文档库 最新最全的文档下载
当前位置:文档库 › 表面化学的应用

表面化学的应用

表面化学的应用
表面化学的应用

表面化学在现实生活生产中用途广泛,例如 1、清洗铂金表面的碳氧化物。2、空调系统中的氟利昂,通过小冰晶体表面化学反应破坏臭氧层。 3、金属表面暴露在空气中时生锈。 4、电子工业中,制作半导体元件。5、人造肥料中所含的氨,是通过氮和氢在金属(如教科书中提到的铂铑合金网)表面生成。在这里,我们主要论述现实应用的几个方面:农业:(1)农业:空气中的免费氮肥氮肥对于农业生产有着举足轻重的作用。空气中存在大量合成氨的免费原料———氮气,但作物对氮的利用十分有限,那么我们可不可以直接利用空气中的氮呢? 20 世纪初发展而来的哈伯—博施法,用氢和从空气中提取的氮来直接合成人造肥料中包含的氨,这使得将大气中的氮制成氨成为可能。但是这种合成途径费钱费力,人们在寻找经济高效的催化剂方面又无收获,这一成果总没能顺利的应用于生产中。而埃特尔不仅弄清了合成氨的哈伯—博施法的运作机制,而且通过研究发现,氨的合成反应在铁催化剂表面进行时效率会大大提高。铁不会出现在反应的产物中,但是可以促进反应的发生。化学家把这种角色称之为催化剂。但是铁如何促进了氮与氢的结合?利用一系列现代表面分析技术,埃特尔解决了这个难题:氮分子被铁的表面分解吸收,形成单个氮原子。氮原子然后与氢原子结合,产生氨分子。这一技术使氨合成产业化成为现实,给人类社会的农业生产带来巨大的经济效益。工业:(2)工业:用于制造环保装备由于汽油等的不完全燃烧,汽车排放的尾气中含有大量一氧化碳。如果不通过净化就排放会给人类生活造成危害。基于埃特尔有关一氧化碳在金属铂表面氧化过程的研究,现在汽车可以利用催化剂实现一氧化碳的清洁排放。五、表面化学的发展方向探究(1)分析技术介入表面化学早在十八世纪,人们就开始进行物质表面研究,例如催化、电化学以及表面相的热力学研究等等。

迄今为止,表面科学的分析技术和方法已经渗透到很多学科当中:催化、电化学、凝聚态物理、天体物理和化学、半导体、微电子学、材料学、生命科学以及环境科学等等。这种与别的学科的日益交融又反过来给表面科学提出新的课题和挑战,促使表面科学的工作者开发和建立新的表面分析技术和方法

铁为什么会生锈,燃料电池怎么发挥作用,汽车中的催化剂如何实现尾气的清洁排放,这些生活中的平凡现象常常被人忽略,也很少有人去探究其中的秘密。

然而,今年的诺奖却认可了这个常常不受公众瞩目的科学领域———表面化学。

固体表面是个神秘的世界,晶体的生长、凝聚、熔融、烧结和规整等过程,无一不从固体表面开始,而且在表面进行的化学反应的速度要比在固体内部快几十、几百以至几千倍尤其令人奇怪的是固体表现具有独特的催化作用,常见的吸附、解吸、活化、纯化……,只有在固体合成氨的研究就是一例。合成氨是人工化肥的主要有效成分,可以说是现代农业的基础之一。将氢气和氮气在催化剂的作用下人工合成氨,叫做哈伯?博施(Haber-Bosch)法(这一方法的发明者弗里茨?哈伯曾获得1918年的诺贝尔化学奖)。传统催化剂用铁作为活性成分,氢气和氮气在上面发生反应,这正是表面化学的用武之地。

还用表面科学的方法和手段来研究很多相关领域的科学问题,包括燃料电池、臭氧层破坏等。他所发展出来的方法,广泛影响了表面化学的进展,而且他的实际影响并不仅仅在于学术研

究,还涉及到农业和化学工业研发的多个方面。同时,它可以帮助我们了解不同的过程,例如铁为什么生锈、燃料电池如何工作、汽车内催化剂如何工作等。此外,表面化学反应对于许多工业生产起着重要作用,例如人工肥料的生产。表面化学甚至能解释臭气层破坏,半导体工业也是与表面化学相关联的科学领域。表面化学在现实生活生产中用途广泛,例如1、清洗铂金表面的碳氧化物。2、空调系统中的氟利昂,通过小冰晶体表面化学反应破坏臭氧层。

3、金属表面暴露在空气中时生锈。

4、电子工业中,制作半导体元件。

5、人造肥料中所含的氨,是通过氮和氢在金属(如教科书中提到的铂铑合金网)表面生成

表面科学的分析技术和方法已经渗透到很多学科当中:催化、电化学、凝聚态物理、天体物理和化学、半导体、微电子学、材料学、生命科学以及环境科学等等。含有液体的界面体系在很多应用领域都有重大意义:液体电化学,地下水污染处理,相转移催化,萃取分离,生物体系,医用材料,纳米材料合成等等。

我们身边的表面化学我们身边的表面化学我们身边的表面化学我们身边的表面化学

表面化学在我们日常生活中时刻都会接触和使用。路面的摩擦让我们能够行走和驾驶;冰面的光滑让我们享受着滑冰的刺激,大脑的比表面积大小决定着我们是否聪明。表面科学以这些普通的表面为研究对象,同时也解释着一些令人惊奇的有趣现象。

(1)超冷水:零度是水的冰点,零度以下温度的水都会变成固态,可是表面化学的研究者们则可以证实零下一百多摄氏度的水仍然是液态。他们在超高真空条件下,利用分子束技术和同位素标记技术测量普通 H2O 分子和重水 D2O 分子在界面相互扩散的情况,以此来测量水分子的扩散系数。研究结果表明,在零下 133—零下 111 摄氏度的温度范围内,水依然保持液态水的特征,因此认为在如此低的温度下存在着超冷水。这在人们的印象中是难以想象的,但这是事实。

(2)人造牙齿:以前表面科学很少涉足生命科学体系的研究,然而近年来表面科学技术迅速渗透到生命体系的研究中来。例如研究人造牙齿的表面结构在不同环境下的变化情况,对于人们开发出耐磨、抗腐蚀、长寿命的人造牙齿非常有意义。试想,如果人造牙齿在可口可乐和柠檬汁中的结构变化不一样,很显然人们在挑选饮料时就会犹豫不决,是喝可口可乐呢?还是柠檬汁?

表面化学应用埃特尔的研究领域很广。他还用表面科学的方法和手段来研究很多相关领域的科学问题 包括燃料电池、臭氧层破坏等。他所发展出来的方法 广泛影响了表面化学的进展 而且他的实际影响并不仅仅在于学术研究 还涉及到农业和化学工业研发的多个方面。

1、清洗铂金表面的碳氧化物。

2、空调系统中的氟利昂 通过小冰晶体表面化学反应破坏

臭氧层。 3、金属表面暴露在空气中时生锈。 4、电子工业中 制作半导体元件。 5、

人造肥料中所含的氨 是通过氮和氢在金属 如教科书中提到的铂铑合金网 表面生成。

3.2胶体和表面化学的应用表面化学促进了许多工业和技术的发展 如能源开发、催

化、矿物浮选、胶片生产、印染、色谱、液膜分离、海水淡化、农药的分散和乳化及其应用、“轻水”泡沫灭火、以及人工降雨等。

表面化学促进了许多工业和技术的发展 如能源开发 包括石油开采、煤流态化即水煤浆和油煤混合物、太阳能利用 、催化、矿物浮选、胶片生产、印染、色谱、液膜分离、海水淡化、医药的分散和乳化及其应用、“轻水”泡沫灭火、以及人工降雨等。

4、胶体与表面化学在实际中的应用

洗涤剂的去污作用

应用胶体与表面化学在实际中的应用

胶体与表面化学是物理化学的一个重要组成部分,是一门应用性极强的学科,它所研究的领域涉及到化学、物理学、材料科学、环境科学、生物化学等,是诸学科的交叉和重叠。因此,它的应用领域是极其广泛的,近年Hiemenz就列举了涉及胶体和表面化学的实例:

