文档库 最新最全的文档下载
当前位置:文档库 › 五年级奥数盈亏问题(二)教师版

五年级奥数盈亏问题(二)教师版

五年级奥数盈亏问题(二)教师版
五年级奥数盈亏问题(二)教师版

1. 五年级奥数盈亏问题(二)教师

2. 运用盈亏问题的解题方法解决一些生活实际问题.

盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.

可以得出盈亏问题的基本关系式:

(盈+亏)÷两次分得之差=人数或单位数

(盈-盈)÷两次分得之差=人数或单位数

(亏-亏)÷两次分得之差=人数或单位数

物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.

注意:1.条件转换; 2.关系互换.

利用条件关系转换解盈亏问题——转化分配单位数(接受分配的人数)

【例 1】 小鸣用48元钱按零售价买了若干练习本。如果按批发价购买,每本便宜2元,恰好

多买4本。问:零售价每本多少元?

【考点】盈亏问题 【难度】3星 【题型】解答

【关键词】华杯赛,初赛,第9题

【解析】 见下图,以横线表示本数,纵线表示单价,因为黄色部分面积与绿色部分面积相等,所

以黄色的宽是绿色高的2倍,设批发价为x 元(图中绿色长方形的高),则有:x ×(2x +4)=48,即x ×(x +2)=24=4×6=4×(4+2),所以,x =4(元),零售价为x +2=6(元)

【答案】6元

知识精讲 教学目标

6-1-7.盈亏问题(二)

【例 2】 春节前夕,一富翁想丐帮帮众施舍一笔钱财,一开始他准备给每人100元,结果剩下

350元,他决定每人多给20元。这时从其它地方又闻讯赶来了5个乞丐,如果他们每个人拿到的钱和其它乞丐一样多,富翁还需要再增加550元。原有( )名乞丐。

【考点】盈亏问题 【难度】3星 【题型】填空

【关键词】走美杯,3年级,初赛

【解析】 如果不来这五个乞丐,富翁能剩下120555050?-=元。因此有()350502015-÷=名

乞丐。

【答案】15名

【例 3】 李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱

买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?

【考点】盈亏问题 【难度】3星 【题型】解答

【解析】 (法1)“李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋”,这三袋洗衣粉多

花8×3=24(元),又因为花的钱总数一样多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以要买碧浪洗衣粉袋数24÷2=12(件).这样李妈妈带的钱数是10×12=120(元).

(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3×8=24(元),根据普通的盈亏问题解法,买碧浪洗衣粉的数量是:24÷(10-8)=24÷2=12(件),所以李妈妈带的钱数是:12×10=120(元).

【答案】120元

【巩固】 奶糖每千克24元,水果糖每千克18元。买两种糖果花了同样多的钱,但水果糖比奶

糖多4千克。水果糖 千克,奶糖 千克。

【考点】盈亏问题 【难度】3星 【题型】填空

【关键词】走美杯,四年级,初赛

【解析】 若水果糖少买4千克那么就和奶糖重量一样,能够剩下41872?=元,因为两种水果

花的钱一样,此时奶糖比水果糖多用72元,因为奶糖比水果糖每千克多花6元,那么共买了奶糖72612÷=千克,水果糖16千克。

【答案】水果糖16千克,奶糖12千克

【例 4】 商店里有玻璃杯和保温杯两种杯子,保温杯比玻璃杯贵10元,妈妈带的钱如果买10

个玻璃杯还剩6元,如果买5个保温杯还缺4元,妈妈带了________钱。

【考点】盈亏问题 【难度】3星 【题型】填空

【关键词】学而思杯,4年级,第2题

【解析】 86元。5个保温杯比5个玻璃杯多用50元,()501058-÷=元810686?+=元

【答案】86元

【例 5】 幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10

个。如全部分给小班的小朋友,每人分到8个,则缺2个。已知大班比小班多3人,问:这筐苹果共有多少个?

【考点】盈亏问题 【难度】4星 【题型】解答

【解析】 先把大班人数和小班人数转化为一样。大班减少3人,则苹果又收回3515?=个苹

果,人数一样,根据盈亏问题公式,小班人数为:(15102)(85)9++÷-=人,苹果总数是89270?-=个。

【答案】70个

【巩固】 六年级学生出去划船。老师算了一下,如果每船坐6人,那么还剩下22人没船坐。

安排时发现有3条船坏了,于是改为每船坐8人,结果还剩下6人没地方坐,请问:一共有多少学生?

