(x,)对x的偏导数。上面的关系可用于它们之间的变换。这一关系式对于热力学公式的推导十分重

高数函数-极限和连续总结

第一章 函数.极限和连续 第一节 函数 1. 决定函数的要素:对应法则和定义域 2. 基本初等函数:(六类) (1) 常数函数(y=c );(2)幂函数(y=x a ); (3)指数函数(y=a x ,a>0,a ≠1);(4)对数函数(y=log a x ,a>0,a ≠1) (5)三角函数;(6)反三角函数。 注:分段函数不是初等函数。特例:y =√x 2是初等函数 《 3.构成复合函数的条件:内层函数的值域位于外层函数的定义域之内。 4.复合函数的分解技巧:对照基本初等函数的形式。 5.函数的几种简单性质:有界性,单调性,奇偶性,周期性。 第二节 极限 1.分析定义 ?&>0(任意小) ??>0 当|x |>e(或0<|x ?x 0| 称 lim x →∞f (x )=0 (或lim x →x0f (x )=A ) 2.极限存在的充要条件 lim x →x0f (x )=A ?lim x →x 0+f (x )=lim x →x 0 ?f (x )=A 3.极限存在的判定准则 (1)夹逼定理 f 1(x )≤f (x )?f 2(x ) ,且 lim x →x0f 1(x )=A = lim x →x0f 2(x ) 所以lim x →x0f (x )=A (2)单调有界准则 · 单调有界数列一定有极限。 4.无穷小量与无穷大量 ,则称 时,f (x )为无穷小量 , 则称 时,f (x )为无穷大量 注:零是唯一的可作为无穷小的常数。 性质1 有限多个无穷小的代数和或乘积还是无穷小。 注:无限个无穷小量的代数和不一定是无穷小量 性质2 有界变量或常数与无穷小的乘积还是无穷小。 ~ 5. 定义 设 是同一极限过程中的无穷小, 则 ∞=→)(lim 0x f x x ) (或∞→→x x x 00)(lim 0=→x f x x )(或∞→→x x x 0 )(,)(x x ββαα==, 0)(≠x β且, 0lim =βα

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与 ()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点.

高等数学偏导数第二节题库

【090201】【计算题】【较易0.3】【偏导数】【偏导数的定义】 【试题内容】求曲线z x y y =+=???226 上的点(,,)1637处的切线的斜率。 【试题答案及评分标准】 k z x x x y x ======16 1 22 10分 【090202】【计算题】【较易0.3】【偏导数】【偏导数的定义】 【试题内容】 设f x y xy x y x y x y x y (,)(,)(,)(,)(,) =-++≠=?????332 2 000 00,根据偏导数定义求f f x y (,),(,)0000。 【试题答案及评分标准】 解:lim (,)(,)lim ??????x x f x f x x x →→+-=-=-0 000001 f x (,)001=- 5分 lim (,)(,)lim ??????y y f y f y y y →→+-=-=-0 000001 f y (,)001=- 10分 【090203】【计算题】【较易0.3】【偏导数】【偏导数的定义】 【试题内容】设??? ??=≠++=) 0,0(),(0 )0,0(),(2),(2 2y x y x y x y x y x f ,根据偏导数定义求 )0,0(),0,0(y x f f 。 【试题答案及评分标准】 lim (,)(,)lim ??????x x f x f x x x →→+-==0 000001 f x (,)001= (5分) lim (,)(,)lim ??????y y f y f y y y →→+-==0 0000022 f y (,)002= 10分 【090204】【计算题】【较易0.3】【偏导数】【偏导数的定义】

(完整)高等数学极限和连续习题

极限与连续习题 一.填空题 1. 当0→x 时,x cos 1-是2x 的_______________无穷小量. 2. 0x =是函数x x x f sin )(= 的___________间断点. 3. =-→x x x 20)11(lim ___________。 4. 函数11arctan )(-=x x f 的间断点是x =___________。 5. =--→x x e x x x sin )1(lim 20___________. 6. 已知分段函数sin ,0(),0 x x f x x x a x ?>?=??+≤?连续,则a =___________. 7. 由重要极限可知,()1 lim 1+2x x x →=___________. 8. 已知分段函数sin ,0()2,0 x x f x x x a x ?>?=??+≤?连续,则a =___________. 9. 由重要极限可知,1lim (1)2x x x →+∞+=___________. 10. 知分段函数()sin 1,1()1,1x x f x x x b x -?>?=-??-≤? 连续,则b =___________. 11. 由重要极限可知,1 0lim(12)x x x →+=___________. 12. 当x →1时,233+-x x 与2ln x x 相比,_______________是高阶无穷小量. 13. 251lim 12n n n -→∞??- ???=___________.