(1)分析深化中的吸附指示剂、离子交换、沉淀物的可滤性、色谱等;

(2)物理化学中的成核作用,过饱和及液晶等;

(3)生物化学和分子生物学中的电泳、膜现象、蛋白质和核酸等;

(4)化学制造中的催化剂、洗涤剂、润滑剂、粘合剂等;

(5)环境科学中的气溶胶、泡沫、污水处理等;

(6)材料科学中的陶瓷制品、水泥、纤维、塑料等;

(7)石油科学中的油器回收、乳化等;

(8)日用品中的牛奶、啤酒、雨衣等。

以上均是胶体与表面化学的基本理论在实际中的应用,我从中选取了几个实例,运用所学过的知识,从以下三方面进行了简单的分析。

眼镜防雾

众所周知,当玻璃表面温度低于大气露点或对其呵气,均会有小水滴凝结在玻璃上,亦即所谓“起雾”,它防碍光线透过,显然若能阻止水在表面上形成半球形水滴即可达到防雾目的。

从表面化学角度说,最基本的方法是提高玻璃表面的亲水性,使其易为水所润湿,形成薄薄的水层,这样便不产生光散射而变得透明,一种最简单的方法是在玻璃(包括透明塑料)表面涂上表面活性剂溶液,由于表面活性剂能大大降低水的表面张力,故使水易于在玻璃表面上铺展,涂表面活性剂的缺点是耐久性差,为提高活性剂对玻璃的粘附性,可将其与含有亲水性的高分子物质(如聚丙烯酸)并用。

雨衣防水

以往的雨衣均为致密的棉织品,将其纤维表面加以防水处理(即令其表面憎水化)使水/布之

间的接触角θ变大,如图所示,故水不能自由通过而起防水作用,但空气可以透过,所谓水不能自由通过是指在加压条件下可以透过纤维间隙,目前使用的耐洗性防水剂有吡啶盐型和羟甲基酰胺型等。常用的塑料雨衣为聚氯乙烯等薄膜制品,其监界表面张力为39mN/m,而水的表面张为72mN/m左右,故聚氯乙烯本身具有憎水性,不被水润湿。

洗涤剂的去污作用

洗涤剂的去污作用是一个很复杂的过程,它与渗透、乳化、分散、增溶以及起泡等各种因素有关,不同的污垢,要求不同的洗涤剂。关键词:表面活性剂,界面,表面张力,吸附理论原理:表面活性物质的分子能定向地排列于任意两相之间的界面层中产生正吸附,使界面的不饱和力场得到某种程度的补偿,从而降低界面张力,使系统的表面吉布斯函数降低,稳定性增加。表明由于水的界面张力大,而且润湿性差,只靠水是不能去污的。说明加入洗涤剂后洗涤剂分子以亲油基向固体表面或污垢的方式吸附,结果在机械力作用下污垢开始从固体表面脱落洗涤剂分子在干净固体表面和污垢粒子表面上形成吸附层或增溶,使污垢脱离固体表面而悬浮在水相中很容易被水冲走。一种好的洗涤剂应能吸附在固(如织物)-水界面和污垢-水界面上,表面活性剂一般都能吸附在水-气界面上使表面张力降低,有利于形成泡沫,但这并不表示它必然是一种好的洗涤剂,根据起泡的多少来判断洗涤剂的好坏实际上是人们的一种误解。

例如:非离子型表面活性剂一般有很好的洗涤效果,但并不是好的起泡剂,表面活性剂产生泡沫的多少不是唯一判断洗涤剂好坏的指标,在工业上或用洗衣机洗涤时人们都喜欢用低泡洗涤剂。单独使用洗涤剂中的有效成分(如C2~C4烷基苯磺酸钠)其去污效果并不显著,只有添加某些助剂后,才能进一步提高去污力,例如:Na2CO3、三聚磷酸钠、羟甲基纤维素或甲基纤维素等,称为污垢悬浮剂,对洗下的污垢起到分散作用,其中三聚磷酸钠等是最好的和应用最广的助剂,它与水中Ca2+和Mg2+形成不被织物吸附的可溶性螯合物,有助于避免形成浮渣和防止污垢再沉积。

纸上电泳

生物化学中常用电泳来分离各种氨基酸和蛋白质等,医学上利用血清的“纸上电泳”可以协助诊断患者是否有肝硬变。关键词:电泳、电泳速度理论原理:在外电场的作用下,不同的胶体粒子在分散介质中以不同的电泳速度定向移动。将血清样品点在湿的滤纸条上通电后,血清中荷负电的清蛋白以及α、β、γ三种球蛋白,由于其分子量和电荷密度不同,向正极的电泳速度不同,故可将它们彼此分离,再经显色处理,便可获得电泳图谱。结果分析:纸上电泳是用惰性的滤纸作胶体泳动时的支持体,试验时,不仅样品用量少(微量),而且可避免电泳时扩散和对流的干扰,因此特别适用于混合物的分离和组分含量的测定。

浮选分离技术的剖析

浮选分离是建立在待分离颗粒对气泡选择性固着的基础上,它是利用高度分散的微小气泡作为载体去粘附待分离的颗粒,使其密度小于水而上浮到水面实现固液或液液分离的过程。气浮法处理含油污的废水气浮法处理含油污的废水气浮法处理含油污的废水气浮法处理含油污的废水气浮法处理废水过程包括气泡产生,气泡与颗粒(固体或液滴)附着以及上浮分离等连续步骤,实现气浮法分离必要条件有两个:第一,必须向水中提供足够数量的微细气泡,

气泡理想尺寸为15~30μm;第二,必须使目的物呈悬浮状态或具有疏水性质,从而附着于气泡上浮升。

①气泡的产生

水中通入空气或减压释放水中溶解的空气,都会产生气泡,所形成的气泡的大小和强度取决于释放空气时的各种条件和水的表面张力大小,未溶解的空气在水中受到水分子引力作用而在两相界面处产生表面张力,这种表面张力力图缩小相界面面积而产生表面张力,这一薄层水分子构成了气泡的膜。由于表面张力的存在使气泡膜内外的压力不同,而产生了压力差sP,称为附加压力,根据拉普拉斯方程2sPσγ=(σ为表面张力,γ为气泡的曲率半径)可知:a.气泡半径越小,泡内所受附加压力越大,空气分子对气泡膜的碰撞也越剧烈,因此,要获得稳定的微细气泡,就要有足够牢度的气泡膜,水中存在高分子长链物质,有助于增强气泡膜的牢度;b.在附加压力sP不变的情况下,如能降低表面张力σ,则气泡半径r可进一步缩小,由于气泡小,浮速小,对水体的搅动也小,因此不会撞碎絮粒,气泡越小,同体积的空气形成的气泡数也越多,因此气泡与絮粒碰撞粘附的机会也越多,投加表面活性剂,可以降低水的表面张力,从而进一步缩小气泡尺寸;c.如果水中增加了溶解性无机盐,则会使表面张力提高,结果相同半径的气泡因附加压力增大而使气泡容易破裂或并大。水中气泡粉碎得越细(意味着外加功越小)。它们的比表面积也就越大,具有的自由界面能也就越多,越显出热力学的不稳定性。因此,它们具有吸附水中物质,特别是吸附性能强或憎水性好的物质,而降低其表面能的趋势。