【考点】盈亏问题【难度】4星【题型】解答

【解析】如果3条船没有坏,每船坐8人,那么多余了83618

?-=个座位。根据盈亏问题公式,有船(1822)(86)20

+÷-=条,学生人数为20622142

?+=人。

【答案】142人

【巩固】幼儿园把一袋糖果分给小朋友。如果分给大班的小朋友,每人5粒就缺6粒。如果分给小班的小朋友,每人4粒就余4粒。已知大班比小班少2个小朋友,这袋糖果共

有粒。

【考点】盈亏问题【难度】4星【题型】填空

【关键词】走美杯,4年级,决赛

【解析】如果大班增加2个小朋友,大、小班人数就相等了。变为“每人5粒缺16粒,每人4粒多4 粒”的盈亏问题。小班有(16+4)÷(5-4)=20(人)。这袋糖果有:4×20+4=84(粒)。【答案】84粒

【例 6】幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5 粒就缺6 粒.如果分给小班的小朋友,每人4 粒就余4 粒.已知大班比小班少2 个小朋友, 这袋糖果

共有多少粒?

【考点】盈亏问题【难度】4星【题型】解答

【解析】如果大班增加2 个小朋友,大、小班人数就相等了,变为“每人5 粒缺16 粒,每人4 粒多4 粒” 的盈亏问题.小班有(16+4)÷(5-4)=20(人).这袋糖果有4×20+4=

84(粒).

【答案】84粒

【例 7】四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,

辅导员老师带了元钱.

【考点】盈亏问题【难度】4星【题型】解答

【解析】这笔钱买13千克芒果还差4元,若把这13千克芒果换成奶糖就会多出13226

?=元,所以这笔钱买13千克奶糖会多出26422

-=元.而这笔钱买15千克奶糖会多出2元,所以每千克奶糖的价格为:(222)(1513)10

-÷-=(元).辅导老师共带了?+=元.

10152152

【答案】152元

【巩固】小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?

【考点】盈亏问题【难度】4星【题型】解答

【解析】因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24(元),这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10(元),

所以小明妈妈带的钱数是:12×10+4=124(元).

【答案】124元

【巩固】食堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?【考点】盈亏问题【难度】4星【题型】解答

【解析】这笔钱买18千克牛肉还差4元,若把这18千克牛肉换成猪肉就会多出180.814.4

?=元,所以这笔钱买18千克猪肉会多出14.4410.4

-=元.而这笔钱买20千克猪肉会多出2元,所以每千克猪肉的价格为:(10.42)(2018) 4.2

-÷-=(元).牛肉价格为:+(元).

4.20.8=5

【答案】牛肉5元,猪肉4.2元

【例 8】小红去买水果.如果买5千克苹果则少4元;如果买6千克梨则少3元.已知苹

果比梨每500克贵5角5分,那么小红买水果共带了 元.

【考点】盈亏问题 【难度】4星 【题型】填空

【关键词】迎春杯,四年级,初试,3题

【解析】 这是一道盈亏问题,先要统一标准.由"苹果比梨每500克贵5角5分"可知,苹果比梨

每千克多11角,则"买6千克梨则少3元"换成"买6千克苹果则少30+6×11=96角"由盈亏公式可得苹果的价钱为:(96-40)÷(6-5)=56角,则共带了5×56-40=240角=24元

【答案】24元

【例 9】 养猪专业户王大伯说:“如果卖掉75头猪,那么饲料可维持20天,如果买进100头

猪,那么饲料只能维持15天。”问:王大伯一共养了多少头猪?

【考点】盈亏问题 【难度】4星 【题型】解答

【关键词】华杯赛,五年级,决赛,第11题

【解析】 方法一:本题属于盈亏问题,()()7520100152015=600?+?÷-(头)

方法二:设王大伯一共养了x 头猪,20(x -75)=15(x +100) ,x =600(头),王大伯一

共养了600头猪。

【答案】600头

【例 10】 有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每

人4块就少两块,这些糖共有多少块?

【考点】盈亏问题 【难度】3星 【题型】解答

【解析】 第一次每人分5块,第二次每人分4块,可以认为原有的人每人拿出541-=块糖分

给新增加的人,而新增加的人刚好是原来的一半,这样新增加的人每人可分到2块糖果,这些人每人还差422-=块,一共差了10212+=块,所以新增加了1226÷=人,原有6212?=人.糖果数为:1251070?+=(块).