14. 函数2 2(1)()23x f x x x +=--的无穷间断点是x =___________. 15. 0tan2lim 3x x x →=___________. 16. 351lim 12n n n +→∞??- ???=___________. 17. 函数2 2(1)()23 x f x x x +=--的可去间断点是x =___________. 18. 2 01cos lim x x x →-=___________. 19. 253lim 12n n n +→∞??+ ???=___________. 20. 函数221()34 x f x x x -=+-的可去间断点是x =___________. 21. 当0x →时,sin x 与3x 相比,_______________是高阶无穷小量. 22. 计算极限22 1lim 1n n n +→∞??+ ???=___________. 23. 设函数()21,0,0x x f x x a x +>?=?-≤? ,在0x =处连续, 则a =__________ 24. 若当1x →时, ()f x 是1x -的等价无穷小, 则1()lim (1)(1) x f x x x →=-+_______ . 25. 计算极限1lim 1x x x →∞??- ???=__________. 26. 设e ,0,(),0.x x f x x a x ?≤=?+>? 要使()f x 在0x =处连续, 则 a = . 27. . 当x →0时,sin x x -与x 相比, 是高阶无穷 小量.

关于高等数学函数的极限与连续习题及答案

关于高等数学函数的极 限与连续习题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所 以()x f 与()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x

高等数学偏导数第一节题库

【试题答案及评分标准】x ≠0为该函数的定义域。 10分 【090102】【计算题】【较易】【多元函数的概念】【多元函数的定义域】 【试题内容】求函数u x y z =+?? ? ? ??arcsin 22的定义域。 【试题答案及评分标准】-≤ +≤1122 x y z 10分 【090103】【计算题】【较易】【多元函数的概念】【多元函数的定义域】 【试题内容】设z xf y x =(),其中x ≠0,如果当 x =1时,z y =+12,试确定f x ()及z 。 【试题答案及评分标准】 x =1时,z f y y ==+()12,所以f x x ()=+12 5分 z x y x x x x y =+?? ? ??= +12 22 10分 【090104】【计算题】【较易】【多元函数的概念】【多元函数的定义域】 【试题内容】设z x y f x y =++-(),已知y =0时, z x =2,求f x ()和z 。 【试题答案及评分标准】y =0时,z x =2,得x f x x +=()2 所以f x x x ()=-2 5分 所以z x y x y x y x y y =++---=-+()()()2 2 2 10分 【090105】【计算题】【中等】【多元函数的概念】【多元函数的定义域】 【试题内容】设z y f x =+-()1,其中x y ≥≥00,,如果y =1时z x =,试确定函 数f x ()和z 。 【试题答案及评分标准】 y =1时,z f x x =+-=11() 所以f x x ()-=-11 3分 令x t x t -==+112 ,()所以 f t t t t f x x x ()(),()=+-=+=+1122222 7分 所以()z y x x y x x y = +-+-=+-≥≥()(),1211002 10分 【090106】【计算题】【较易】【多元函数的极限】【极限的计算】

高等数学习题及解答(极限-连续与导数)

高等数学习题库 淮南联合大学基础部 2008年10月

第一章 映射,极限,连续 习题一 集合与实数集 基本能力层次: 1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B 解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }. 2: 证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2 =4n 2 +4n+1,不能被2整除,故p =2n 。即结论成立。 基本理论层次: 习题二 函数、数列与函数极限 基本能力层次 1: 解: 2: 证明:由得cxy ay ax b -=+即 ay b x cy a += -,所以 ()x f y = 所以命题成立

3: (1)2 2x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥?? =??取N =[1 ω ],则当n>N 时,就有 11|1|n n n ω--=<有定义变知1lim 1n n n →∞-=成立 5:求下列数列的极限 (1)lim 3n n n →∞ (2)222 3 12lim n n n →∞+++ (3) (4)lim n 解:(1) 233n n n n <,又 2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于 222 3 312(1)(21)111 (1)(2)6n n n n n n n n n ++ +++= =++ 又因为:1111 lim (1)(2)63 n n n n →∞++=,所以:2223121 lim 3 n n n →∞+++ (3)因为: 所以: (4) 因为:111n n ≤≤+,并且1 lim(1)1n n →∞+=, 故由夹逼原理得 1n =

相关文档
相关文档 最新文档