②气泡与水中杂质絮粒的粘附

a.气泡与憎水性颗粒杂质的粘附由于微细气泡具有更多的自由界面能,而且可能带有憎水性能。因此,它力求吸附憎水性好的物质而降低其界面能。由于憎水性颗粒杂质对水分子的引力小于水分子自身的引力,所以当其趋近微气泡时,表面的水分子不断地被拉走,直至与微气泡粘附为止。此时,它们的总比界面能减小了,减小的能量即转化为挤开气泡外膜(流动层)所作的功。当气泡与颗粒杂质粘附后,相互作用的各比界面张力必须平衡,由此可得颗粒杂质表面的憎水性越强,碰撞时,就越有可能粘附于气泡上,同时也越有可能在它的表面形成自水中析出的气泡。

b.气泡与絮粒的碰撞粘附作用气泡和絮粒的粘附主要由以下三种因素综合作用的结果气泡和絮粒的粘附主要由以下三种因素综合作用的结果气泡和絮粒的粘附主要由以下三种因素综合作用的结果气泡和絮粒的粘附主要由以下三种因素综合作用的结果

气泡与絮粒的碰撞粘附作用

由于絮粒和微气泡都带有一定的憎水性能,它们的比表面又都很大,并且都有过剩的自由界面能。因此,它们都有相互吸附而降低各自表面能的倾向,在一定的水力条件下,具有足够动能的微气泡和絮粒相互撞击时,彼此挤开对方结合力较弱的外层水膜而靠近,当排列有序的气泡内层水膜碰到絮粒的剩余憎水基团(包括活性较大的脱稳胶粒)时,相互通过分子间的范德华力而粘附,由于絮粒柔软而易变形,而微气泡膜又有一定的弹性。因此,二者之间的碰撞是软碰撞,碰撞后,絮粒与气泡实现总粘附,粘附总越多,粘附得越多粘附得越牢。为此,絮粒的尺寸不能太小,剩余憎水基团不能太少,否则在上浮过程中,气泡容易与絮粒脱离,从而影响气浮净水的效果。絮粒的网捕包卷和架桥作用絮粒的网捕包卷和架桥作用絮粒的网捕包卷和架桥作用絮粒的网捕包卷和架桥作用动能较大的微气泡撞进大絮粒网络结构的凹槽中,被游动的絮粒所包卷。两絮粒互撞结大时,将游离在中间的自由气泡网捕进去。已粘附着气泡的絮粒之间互撞时通过絮粒、气泡或者两者的吸附架桥而结大成为夹泡性带气絮粒。

表面活性剂参与作用

水中存在表面活性剂时,往往会影响絮粒的憎水性能以及微气泡的大小数量和牢度,当表面活性剂的剂量适中时,絮粒的附加憎水基团增加,憎水性能得以加强,从而能提高气泡的粘附牢度及其数量,使原先粘附不牢的带气絮粒因粘附性能的改善而得以去除,并因此而提高了气浮净水的效果,但如果表面活性剂的剂量过量时,则其所起的作用恰恰相反。因为过量的表面活性剂会在水中形成大量的胶囊,这些胶囊是亲水性胶团它能稳定地存在水中,这些胶囊如果粘附在絮粒的亲水基团上,将使絮粒的亲水性能增强。同时,大量游离的表面活性剂粘附到絮粒的憎水基团上,亦使絮粒的附加亲水性大为增加。另一方面,由于气泡周围粘附了大量的表面活性剂而使气泡变为亲水性,在它的周围还有可能被表面活性剂所形成的胶囊所包围,由于胶囊是非常稳定的体系。因此,它们相互之间不能粘附。这样气泡就无法将絮粒粘附上浮,而只能径直带着表面活性剂上浮,致使气浮净水的效果降低。上述气泡与杂质絮粒以及表面活性剂参与的三种粘附作用,在大多数情况下往往会同时存在,但由于原水的水质多变,净水的要求各异,因此在气浮净水过程中哪个因素所起的作用最大要视具体情况而定。

矿物的浮选

先将矿石粉碎成尺寸在0.1mm以下的颗粒,加入足量的水、适量的浮选剂及少量的起泡剂,再强烈鼓入空气,即形成大量气泡,这时憎水性强的有用矿物附着在气泡上并随之上浮至液面,而被水润湿的长石、石英等废石则沉于水底。加入浮选剂的目的是为了增加矿物的憎水性,一般当水对矿物的接触再在50°~70°以上时即能达到浮选的效果,浮选后提高了矿物的品位,而利于冶炼。

塑料浮选药剂

理论原理:常见的塑料表面为低能表面,塑料浮选的本质是使低能表面选择性润湿,即低能表面向高能表面转化。

分析:塑料浮选和矿物浮选,从表面能的观点看,存在着显著区别。但无论是低能表面选择性润湿还是高能表面选择性疏水,都可以通过表面活性剂的吸附来完成,所以常见的塑料浮选润湿剂与矿物浮选捕收剂均为表面活性剂。但由表面能高低所决定的矿物疏水机理与塑料润湿机理则存在差别。有关塑料浮选的润湿机理,主要存在由范德华色散力及氢键作用而导致的选择性物理吸附,由疏水相互作用和静电作用导致的物理吸附以及主要以电解作用为基础的物理吸附三种观点。目前,用于塑料浮选的药剂,主要是木质素磺酸盐、单宁酸、明胶、百雀树皮汁、司盘、褐煤蜡、月桂醇、增塑剂DIDP、聚糖、水玻璃、醋酸纤维素等。

纳米技术

理论原理:纳米级的微粒具有高比表面积和高活性等特性。

高比表面导电材料

新的海水淡化技术——FTC技术比现在流行的反向渗透技术节能,而FTC技术的好坏取决于纳米材料,纳米碳管可制成比表面极高的导电电极,使电阻损失减小,从而使吸附Na+、Cl-带电离子的能力增大。

在催化方面的应用

纳米微粒由于尺寸小表面所占的体积分数大,表面的键态和电子态均与颗粒内部不同,表面原子配位不全等导致表面活性增加,具备了作催化剂的基本条件,最近关于纳米微粒表面形态的研究指出,随着粒径减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这就增加了化学反应的接触面,利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。

例如:美国和日本将光催化半导体纳米粒子le.g:Fe2O3、TiO2、CdS、ZnS、PbS、PbSe、ZnFeO4等)材料制成空心球、浮在含有有机物的废水表面上或石油泄漏所污染的海水表面上,利用阳光进行有机物或石油的降解,在汽车挡风玻璃和后视镜表面涂覆一层纳米TiO2薄膜,可以起到防污和防雾作用。

结语

胶体与表面化学所研究的对象是极广泛的。在我们的日常生活中,在工厂的生产制造中,在实验室的科学研究中,总会看到它们的影子。因此,以上所列举的几种实例仅仅触及到胶体与表面化学应用范围的几个方面,由于水平有限,分析用到的理论知识也只是胶体与表面化学理论最表层的东西。但我写这篇文章的主要目的是为了让大家了解我们所学知识的实际应用,希望大家能从中体会到物理化学作为基础学科的意义所在,更希望老师和同学对文章中存在的疑义和缺点及时指出以便更正。

量子化学论文

量子化学计算常见的近似模型 摘要: 量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学 问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。本文简要地介绍关于原子结构计算方面的一些基本模型。 关键字: 量子化学 量子 原子结构 近似模型 1 引文:量子化学在原子结构的计算方面有着重要的应用,本文简要地介绍了量子化学在原子结构自洽场的计算方面的一些近模型和常用的一些方法。 2 绝热近似(Born-Oppenheimer 近似) 由于核的质量比电子的质量大得多,且电子的运动速度比核运动要快得多。迅速运动的电子总是可以跟上核运动所引起的微小势场的变化,所以在研究电子的运动时可以把原子核看作固定不动,把原子核作为固定的坐标系的原点。体系的能量看作二部分的能量之和。 绝热近似本质上忽略了核运动对电子的影响。在绝热近似下,氦原子的哈密顿量可 表示为12 2 2212222212r -r -m 2-m 2-r e Ze Ze H + ??= 体系的能量本征方程: ()()2,12,1φφE H = 3 电子的独立运动模型(单电子近似 轨道近似) 上述的原子能量的本征方程没有办法通过分离变量来严格地求解,所以必须引入单电子 近似,对于每个电子收到其它电子的瞬时作用,可看成是其它电子的平均势场的作用,每个电子都在原子核和其他电子的平均势场中运动。因此在这种近似下每个电子都有自身的单电子波函数和单电子能量。例如:处于基态的He 原子,电子组态为21s ,这就是一种轨道近似。设轨道电子的能量和波函数分别为s 1ε和s 1?,电子2分布在整个空间,电子1收到电子2的总的排斥势为: () 2 12 2 s 1r 2ν?d ? 可得电子1的单电子薛定谔方程为:()()()()1112211112122 112 1s s s s d r r Z ?ε?ν?=??? ?????+-?-? 同理 电子2也满足类似的方程,这样就把多体问题归结为求解单电子的能量本征方程。 4 中心力场近似 如果对于N 电子体系,根据上述的近似方法可得第j 个电子的哈密顿量为: ()i i i j i j i j j j d r r r r Z H τψ2 2121?∑?=/-+-?-= 相应的薛定谔方程为:()()()r r r H j j j j ψεψ=? ()N j ,2,1= 为了解出上述方程组 ,Hartree 进一步引入了中心力场近似,对势函数作球形平均,使得 势函数只是r 的函数。在中心势场中的单粒子薛定谔方程的解的形式为: ()()()i i m l i l n i i i i i i Y r R r ?θψ,= ,相应电荷分布的球形平均值为:

材料学化学专业的就业前景

材料学化学专业的就业前景 材料化学是材料科学的一个分支,是一门材料科学与现代化学、现代物理等多门学科相互交叉、渗透发展形成的新兴交叉边缘学科,是运用现代化学的基本理论和方法研究材料的制备、组成、结构、性质及应用的学科。化学工程专业毕业生是目前很有“钱”途的毕业生,化学工程的毕业生市场需求很大,材料化学专业就业前景甚好,尤其是进入石油业或煤业的学生,材料化学专业是化学与工程两种知识结合的专业,在国民经济发展和科学前沿领域中都起着不可替代的重要作用。 主干学科:材料科学、化学。主要课程:有机化学、无机化学、分析化学、物理化学、结构化学、流体力学、工程力学、材料化学、材料物理等。主要实践性教学环节:包括生产实习、毕业论文等,一般安排10--20周材料化学就业前景材料化学就业前景。修业年限:四年授予学位:理学或工学学士 培养适应社会需要,系统地掌握材料科学的基本理论与技术,具备化学相关的基本知识和基本技能,能运用材料科学和化学的基础理论、基本知识和实验技能在材料科学与化学及其相关的领域从事研究、教学、科技开发及相关管理工作的高级专门人才和具有开拓性、前瞻性的复合型高级人才。

可在化工、石油、轻工、日化、制药、冶金、建材等部门从事各类化工产品及其生产技术的研究、开发、设计、生产和管理等方面的工作或者出国深造。本专业的毕业生出国难度不是很大,不过出国之后从事的也是基础研究,比如测相图(非常繁杂琐碎),处于比热门冷、比冷门热的位置。在材料科学与工程各专业中,材料化学专业的毕业生就业情况还是比较不错的,不过目前能去而专业比较对口的,主要还是国有大中型企业,特别是大型钢铁制造公司,有些“夕阳产业”的味道。考研的选择也不少,除上面提到的高校外,很多工科比较齐全的学校都开设了相关专业,基本上都是在材料科学与工程系/学院下面 材料化学专业的学生有较强的化学知识,材料设计制备、检测分析知识,能够在很多领域就业。如电子材料、金属材料、冶金化学、精细化工材料、无机化学材料、有机化学材料以及其它与材料、化学、化工相关的专业材料化学就业前景职业规划。与化工、化学等专业相比,材料化学专业更注重研究新材料的开发和应用。同时在一些边沿学科诸如环境、药物、生物技术、纺织、食品、林产、军事和海洋等领域,材料化学专业的人才也有较强的用武之地。市场需求预期:根据北京市“十一五”发展规划:要依托燕山石化,重点发展环境污染孝资源消耗少、附加值高的化工新型材料、精细化工制造业,可以看出燕山石化、大宝、宝洁、双鹤医药、

分析化学在现实生活中的应用1

分析化学在现实生活中的应用我们的生活离不开物质。如何让物质能更加美好我们的生活呢?掌握一点化学知识其实是非常实用的方法。无论是生产、生活,还是环境保护、能源与资源的利用、医药卫生与人体健康等与化学有着广泛的关系。因此,生活中有许多化 学知识需要我们去认识。 “民以食为天”,我们先来看看吃里的化学吧。 油条是我国传统的早餐食品之一,它的历史非常悠久。当大家吃着香脆可口的油条时,是否会想到油条制作过程中的化学知识呢? 先来看看油条的制作过程:首先是发面,用鲜酵母或老面(酵面)与面粉一起加水揉和,使面团发酵到一定程度后,再加入适量纯碱、食盐和明矾进行揉和,然后切成厚1厘米,长10厘米左右的条状物,把每两条上下叠好,用窄木条在中间压一下,旋转后拉长放入热油锅里去炸,便成了一根香、脆的油条。 在发酵过程中,由于酵母菌在面团里繁殖分泌酵素(主要是分糖化酶和酒化酶),使一小部分淀粉变成葡萄糖,又由葡萄糖变成乙醇,并产生二氧化碳气体。同时,还会产生一些有机酸类,这些有机酸与乙醇作用生成有香味的酯类。反应产生的二氧化碳气体使面团产生许多小孔并且膨胀起来。有机酸的存在,就会使面团有酸味,加入纯碱,就是要把多余的有机酸中和掉,并能产生二氧化碳气体,使面团进一步膨胀起来;同时,纯碱溶于水发生水解,后经热油锅一炸,由于有二氧化碳生成,使炸出的油条更加疏松。 从上面的反应中,也许大家会担心,在制作油条时不是使用了氢氧化钠吗?含有如此强碱的油条,吃起来怎么会可口呢?然而其巧奥妙之处也在于此。当面团里出现游离的氢氧化钠时,原料中的明矾就立即跟它发生了反应,使游离的氢氧化钠经成了氢氧化铝。氢氧化铝的凝胶液或干燥凝胶,在医疗上用作抗酸药,能中和胃酸、保护溃疡面,用于治疗胃酸过多症、胃溃疡和十二指肠溃疡等。常见的治

数学在各方面的的应用

附录三关于数学在理科中应用的调查报告 我们对理科中物理、化学、计算机基础中数学知识的应用进行了相关的调查。调查过程中翻阅了大量的相关资料,并询问了不少相关的专家,现将结果公布如下: 一、物理学中的数学知识 数学是物理学的基础和工具。离开了数学,物理学几乎寸步难行。现行大学物理系的数学教材几乎囊括了所有高等数学的基础知识。理论物理和实验物理都必需具备相当高深的数学知识。 理论物理中所应用的数学知识有:空间及其拓朴、映射、实分析、群论、线性代数、方阵代数、微分流形和张量、黎曼流行、李导数、李群、矢量分析、积分变换(包括傅里叶变换和拉普拉斯变换)、偏微分方程、复变函数、球函数、柱函数、函数、格林函数、贝塞尔函数、勒让德多项式等。 实验物理中所应用的数学知识呈主要集中在概率统计学中。包括一维、多维随机变量及其分布、概率分布、大数定律、中心极限定理、参数估计、极大似然法等。其中概率分布包括伯努力分布、泊松分布、伽马分布、分布、t分布、F分布等。 从上可以看出,上述数学知识对物理专业来讲,必需了解,且有的需要深入了解。比如群论、空间及拓朴、积分变换、偏微分方程、概率分布、参数估计等。工科和理科、师范类和非师范类、物理专业和非物理专业、其物理学习中所应用的数学知识也有范围和程度上的变化。工科就没有理科要求高,物理专业中所涉及的数学知识也比非物理专业所学物理课本上的数学知识丰富的多。 二、化学中的数学知识 初等化学只是简单介绍物质的组成、结构、性质、变化及合成。除了相应的计算外,与数学的联系没有物理学那么紧密。高等化学需要更深入的研究物质,因此需要相应的高等数学知识为基础。下面我们就化学理论和化学实验两种课程来讨论。 化学理论中所应用的数学知识有:级数及其应用、幂级数与Taylor展开式、Fourier级数、Forbemus方法、Bessel方程、Euler-Maclaurh加法公式、String公式、有限差分、矩阵、一阶偏微分方程、二阶偏微分方程、常微分方程(包括一阶、二阶、线性、联立)、特殊函数(包括贝尔函数和勒让德多项式)积分变换、初步群论等。 化学实验中所应用的数学知识有:随机事件及其概率、随机变量的数字特征、随机分量及其分布、大数定理、中心极限定理、参数估计等。 从上面可以看出,化学中的数学知识主要应用于计算,因此大部分是一些数学公式和方程,并没有更深一步理论推导及逻辑思维、形象思维的要求。所以,化学专业中数学知识的要求不高,只限于了解并会套公式而已。