【答案】糖果70块

【巩固】 体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到

3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?

【考点】盈亏问题 【难度】3星 【题型】解答

【解析】 考虑人数增加3倍后,相当于按原人数每人给2×3=6(个),每人给5个与给6个,

总数相差10+8=18 (个),所以原有人数 18÷(6-5)=18(人),羽毛球总数是 5×18+10=100(个).

【答案】100个

【巩固】 3月12日植树节,四年级一班同学去植树,如果其中3人各植树2棵,其余每人植树

6棵,就恰好植完所有的树苗,如果人数增加到原来的2倍,则每人植树2棵还有8棵树没人植,请问,共有 名学生参加植树,共植树 棵.

【考点】盈亏问题 【难度】3星 【题型】填空

【关键词】学而思杯,4年级,第13题

【解析】 人数增加两倍,每人植树2棵,相当于人数不变,每人植树4棵,这样差8棵种完每人种

6棵的多种3412?=棵。()()1286410+÷-=名学生植树763248?+?=棵

【答案】48棵

【例 11】 卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多

余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?

【考点】盈亏问题 【难度】5星 【题型】解答

【解析】 使同学们感到困难的是条件“3倍还少5只大熊猫”.先要转化这一条件,假设还有

10棵竹子,1025=?,就可以多有 5个大熊猫,把“少5只大熊猫”这一条件暂时搁置一边,只考虑3倍大熊猫数,也相当于按原大熊猫数每只大熊猫给236?=(棵)竹子,

每只大熊猫给5棵与给6棵,总数相差1010828

++=(棵),所以原有大熊猫数÷-=(只),竹子总数是52810150

28(65)28

?+=(棵).

【答案】大熊猫28只,竹子150棵

小学奥数盈亏问题

盈亏问题 课前预习 儿歌:鸟儿飞来了,落在大树梢,每树落一只,一鸟没树找,每树落2只,一树没有鸟,请问几棵树?又有几只鸟? 考试要求 一、在理解的基础上掌握盈亏问题的三种类型 二、能灵活运用盈亏问题的基本公式解题 三、理解盈亏中的“总量”和“份数”,灵活应用盈亏法解决问题 知识框架 一、盈亏问题的三种类型 1.直接计算型盈亏问题 【举例】朝阳小学买来一批小足球分给各班:如果每班分个,就差个;如果每班分个,则正好分完,朝阳小学一共有多少个班?买来多少个足球? 2.条件转换型盈亏问题 【举例】幼儿园把一袋糖果分给小朋友,如果分给大班的小朋友,每人粒就缺粒;如果分给小班的小朋友,每人粒就余粒.已知大班比小班少个小朋友,这袋糖果共有多少粒? 3.关系互换型盈亏问题 【举例】小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱? 二、基本公式 1.(盈+亏)÷两次分得之差=人数或单位数 2.(盈-盈)÷两次分得之差=人数或单位数 3.(亏-亏)÷两次分得之差=人数或单位数 三、基本思想方法 1.实质 分配中的余缺问题

2.三种类型的综合处理 简单问题的处理:量的差别 单位差别 3.遇到陌生、复杂的盈亏问题,可以用转换的思想 用假设法,把陌生问题、复杂问题转化为熟悉问题、简单问题 重难点 重点:在理解的基础上,掌握盈亏问题的基本类型并能灵活运用公式解决问题 难点:盈亏问题中份数与总量的区分(这是学生能够灵活运用盈亏法解决问题的前提) 例题精讲 【例1】小朋友分糖果,若每人分10粒则多9粒;若每人分11粒则刚好.问:有多少个小朋友分多少粒糖?【考点】直接计算型盈亏问题【难度】☆【题型】填空题;应用题;结合方程的应用题【解析】在这个例题中,主要让学生体会到分10粒则多9粒,而分11粒则刚刚好!那么可以说"这九粒糖的任务”就是给每一位小朋友再发一个糖,那么九粒糖每人发一个?是多少个小朋友?九个.这道题的目的在于让学生体会盈亏的思想,数量上都不用做太高要求,这是学习盈亏问题之前的预热! 【答案】(1)9个小朋友(2)99颗糖 【巩固】北京某校三年级一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完.问:有多少位同学分多少个小玩具? 【答案】(1)9个小朋友(2)36个玩具 【例2】小朋友分糖果,若每人分10粒则多9粒;若每人分11粒则差6粒.问:有多少个小朋友分多少粒糖?总共有多少粒糖果? 【考点】直接计算型盈亏问题【难度】☆【题型】填空题;应用题;结合方程的应用题【解析】与上题相比,这题有了变化,本来9粒糖就可以分了,但是现在呢?要几粒糖?15粒?小朋友的人数(份数)与糖的粒数(总数)是不变的.比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒).相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5-4=1(粒).每人相差1粒,多少人相差15粒呢?由此求出小朋友的人数为15÷1=15(人),糖果的粒数为:4×15+9=69(粒). 通过上述两道例题主要是让学生体会盈亏的思想,这对于后面公式的总结比较有帮助.教师可以酌情考虑,假如学生的情况比较好,那就不需要上述预热. 【答案】(1)15 (2)69