《化学材料的发展与应用》

《化学与人类文明》课程论文 化学材料的发展与应用 学院:机械学院 专业:机械制造及其自动化 班级:机制101 学号: 学生姓名: 电子信箱: 2012年12月12日

化学材料的发展与应用 摘要:随着现代科学技术的飞跃发展,以前传统的材料早已不能满足我们人类的需求和发展,为了获得更多满足人类工业和日常生活中所需要的具有特定性能的材料,化学材料先如今得到了很大的发展,化学材料不仅获得了传统材料的有点,还具备了一些特殊的功能,极大的满足了工业生产和生活所需。本文章分析了一些常见的化学材料的应用和发展状况,并提出了未来材料化学的发展趋势的一些简单看法。 关键词:材料化学;化学材料;性能;应用;发展 化学与材料息息相关,面对传统的材料不能满足工业生产、日常生活的时候,世界上各国都已开始把目光看向了材料化学,材料化学的发现和使用,使之研发出一系列的新材料,材料化学在原子和分子的水准上设计新材料的战略意义有着广阔的应用前景。然而,材料化学在发挥巨大作用的同时也不短的推动自身理论与技术水平的提高,并且为材料工程的发展带来了新的活力和更加广阔的发展空间。 1材料化学简介 材料化学是材料科学的一个重要分支,也是材料科学的核心部分,在新材料的发现和合成,制备和修饰工艺的发展以及表征方法的革新等领域所作出了的独到贡献。材料是具有使其能够用于机械、结构、设备和产品的性质的物质,是人们利用化合物的某些功能来制作物件时用的化学物质。而化学是在原子、分子水平上研究物质的组成、结构、件能、反应和应用的学科。材料与化学试剂不同,后者在使用过程中通常被消耗并转化成别的物质,而材料则一般可重复持续使用,除了正常消耗以外,它不会不可逆的转变为别的物质。化学则是关于物质的组成,结构和性质以及物质相互转变的研究。显然,材料科学和化学的对象都是物质,前者注重的是宏观方面,而后者则关注原子和分子水平的相互作用。材料化学正是这两者结合的产物,它是关于材料的结构、性能,制备和应用的化学。2化学材料的分类、功能及应用 材料一般按其化学组成,结构进行分类。通常可把材料分成金属材料,无机非金属材料,聚合物材料和复合材料四大类。此外,随着材料科学的迅猛发展,

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

信息技术在化学教学中的应用

信息技术在化学教学中的应用 初中化学是基础教育的重要组成部分,信息技术通过各种表现手法将内在的、重要的、本质的东西凸出来,如抽象的概念,难以观察清楚的现象,不易实现的实验等,进行信息处理和图象输出,在屏幕上实施微观放大、宏观缩小、动静结合。这样,在短时间内调动学生多种感觉器官参与活动,使学生获取动态信息,从而形成鲜明的感性认识,为进一步形成概念、上升为理性认识奠定基础。既激发了学生的学习兴趣,又调动了学生的积极性,优化了教学过程,提高了课堂效率。 (一)课前研究 课前研究是教学的准备。利用计算机强化课前研究,辅助备课是一个很好的途径。计算机备课便于随时修改教案,当然这并非计算机辅助备课的主要目的。我们应利用计算机收集整理化学教学内容和信息,譬如通过计算机网络系统查看省内外的化学教学信息,或者选用市场上出售的教学软件,从中选择或借鉴对教学有用的东西来充实化学教学。 (二)教学过程 学习新课,是教学中非常重要的部分。许多化学现象、化学概念、化学反应、化学规律都要求学生在学习新课时有一个正确的第一印象,这样可以避免学生在以后的学习中造成认识上、理解上的模糊或错误。在讲授新课时,利用信息技术技术,运用文字、声音、图象来刺激学生和调动学生多种感官,以多种方式,不同的表现手法对新授课的内容进行加工,使之生动、有趣地展现于学生面前,让学生充分认识化学现象、化学反应及其规律。实践证明,正确利用信息技术辅助教学使课堂生动形象,学生普遍感兴趣,让学生在活泼轻松的气氛中学习,知识接受快,课堂效益好。 1、情境创设 美国教育家布鲁纳说:“学习的最好刺激,乃是对所学材料的兴趣”。利用信息技术计算机的特点,通过创设意境、渲染气氛,将与教学有关的知识运用图像、动画、声音、文字信息等,在课堂上展示出来,以大量的视听信息、高科技手段刺激学生,多种感官参与教学活动,激发学生的学习兴趣,使学生由被动学习变为主动学习。如:在讲述二氧化碳的教学内容时,上课开始先播放一段二氧化碳在生活中的应用以及重要性,使学生对它们又有了新的认识,渴望知道它们是如何制取的,还有哪些性质,有自己想试一试的冲动,给新授知识创设了一个良好的心里氛围。 2、实验模拟 化学实验是化学教学中的重要部分,通过实验即可培养学生的动手能力和科学态度,又能使学生更好地掌握所学知识。但初中化学中有些实验的危险性较大,还有的实验无法实际操作。运用信息技术计算机技术,模拟实验就可以弥补这一不足。如模拟错误实验造成的后果:给装有碱式碳酸铜的试管加热时,试管口向上倾斜,加热后生成的水倒流回试管,使试管炸裂;制取氧气时先熄灭酒精灯,再移出导管会出现水倒流回试管使之炸裂的情况;浓硫酸稀释时将水倒入浓硫酸中产生的危害;还可以使用vcd播放一些与教学有关的录像片,如易燃易爆知识及危害等等。通过演示模拟实验,使学生对所学知识有了进一步的了解,达到了教育教学目的,同时也培养了学生严谨的工作作风和一丝不苟的科学精神。 3、演示整合 化学教学中经常要对不同时期学习的内容进行比较、归纳、概括、总结。信息技术能很好地展示相异反应类型、相似反应过程等。诸如氢气、氧气、二氧化碳的制取收集,氢气、碳、一氧化碳还原氧化铜等的比较、小结。以上内容,重做实验,既浪费时间,又无新鲜感,利用信息技术文字声音图象表格动态再现化学实验,唤起学生对旧知识的回忆,进一步得到同化,使学生的知识形成系统,更重要的是培养学生的思维能力。 (三)学习总结 在初中总复习时,运用计算机将课堂教学中的板书、例题、练习制成一个课件,即可增大课堂信息量、减少板书时间,又能达到较好的教学效果。也可制作化学实验常见的仪器素材库,根据每节教学内容的需

化学知识在生活中的实际应用

龙源期刊网 https://www.wendangku.net/doc/c76813088.html, 化学知识在生活中的实际应用 作者:焦小品 来源:《科技传播》2012年第09期 摘要:学习化学知识的根本目的,在于使学生能够将我们日常生活中所遇到的现象或问题进行科学、有理有据的解释与解决。实现化学知识,不仅是我们所学到的一门学科,更成为我们实际生活中的一门应用科学。 关键词:化学知识;生活;实际应用 中图分类号O6 文献标识码A 文章编号 1674-6708(2012)66-0093-02 我们日常生活的处处、方方面面都存在着化学,懂的化学的基本理论知识与原理,就能用化学的知识去分析并应用我们接触到的事物,不仅能够更好的使事物发挥其应有的作用,而且还能使其与其他事物发生联系,让事物的利用范围更加的广泛。 1 日常生活和实验室不可或缺化学品(碘化合物)——食盐 食盐,化学学名氯化钠(Nacl),人们日常生活必备的调味品之一。而从化学的角度我们会看到,它不仅仅起到的是增加食物味道的作用,它更是保证我们人体日常生理、生化和功能正常运行基本而重要的元素成分。从氯化钠的化学成分组成我们可以分析得出,Na+和Cl-在体 内会与K+ Ca2+、Mg2+等多种元素发生反应和联系,建立错综复杂的关系,起到控制细胞、组织液和血液内的电解质平衡,保持体液的正常流通和控制体内酸碱平衡的重要作用;对于机体内神经和肌肉的适度应急水平也有着辅助性作用。而NaCl和KCl对血液粘稠度的变化也起着调节的作用;消化食物的胃酸、胃液、胆汁和胰液化合物也均有血液里含有的钠盐和钾盐形成。胃里开始消化某些食物的酸和其他胃液、胰液及胆汁里的助消化的化合物,也是由血液里的钠盐和钾盐形成的。另外,Na+、K+和Cl-浓度的适当配比,对于我们眼睛中视网膜对光的生理反应也起着重要的作用。而我们日常口腔护理中,淡盐水漱口不仅对于我们的口腔健康及牙龈肿痛能起到很好的防范和治疗作用;还对咽喉肿痛有一定的防治功效,这对我们在秋冬季节易发、多发的感冒起到预防的作用。 另外,碘化钾、碘化钠、碘酸盐等含碘化合物也是医学和化学实验室必备的化学试剂;而它又是食品和医疗中重要的营养成分和药剂,对人体健康的平衡起着很好的维护平衡的作用。碘作为我们人体中甲状腺生理作用必需的微量元素,它基本均已碘化合物的形式存在于人体内,通过甲状腺形成的甲状腺激素而起到其生理作用。我们正常人体内的碘含量在 15mg~20mg,且其中70%~80%浓集在甲状腺内。如果我们人体缺碘就会使机体产生一系列的生化紊乱及生理功能异常,如,常见的甲状腺肿大,以及导致婴、幼儿生长发育停滞、智力低下等疾病。

数学方法在化学教学中的应用

数学方法在化学解题中的应用 在新课程改革的背景下,现在的高考题目越来越灵活,我们的化学题目也不例外,题型更灵活,更注重学生的应变能力和解题技巧。从某种角度上讲,一道题目本应该要求考生在5分钟内求解完成,如果考生在30分钟求解完成,我们可以说该考生没有得到正分,反而是得到负分。为什么这么说呢?因为不管是什么考试,考试时间是有限的,并且出题者对题量和时间也经过了合理的计算,如果考生用较长的时间解出该题,表面上好像得分,而事实上他是以牺牲其他题目的时间换来该题的答案,所以他影响了其他题目的得分,所以可以从某种角度讲,他得了负分。 在求解化学题目过程中,做题目之前考虑好一种恰当的方法再进行求解,于是,我们就可以有事半功倍的效果。数学中有许多很好的方法如果灵活的用到化学题目的求解过程中会达到意想不到的效果。以下介绍几种数学方法及在化学解题中的解题实例。 一、不等式法 例1.若A是相对分子质量为128的烃。则其分子式只可能是。若A是易升华的片状晶体.则其结构简式为。 解:设A的分子CxHy,12x+y=128,y≥2(烃中H至少为2个),烷烃的通式为CnH2n+2,因此我们可以得出y≤2x+2。从式12x+y=128解得y=128-12x,又因为y≥2,y≤2x+2,所以2≤128-12x≤2x+2,解此不等式,得到9≤x≤10.5,因为x为整数,所以x只可能是9或者10。分子式为C9H20或者C10H8。易升华的片状晶体很容易想到是。 简评:这一考题题干很简单,如果一个个猜测时间肯定较费,但是如果考生能掌握各种烃的通式,并且用数学的不等式法求解,这就不是一题化学题,而是一题简单的数学题,这样可以大大缩短解题的时间。 二、十字交叉法 例2.将NO与O 2按一定比例混合,所得混合气体对H 2 的相对密度为20,则混合前NO 与O 2 的物质的量之比。 解:有题意得混合后相对分子量为40,可以断定混合气体中必定有NO 2 。a.所得混合气体为NO2和O2。十字交叉

非金属材料化学镀的应用新进展36

非金属材料化学镀的应用新进展 摘要:化学镀技术可以进行强化非金属材料表面,应用前景非常广泛。本文介 绍了非金属材料化学镀基体表面活化的几种方法:光化学法、自催化活化法、介 电层放电法、气相沉积法,并论述了化学镀技术在非金属材料上的最新进展和应用。 关键词:非金属材料;化学镀;应用;进展 1引言 化学镀技术可以强化提高金属或非金属材料的表面特性,广泛应用于石油化工、航空航天、机械等行业。现在很多非金属材料的表面需要进行金属化表面处理,如汽车行业的塑料电镀件、印刷电路板行业的化学镀镍、电池行业中镀做为 发泡镍极、陶瓷粉体的化学镀工艺等。 2非金属材料化学镀的表面强化处理 非金属材料在进行化学镀之前要经过预处理,预处理过程包括对基体除油后,在基体表面进行粗化、敏化、活化。这些预处理过程属于化学镀前的前置处理过程。其中表面活化是最关键的工序,对于镀层的均匀和与基本的粘合力有重要的 作用。进行活化是为了在表面覆盖一层均匀的金属颗粒,成为结晶中心。常见的 基体表面活化方法有催化性涂料法、银浆法等。 2.1光化学法 光化学法是非金属材料化学镀进行基体活化的研究方法,它将光学和化学结 合在一起,活性物质由光辐射诱导产生,基本表面发生化学反应,形成均匀的活 性物质,为进一步的化学镀奠定基础。活化机理有光电化学机理、热电化学机理、热分解反应机理等。光源主要有紫外准分子激光、红外灯等,如果是准分子灯, 对其进行活化的操作是将活性物质制成固态膜,然后覆盖在基体表面,通过技术 使活性颗粒沉积在基体上。如果使用光化学法具有区域性,要用模具对基进行掩膜。 2.2自催化活化法 自催化活化是由光化学法演变而来的,采用的是激光光源,没有活动性物质 母体。通过激光将化学镀液沉积为镀层金属,没有活化步骤。激光对基体进行照 射时,基体会发生物理或化学反应,使受射基体表面干净,使镀层金属的沉积成 为可能。镀液吸收光能会局部温度会升高,镀层金属离子从镀液或基体中吸收电 子还原为金属原子。这些金属原子可以自催化,促进金属的继续沉积。 2.3利用介电层放电活化法 利用介电层放电活化法是通过进行介电层放电,使基体表面清洁粗化,接着 在基体表面涂抹醋酸钯,利用活化法获得活性钯颗粒,清除掉未分解的醋酸钯, 基体表面形成活性钯图案,接着进行化学镀。使用介电层放电不需要激光和真空 设备,在空气中就可以进行,活性钯颗粒均匀、活性好。 2.4气相沉积法 气相沉积法分为物理沉积和化学沉积,将基体放于高压真空空间,将金属制 作为靶体或者易挥发物质,在基体表面沉积了一层金属,这是化学镀必须要用到 的活性层。气相沉积法的活性层和基体紧密结合在一起,镀层金属和基体也紧密 结合,可以很容易得到活性层,但缺点是需要使用价格较高的真空设备,无法进 行区域选择,基体要保持高温,镀层金属要首先制成易发挥的物质。 3非金属材料化学镀的研究内容