奥数题库三年级盈亏问题

盈亏问题(1) 分配中的比较 1.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下10块.后来又来了2个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力. 2.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下18块.后来又来了3个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力. 3.老师给学生发巧克力,每人发了同样多的巧克力后,还剩下16块.后来又来了4个同学,老师也发给他们同样多的巧克力后,巧克力刚好分完.那么每个同学分到__________块巧克力. 4.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了16捆草.后来又来了羊小黑和羊小白,分给它们同样的草后,只剩下了10捆草.那么每只羊分到__________捆草. 5.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了18捆草.后来又来了3只羊,分给它们同样的草后,只剩下了6捆草.那么每只羊分到__________捆草. 6.旦旦把一捆捆的草分给羊,每只羊分到的一样多,剩下了20捆草.后来又来了5只羊,分给它们同样的草后,只剩下了10捆草.那么每只羊分到__________捆草. 7.雁雁把一些胡萝卜分给6只兔子,每只兔子分到的一样多,剩下了15根胡萝卜.后来又来了2只兔子,如果分给它们同样多的胡萝卜,就会少7根胡萝卜.那么雁雁开始共带了__________根胡萝卜. 8.雁雁带了一些胡萝卜分给10只兔子,每只兔子分到的一样多,剩下了6根胡萝卜.后来又来了4只兔子,如果分给它们同样多的胡萝卜,就会少10根胡萝卜.那么雁雁开始共带了__________根胡萝卜. 9.雁雁带了一些胡萝卜分给8只兔子,每只兔子分到的一样多,剩下了5根胡萝卜.后来又来了5只兔子,如果分给它们同样多的胡萝卜,就会少10根胡萝卜.那么雁雁开始共带了__________根胡萝卜.

小学奥数知识点:盈亏问题、巧妙求和、画图显示法

小学奥数知识点:盈亏问题、巧妙求和、画图显示法 专题简析:一定数量的物品,平均分给一定数量的人。每人少分,则物品有余(盈);每人多分,则物品不足(亏)。解答盈亏问题的关键是要求出总差额和两次分配的数量差。 基本解法是:份数=(盈+亏)÷两次分配数的差,由其中一种分法的份和盈亏数求出物品数。 例题1:小明的妈妈买回一篮梨,分给全家。如果每人分 5 个,就多出10个;如果每人分6 个,就少2个。 小明全家有多少人?这篮梨有多少个? 解答: 思路:根据题目中的条件,我们可知: 第一种分法:每人分5 个,多10 个(盈) 第二种分法:每人分6 个,少2 个(亏) 全家人数:(10 +2)÷(6-5)=12 (人) 梨的个数:5×12 +10=70 (个) 试一试1 : (1 )有一根绳子绕树4 圈,余2 米;如果绕树5 圈,则差6 米。树周长是多少米?绳子长多少米? (2 )幼儿园买来一些玩具,如果每班分8 个玩具,则多出2 个玩具;如果每班分10 个玩具,则少12 个玩具。幼儿园有几个班?这批玩具有多少个? 例题2:老师买来一些练习本分给优秀少先队员,如果每人分 5 本,则多了14 本;如果每人分7 本,则多了2 本。优秀少先队员有几人?买来多少本练习本? 解答: 思路:根据题目中的条件,我们可知: 第一种分法:每人5 本,多了14 本(多盈); 第二种分法:每人7 本,多了2 本(少盈)。 每份相差:7-5=2 本 人数:(14 -2)÷(7-5)=6 人练习本数:5×6+14=44 本。

试一试2:把一袋糖分给小朋友们,如果每人分4粒,则多了12 粒;如果每人分6粒,则多了2 粒 有小朋友几人?有多少粒糖? 例题3: 学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18 棵。学生有几人?这 批树苗有多少棵? 解答: 思路:根据题意,我们可知搬树苗的两种方案: 第一种方案:每人搬 6 棵,差4 棵(少亏); 第二种方案:每人搬8 棵,差18 棵(多亏) 棵树苗, 每人多搬了8 -6=2 人数= (18 -4)÷(8 -6)7 人 树苗棵数:6×7-4=38 棵。 试一试3:数学兴趣小组的同学做数学题,如果每人做6 道,则少4 道;如果每人做8 道,则少16 道。有几个学生?多少道数学题? 例题4:三(1)班学生去公园划船,如果每条船坐 4 人,则少一条船;如果每条船坐6人,则多出4 条船。 公园里有多少条船?三(1)班有多少学生? 解答 思路:先把题目中的条件进行转化。“每条船坐4 人,少一条船”则多4 人;“每条船坐6 人,多4 条船”则少6 ×4=24 人再用例1 的方法计算。 船数:(4 +6×4 )÷(6-4)=14 条 学生人数:4×(14+1)=60 人。 试一试4:小明从家到学校,如果每分钟走40 米,则要迟到2 分钟;如果每分钟走50 米,则早到4 分钟。小明家到学校有多远?

小学生必备数学公式盈亏问题公式

小学生必备数学公式——盈亏问题公式 随着社会的发展、科学的进步,在今后2l世纪的信息社会,人人都需要数学。这篇小学生必备数学公式盈亏问题公式,希望可以加强你的基础。 小学数学公式大全盈亏问题公式 (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)(两次每人分配数的差)=人数。 例如,小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子? 解(7+9)(10-8)=162 =8(个)人数 108-9=80-9=71(个)桃子 或88+7=64+7=71(个)(答略) (2)两次都有余(盈),可用公式: (大盈-小盈)(两次每人分配数的差)=人数。 例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发? 解(680-200)(50-45)=4805 =96(人) 4596+680=5000(发) 或5096+200=5000(发)(答略)

(3)两次都不够(亏),可用公式: (大亏-小亏)(两次每人分配数的差)=人数。 例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子? 解(90-8)(10-8)=822 =41(人) 1041-90=320(本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式: 亏(两次每人分配数的差)=人数。 (例略) (5)一次有余(盈),另一次刚好分完,可用公式: 盈(两次每人分配数的差)=人数。 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。(例略) “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知

五年奥数:用方程解解决盈亏问题教案资料

五年奥数:用方程解解决盈亏问题

三、盈亏问题(较复杂方程应用题) 1.学校分配学生宿舍,如果每个房间住6人,那么有20人没有床位,如果每个房间住8人,则正好住满,学校有多少间学生宿舍? 2.甲乙两车同时从A,B两地同时相对出发,乙车每小时行40千米,经过8小时后相遇,相遇后甲车继续行驶5小时到达B地,AB两地相距多少千米? 3、小刚早晨从家去学校上学,如果每分钟走100米就早到5分钟,如果每分钟走80米,就早到1分钟。小刚家离学校有多远? 4、学校把一批图书分给学校的每一个班级,如果每班分20本,那么余下50本,如果每班分25本,那么少25本,这批图书共有多少本? 5.甲乙两桶蜂蜜,甲桶有45千克蜂蜜,乙桶有24千克。从甲桶倒多少千克的蜂蜜到乙桶,才能使甲桶里蜂蜜的重量是乙桶的1.5倍? 收集于网络,如有侵权请联系管理员删除

6.王芳的银行存款500元,李明的银行存款720元,以后每个月王芳存50元,李明存120元,几个月后李明的存款是王芳的2倍? 盈亏问题姓名: 一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后有剩余(盈);按另一种标准分,分配后又会有不足(亏)。数量关系如下: (盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数 例1、老师买了一些铅笔奖给三好学生,如果每人奖2支,则余下6支;如果每人奖4支,则欠18支。有几个三好学生?共有几支铅笔? 例2、妈妈买来一些桃子分给全家人吃。如果每人分4个,则多出12个;如果每人分6个,则多出2个。妈妈买来几个桃子?全家共有几人? 例3、老师给美术小组的同学分发图画纸。如果每人发5张,则少3张;如果每人发8张,则少48张。美术小组有几人? 收集于网络,如有侵权请联系管理员删除

最新小学奥数盈亏问题及答案

盈亏问题 1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑? 3、学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。问听报告的学生有多少人? 4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱? 5、幼儿园将一筐苹果分给小朋友。如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。已知大班比小班多3个小朋友,问这筐苹果共有多少个? 6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人? 7、幼儿园老师给小朋友分糖果。若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。那么糖果最多有多少块?