量子化学习题及答案

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题

游戏在化学教学中的应用浅谈

游戏在化学教学中的应用浅谈 钟山中学 黄声琼 很多中学生对学习化学用语、化学方程式及化学理论知识,都认为枯燥难记,泛味没有兴趣,甚至产生畏惧,厌烦情绪。针对这种情况,教师应使学生明确学习化学用语、化学方程式及化学理论知识的重要性和必要性,转变教学方式激发学生的学习兴趣,这是学习化学用语、化学方程式及化学理论知识的首要条件。 美国教育心理学家华尔特·科勒斯涅克说过:“兴趣可以看成既是学习的原因,又是学习的结果。正像兴趣是过去学习的产物一样,兴趣也是今后学习的手段。”因此,对于好奇心强的青少年朋友来说,激发和培养学习兴趣,可以使自己发挥出最好的水平,增强注意力,活跃思维,激发灵感,增强自信心,取得理想的学习效果。孔子在《论语》中也提出:“知之者不如好之者,好之者不如乐之者。” 在课堂上开展各种形式的化学,使枯燥的化学知识转变为学生乐于接受、生动有趣的游戏形式,为学生创造良好的课堂氛围并丰富学生的语言交际情景,使学生能在玩中学、学中玩。游戏在化学教学中的应用把化学用语、化学方程式及化学理论知识学习与化学知识技能的训练有机地结合在娱乐活动中,既可以转变化学用语、化学方程式及化学理论知识教学枯燥呆板满堂灌的局面,又可以培养学生学习化学的兴趣,激发学生求知欲,还可以发展学生的智力与非智力因素,起到“以趣激情、寓学于玩”的作用。 一、以游戏创设教学情景 化学教师要想在教学中很好地培养学生对化学的学习兴趣,激励学生在学习过各中处于最佳的学习状态之中,让他们乐学、善学、会学化学。关键在于转变教学方式,采用新的教学手段,想方设法以新颖、丰富多彩的教学方法激发学生兴趣,为化学用语、化学方程式及化学理论知识学习提供源源不断的动力。实践证明,丰富多彩的游戏能唤起学生的求知欲,所以,教师若能根据教学内容,巧妙设计一些有趣味性的可操作的游戏活动来创设教学情景引入新课的学习,可以培养学生学习的兴趣,调动学生参与学习的积极性和主动性,达到了预期的教学目标,很好地完成教学内容。 案例1:人教版高中化学必修一物质的分类 游戏功能:引入新课物质的分类 游戏玩法:

化学在生活中的应用分析

化学在生活中的运用 作为一门基础的自然科学,化学在生活中运用非常广泛,对人类发展有着重大意义。众所周知,我们周围的事物都是由许许多多形形色色的化学元素组成的,包括我们人体不可缺少的许多元素以及衣、食、住、行,可以说化学无处不在。随着生产力的发展,科学技术的 进步,化学与人们生活的关系越来越密切。化学在人类的生产和生活中发挥了不可估量的作用。 众所周知,水是地球上所有生命赖以生存的基础。水是生命 的起源,远古时期最早的生命诞生在古老的海洋里,即使实现登陆,生命的存在仍然以水作为首要条件。即使在当今代表了最尖 端科技的航天领域,对外太空生命的探索仍然以水作为第一判断 条件,可以说没有水,一切生命创造的精彩都将不复存在。当今 世界,经济在高速发展,我们对于水需求更大,然而我们却在面 临前所未有的水危机。全世界很多国家国家中,有超过一半的国 家缺水,可见我们面临的形势有多么危急。我国水形势亦不容乐 观:中国是世界上缺水国家之一,全国全国很多城市中目前大约 一半的城市缺水,水污染的恶化更使水短缺雪上加霜:我国江河 湖泊普遍遭受污染,湖泊出现了不同程度的富营养化;城市水域 污染严重,南方城市总缺水量,水污染降低了水体的使用功能, 加剧了水资源短缺,对我国可持续发展战略的实施带来了负面影 响。我们的水资源正在遭受各种污染的侵袭,水污染严重破坏生 态环境、影响人类生存,要想实现人类社会的可持续发展,首先

要解决水污染问题。 由有害化学物质造成水的使用价值降低或丧失称之为水污 染。水的污染有两类:一类是自然污染;另一类是人为污染。而 后者是主要的。水污染可根据污染杂质的不同而主要分为化学性 污染、物理性污染和生物性污染三大类。化学性污染物又可分为:无机污染物、无机有毒物、有机有毒物、需氧污染物、植物营养物、油类物质等;物理性污染又可分为:悬浮物污染、放射性污染、热污染;生物污染主要指造成疾病的病原体对水体的污染。 历史上著名的全球十大环境公害中竟有三件是水污染,它们是水俣病事件、骨痛病事件和剧毒物质污染莱茵河事件。造成的危害是巨大而长久的,给人类带来了无比的伤痛。近些年来发生的水污染事件依旧触目惊心:淮河水污染事件:淮河上游的河南境内突降暴雨,颍上水库水位急骤上涨超过防洪警戒线,因此开闸泄洪将积蓄于上游一个冬春的2亿立方米水放了下来。水经之处河水泛浊,河面上泡沫密布,顿时鱼虾丧失。下游一些地方居 民饮用了虽经自来水厂处理,但未能达到饮用标准的河水后,出现恶心、腹泻、呕吐等症状。经取样检验证实上游来水水质恶化,沿河各自来水厂被迫停止供水很久,百万淮河民众饮水告急,不少地方花高价远途取水饮用,有些地方出现居民抢购矿泉水的场面,这就是震惊中外的"淮河水污染事件。金矿事件:罗马尼亚 境内一处金矿污水沉淀池,因积水暴涨发生温漫坝,含有大量氰化物、铜和铅等重金属的污水冲泄到多瑙河支流蒂萨河,并顺流

浅谈概率论与数理统计在化学中的应用

浅谈概率论与数理统计在化学中的应用 摘要:概率论与数理统计在自然科学,尤其是化学领域应用广泛,且对化学发展有重要作用。因此本文以概率论在化学中的应用为出发点,从概率论在化学中取得应用的原因、意义及化学中常用的分布函数几方面进行阐述,在一定程度上加深和拓展了对概率论的认识与应用。 关键词:概率论与数理统计;化学;应用 一、引言 概率论与数理统计是研究随机现象及其规律性的一门数学学科。概率论是基于给出随机现象的数学模型,用数学语言来描述它们,并找出其内在规律。而数理统计是以概率论为基础,基于有效地观察、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题做出推断和预测。 至今,概率论与数理统计的理论与方法已广泛应用于自然科学、社会科学及人文科学等各个领域中,并且随计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论与方法。它们不仅是许多新兴学科的数学理论基础学科,还和其他领域相交叉而产生了许多新的分支和边缘学科。总之,概率论与数理统计作为理论严谨、应用广泛、发展迅速的数学分支正越来越引起广泛的重视。 二、概率论在化学中的应用 1、原因 化学作为一门以测量为基础的实验科学,一直被认为是有着很大欠缺的,那就是欠缺严格性、逻辑性以及精确性的理论,因为测量具有随机可变性、不确定性、模糊性。诚然,测量是有着重要性的,在美国芝加哥大学社会科学研究馆的正面,刻有这样一段铭文:“假若你不能测量,你的知识就是贫乏和不能令人满意的。”但是我们不能片面地追求所谓精确性,其结果只能是将认识过程加以近似化、简单化,最终会走向形而上学,乃至神秘主义。所以这句话还应该这样补充:“假如你只懂得测量,那么你对世界的认识将是可怜的。” 为了解决这一问题,概率论和数理统计开始应用于化学研究领域。其具体原因如下:(1)实验的研究对象只能是极小一部分样品,其最后结果也只能从这一小部分样品的研究结果出发并做出统计推断,也就是运用概率论和数理统计方法推断出研究对象的全体。 (2)实验中不可避免地会存在着大量随机误差的问题,要从这些随机现象中去得出准确可靠的研究结果,就只能依赖于概率论和数理统计的方法和原理。 (3)随着现代科学研究的发展,各种测量仪器的计算机化给我们带来了“数据爆炸”,而要处理这些大量的数据,并从这些数据中获取更多的甚至意想不到的信息,只有数学和统计学技术才能给我们以可靠的保证。 2、意义 化学这一学科基本上还是一门实验学科,所以化学工作者掌握概率论和数理统计的原理及其应用就显得尤为重要。只有正确运用概率论和数理统计,我们才能够从表面杂乱无章的实验现象里去找出有意义的统计结论来;才能使我们能更有成效地进行科学研究,并确保取得可靠、准确的结果,进而得以发现客观规律;才能使我们从大量的实验数据、实验资料中去揭示和获取更多的化学信息。 三、化学中常用的分布函数