8、有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第二组有多少人? 9、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米? 11、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 12、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 13、张宇上午7时20分从家里出发到校上课。如果每分钟走50步,离上课还有7分钟;如果每分钟走35步,就要迟到5分钟。求学校的上课时间。 14、"六一"儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 15、苹果和梨各有若干只。如果5只苹果和3只梨装一袋,苹果还多4只,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只。那么苹果和梨共有多少只?

(完整版)五年级奥数盈亏问题讲座及练习答案

五年级奥数盈亏问题讲座及练习答案 盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。例如:把一袋饼干分给小班的小朋友,每人分3块,多12块,;如果每人分4块,少8块,小朋友有多少人?饼干有多少块? 这种一盈一亏的情况,就是这们通常说的标准的盈亏问题。 标准盈亏问题的基本数量关系式: (盈+亏)÷两次分配之差=参与分配对象总数; 每次分得的数量×份数+盈=总数量;每次分得的数量×份数-亏=总数量 还有一些非标准盈亏问题,如: 1、两盈: 两次分配都有余。数量关系式为:(大盈-小盈)÷两次分配差=参与分配对象总数 2、两亏: 两次分配都不够。数量关系式为:(大亏-小亏)÷两次分配差=参与分配对象总数 例1:(一盈一亏问题)一个植树小组,如果每人植5棵,还剩14棵;如果每人植7棵,就缺4棵。这个植树小组有多少人?一共有多少棵树? 分析:由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18棵,这是因为两种分配方案每人植树棵数相差7-5=2(棵),所以根据一盈一亏解答此题就非常简单了。 人数:(14+4)÷(7-5)=2(人)棵数:5×9+14=59(棵) 答:这个植树小组一共有9人,一共有59棵树。 【巩固练习1】:幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。幼儿园有多少个小朋友?一共有多少个积木? 解,小朋友分积木,每人2个则剩20个,每人3个则少40个,因此这是一亏一盈问题,两种分积木的方案最后相差20+40=60个,两种方案中每人分得的积木数相差3-2=1个,所以小朋友的个数为:60÷1=60人,积木数为:60×2+20=140个或60×3-40=140个 综合算式为:

小学数学盈亏问题公式大全

小学数学盈亏问题公式大全 盈亏问题公式大全 (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)(两次每人分配数的差)=人数。 例如,小朋友分桃子,每人10个少9个,每人8个多7个。 问:有多少个小朋友和多少个桃子? 解(7+9)(10-8)=162 =8(个)人数 108-9=80-9=71(个)桃子 或88+7=64+7=71(个)(答略) (2)两次都有余(盈),可用公式: 小学数学盈亏问题公式大全:(大盈-小盈)(两次每人分配数的差)=人数。 例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发? 解(680-200)(50-45)=4805 =96(人) 4596+680=5000(发) 或5096+200=5000(发)(答略) (3)两次都不够(亏),可用公式: (大亏-小亏)(两次每人分配数的差)=人数。例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?

解(90-8)(10-8)=822 =41(人) 1041-90=320(本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式: 亏(两次每人分配数的差)=人数。 (例略) (5)一次有余(盈),另一次刚好分完,可用公式: 与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。 与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师” 一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。 盈(两次每人分配数的差)=人数。 (例略) “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

小学五年级奥数教案--第12讲-盈亏问题

第12 讲盈亏问题 一、知识要点 盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4 块,少8 块。小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。 盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏 问题,它们被分为四类: 1. 两盈:两次分配都有多余;2. 两不足:两次分配都不够;3. 盈适 足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。解题时我们可以记住: 1. “两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数; 2. “两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数; 3. “一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数 精讲精练 【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。乒乓球队共有多少名学生? 练习1:1. 学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8 盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的 5 倍。学校买来两种粉笔各多少盒? 2. 操场上有两堆货物,如果甲堆增加80吨,乙堆增加25 吨,则两堆货物一

样重;苦甲、乙两堆各运走 5 吨,剩下的乙堆正好是甲堆的 3 倍。两堆货物一共有多少吨? 3. 五(1)班的优秀学生中,苦增加2名男生,减少 1 名女生,则男、女生人数同样多;苦减少 1 名男生,增加 1 名女生,则男生是女生的一半。这些优秀学生中男、女生各多少人? 【例题2】幼儿园老师拿出苹果发给小朋友。如果平均分给小朋友,则少 4 个;如果每个小朋友只发给 4 个,则老师自己也能留下 4 个。有多少个小朋友?共有多少个苹果? 练习2: 1. 给小朋友分梨,如果每人分 4 个,则多9 个;如果每人分 5 个,则少 6 个。有多少个小朋友?有多少个梨?

小学数学常用公式84261知识讲解

小学数学常用公式 84261

小学数学常用公式 小学数学公式:和差倍及平均数问题 什么是和差问题?已知大小两个数的和,以及了们的差,求这两个数各是多少的应用题叫做和差问题。 什么是和倍问题?已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题叫做和倍问题。 什么是差倍问题?已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题叫做差倍问题。 什么是平均数?平均数是指在一组数据中所有数据之和再除以数据的个数。和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数+1)=大数 小数×倍数=大数 (或小数+差=大数) 平均数问题公式 总数量÷总份数=平均数。

相遇问题公式: 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 浓度问题公式: 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 小学数学公式:植树问题公式 什么是植树问题?这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 植树问题公式: 1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1= 全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数

小学数学盈亏问题练习及参考答案

盈亏问题 把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。已知两个分配方案,一次分配有余,一次分配不足,求参加分配的人数及被分配的总量。这样的问题通常叫做盈亏问题。 知识背景:盈亏的问题曾记载在我国古代数学名著《九章算术》中的第六章 --------“盈不足章”中,盈,就是有余;亏,就是不足的意思。 典型的盈亏问题一般以下列的形式表述: 把若干个苹果(未知数)分给若干个人(未知数),如果每人分2个还多20个,如果每人分3个则少5个。问总共有多少人?有多少个苹果? 题目中的不变量是人数和苹果数,比较两种不同的分配方法,可知苹果相差:20 + 5 = 25 (个);相差25个苹果,是由于每人相差苹果3 - 2 = 1 (个)而做成的, 事实上,只有唯一一种情况才会导至上述情形,那就是有25人分苹果! 求得人数后,进而可以根据题意,求得苹果的数目:2×25+20=70(个)或3×25-5=70(个)。 一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数、一盈一平或一亏一平=盈数或亏数÷两次分配的差=份数、再求总数量。每次分的数量*份数+盈=总数量或。每次分的数量*份数-亏=总数量。物品数可由其中一种分法的份数和盈亏数求出。有些则不能用公式求出,需要用其他公式。 解盈亏问题的公式

【一盈一亏的解法】 (盈数+亏数)÷两次每人分配数的差 【双盈的解法】 (大盈-小盈)÷两次每人分配数的差 【双亏的解法】 (大亏-小亏)÷两次每人分配数的差 盈亏问题练习及参考答案 1、将一些糖果分给幼儿班的小朋友。如果每人分3粒,还多17粒;每人分5粒,又少13粒。则有多少小朋友?有多少粒糖? 【分析与解】由题设可知道,每人分3粒,还多17粒,若再给每个小朋友分5-3=2粒,则需要17+13=30粒。 所以小朋友有30÷2=15人。 糖果有3×15+17=62粒或15×5-13=62粒。 2、把一筐桃分给一些小猴。每只小猴分5个桃,最后多16个;每只小猴分7个,又缺12个桃不够分。小猴有多少只?桃有多少只? 【分析与解】由题设可知道,每只小猴分5个,还多16个,若再给每只小猴分7-5=2个,则需要16+12=28个桃。 所以小猴有28÷2=14只。 桃有5×14+16=86只或7×14-12=86只。 3、学校最近买来一批电风扇,分给初中班。若有两个班每班分到4台,其余每班只能分2台;若有一个班分6台,其余每班分4台,还差12台。共买来多少