材料化学专业就业前景与就业方向解析

材料化学专业就业前景与就业方向解析 材料化学专业学生主要学习化学和材料科学方面的基本理论、基本知识和基本技能,接受科学思维与科学实验方面的基本训练,并能够熟练运用,充分了解材料化学理论和应用的最新发展动态,掌握信息收集检索的方法,具有运用化学和材料学的基础理论、基本知识和基本技能独立进行研究、教学、生产和开发的基本能力。培养系统掌握材料化学的基本理论与技术,具备材料化学相关的基本知识和基本技能,能运用化学和材料科学的基础理论、基本知识和实验技能在材料科学与化学及其相关的领域从事研究、教学、科技开发及相关管理工作的具有开拓型、前瞻性、复合型的高级人才。 材料化学专业所研究的大多跟传统产业有关,属于解决实际问题的理论学科,因此材料化学专业研究的课题没有那么新潮和热门,但是在现实生产中,对优秀的材料化学方面人才的需求是巨大的,例如说冶金行业,在钢铁、有色金属冶炼过程中效率低、产品质量差、生产过程中浪费严重等问题,都需要用材料化学的知识来解决。中国虽然一直以陶瓷闻名世界,但实际世界上精密陶瓷绝大部分是由日本制造的,就是因为我们在配料、控制烧结条件等环节技术力量太差,而材料化学正是解决这些问题的。所以材料化学专业不仅实用价值高,而且发展空间大。材料化学专业的学生具有比较强的化学背景,能够在电子材料、金属材料、冶金化学、精细化工材料、无机化学材料、有机化学材料以及其它与材料、化学、化工相关的领域内找到适合自己的工作。 材料化学专业在专业学科中属于理学类中的电子信息科学类,其中电子信息科学类共9个专业,材料化学专业在电子信息科学类专业中排名第2,在整个理学大类中排名第11位。截止到XX年12月24日,45429位材料化学专业毕业生的平均薪资为4005元,其中10年以上工资1000元,应届毕业生工资3384元,0-2年工资4009元,3-5年工资4803元,6-7年工资6630元,8-10年工资8061元。就业前景比较好的城市有:上海、北京、广州、深圳、东莞、五洲、南京、杭州、宁波、武汉。 整体说来,材料化学专业就业都还是不错的。毕业生可在化学化工,材料,医药,食品,环境,能源和分析检验等领域和行业的企业事业单位和行政 1/ 3

化学史在中学化学教学中的运用

化学史在中学化学教学中的运用 陈颖 摘要:在中学化学教学中, 结合教材内容和学生的实际情况适当的介绍一些化学史的内容,不仅可以提高教学效果和学生的创新思维,而且可以达到寓政治思想教育 于教学之中。文章通过一系列理论与史实的结合论述了在化学教学中如何运用 化学史来引导学生走向成功的道路。 关键词:化学史中学化学化学教学 引言 现代的化学教学,强调要培养学生的观察力、想象力、思维力和创造才能,而不是单纯的传授知识;要发展学生健全的人格,而不是无视学生人文素质的培养。如何以化学知识为载体,去挖掘知识的内涵,体现化学知识价值的多元性;如何将科学价值与人文价值相整合,构建符合中学化学教育目的和任务的价值取向;如何引导学生学会学习、学会做事、学会合作、学会做人,已成为教师面临的日益严重的挑战。[2] 在化学教学中恰当运用化学史,可以使教学不只局限于现成知识的静态结论,还可以追溯到它的来源和动态演变;不只局限于知识本身, 还可以揭示出其中的科学思想和科学方法,使学生受到教益。这样,就可以把化学逻辑的推演同人们认识化学运动的过程联系起来,达到逻辑和历史的辩证统一 ,真正揭示出化学发展的科学精髓,展示化学家的人文精神风貌[3]。 1, 化学史在中学化学教学中的作用 化学史是在人与自然的依存中,人类不断认识和改造自然,与其他学科一起取得自身的进步和社会发展的历史。化学的历史,实际上是一种化学方法和化学智慧的历史。在化学课堂教学中,结合教学内容,适时地贯穿一些化学史的教学,能够活跃和调节课堂气氛,渲染课堂氛围;化学史的学习有利于学生了解人与自然,人与社会的关系,学生从化学史的教学中获得了严谨的化学科学学习和研究方法;同时化学史的教学能激发学生的教学动机和好奇心,调动学生学习的积极性和主动性,培养学生的创新精神,启迪学生的创新思维,培养学生一丝不苟的学习和实事求是的科研态度;培养学生民族自豪感和责任感,激励学生努力学好化学学科,为祖国和民族争光。[2] 1,1 利用化学史加深学生对基础知识的理解和掌握 元素概念既抽象,又难理解,如果教师在教学中简略地介绍古代的元素观把这些历史过程适时地有选择地配合有效的教学方法传授给学生,学生就会把握元素概念的演变过程,理解其丰富而完整的内容,知晓其实质。在学习元素周期表时,把门捷列夫建立元素周期律的思路和过程生动地描绘出来,加深学生对元素周期律更深刻的理解。在化学教学中,教师如能结

化学知识在生活中有哪些应用

化学知识在生活中有哪些应用 随着生产力的发展,科学技术的进步,化学与人们生活越来越密切。众所周知,周围的事物都是由许许多多的化学元素组成的,包括人体不可缺少的许多元素。化学与人类生活的息息相关,无论是衣、食、住、行、工、农业生产、医疗卫生,还是环境保护等与化学有着广泛的关系。因此,生活中有着许多化学知识需要去认识。下面小编就给大家分享一些化学知识在日常生活中的应用,欢迎阅读。 ?化学在生活中的应用1.烧水的壶用久了,壶的里层往往有一层白色的水碱.使用的时间越久,积存得就越多.有人叫它“水锈”,也有叫它“锅垢”的.这究竟是那 里来的呢?这是水里夹带着不容易溶解的物质,如硫酸钙CaSO4等,沉淀下来的.硫酸钙在水中的溶解度很小,由于水的温度增高,会更降低它的溶解度,因此它 就沉淀在壶底了.还有水里夹带着一些溶解的物质,如酸性碳酸钙Ca(HCO3)2 酸性碳酸镁Mg(HCO3)2等,这些物质受热就会分解,生成碳酸钙CaCO3和碳 酸镁MgCO3等不溶解于水的物质,就沉淀在壶底.硫酸钙、碳酸钙和碳酸镁等都是白色的沉淀物,混和在一起,就是水碱.化学在生活中的应用2.水有软硬吗?水有软水和硬水的区别,凡是含有钙、镁等盐类的,就叫做硬水.不含钙、镁等 盐类的,就叫做软水.硬水里所含的钙、镁等盐类,如果是酸性碳酸盐,如酸性碳酸钙、酸性碳酸镁等,就叫做暂时硬水,因为酸性碳酸钙和酸性碳酸镁受热后, 就变成碳酸钙和碳酸镁沉淀下来,经过过滤后,就成软水了.硬水里所含的钙、 镁等盐类,如果是硫酸盐,如硫酸钙、硫酸镁等,就叫做永久硬水.因为这样的水虽然经过煮沸后,也不能把他们全部去掉,因为硫酸镁是可以溶解于水的,在 20oc的时候每100公分的水中可以溶解72公分.如果水中既含有钙、镁的硫酸盐,那就叫做两性硬水.化学在生活中的应用3.怎样防煤气?煤气是煤在隔绝

相关文档
相关文档 最新文档