三年级奥数盈亏问题

三年级奥数盈亏问题(1) 盈亏问题的基本解法是: (盈+亏)÷两次分配数的差=份数, (大盈-小盈)÷两次分配数的差=份数, (大亏-小亏)÷两次分配数的差=份数, 1、小明的妈妈买回一篮梨,分给全家。如果每人分4个,就多出10个;如果每人分6个,就少2个。小明全家有多少人?这篮梨有多少个? 2、、幼儿园阿姨把一袋糖分给小朋友们,如果每人分9粒糖,则多了8粒糖;如果每人分11粒糖,则少了16粒糖。一共有多少个小朋友?这袋糖有多少粒? 3、有一根绳子绕树4圈,余2米;如果绕树5圈,则差6米。树周长是多少米?绳子长多少米? 4、幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具。幼儿园有几个班?这批玩具有多少个? 5、老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本。优秀少先队员有几人?买来多少本练习本? 6、把一袋糖分给小朋友们,如果每人分4粒,则多了12粒;如果每人分6粒,则多了2粒。有小朋友几人?有多少粒糖? 7、妈妈买来一些苹果分给全家人,如果每人分6个,则多了12个;如果每人分7个,则多了6个。全家有几人?妈妈共买回多少个苹果? 8、某学校有一些学生住校,每间宿舍住8人,则16人没床位;如果每间宿舍住10人,则有4人没床位。学校共有几间宿舍?住宿学生有几人? 9、学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵。学生有几人?这批树苗有多少棵?

10、自然课上,老师发给学生一些树叶。如果每人分5片叶子,则差3片叶子;如果每人分7片叶子,则差25片树叶。学生有几人?一共有树叶多少片?11、数学兴趣小组的同学做数学题,如果每人做6道,则少4道;如果每人做8道,则少16道。有几个学生?多少道数学题? 12、学校排练节目,如果每行排8人,则有一行少2人;如果每行排9人,则有一行少7人。一共要排几行?一共有多少人? 13、小明带了一些钱去买苹果,如果买3千克,则多出2元;如果买6千克,则少了4元。苹果每千克多少元?小明带了多少钱? 14、一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽6棵,还剩4棵。这个小组有几人?一共有多少棵树苗? 15、一组学生去搬书,如果每人搬5本,则差8本;如果每人搬7本本,则差20本。这组学生有几人?这批书有几本? 16、小明从家到学校,如果每分钟走40米,则要迟到2分钟;如果每分钟走50米,则早到4分钟。小明家到学校有多远?(提示:迟到2分钟就要少走2分钟的路程;早到4分钟就可以少走4分钟走的路程)

小学生数学盈亏问题公式

必备的小学生数学盈亏问题公式怎样掌握好每门课程这个问题被很多学生频繁的问起,小编特地为大家整理了小学生数学盈亏问题公式,希望对大家学习公式有所帮助。 盈亏问题公式: (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每人分配数的差)=人数。 例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?” 解(7+9)÷(10-8)=16÷2 =8(个)……人数 10×8-9=80-9=71(个)……桃子 或8×8+7=64+7=71(个)(答略) (2)两次都有余(盈),可用公式: (大盈-小盈)÷(两次每人分配数的差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发; 若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?” 解(680-200)÷(50-45)=480÷5 =96(人) 45×96+680=5000(发) 或50×96+200=5000(发)(答略)

(3)两次都不够(亏),可用公式: (大亏-小亏)÷(两次每人分配数的差)=人数。 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?” 解(90-8)÷(10-8)=82÷2 =41(人) 10×41-90=320(本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式: 亏÷(两次每人分配数的差)=人数。 (例略) (5)一次有余(盈),另一次刚好分完,可用公式: 盈÷(两次每人分配数的差)=人数。 (例略) “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构

吉林省松原市小学数学小学奥数系列6-2-2盈亏问题

吉林省松原市小学数学小学奥数系列6-2-2盈亏问题 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共53题;共238分) 1. (5分)学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍? 2. (5分)学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少? 3. (5分)学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人? 4. (5分) (2019四上·龙华期中) 如图 (1)超市从工厂批发了80台学习机,每台150元,超市要付给工厂多少元? (2)超市在卖出70台后开始降价销售,如果这批学习机全部销售,你认为超市是盈利还是亏本?请用数据说明。 5. (5分)选择两个信息作为已知条件,然后提出一个问题,并试着解决。 ①某校计划购置图书1200册; ②实际购书比计划多20%; ③实际购书1440册; ④实际比计划多购书240册。

6. (5分)老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子? 7. (5分)猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼? 8. (5分)小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只? 9. (1分)一次速算比赛共有20道题,答对1道给5分,答错一道倒扣1分,未答的题不计分,考试结束后,小梁共得了71分,那么小梁答对了________ 道题. 10. (5分)学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副? 11. (1分)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分个,小猴分个,猴王可留个.若大、小猴都分个,猴王能留下个.在这群猴子中,大猴(不包括猴王)比小猴多________只. 12. (5分)城关一中有男生450人,女生比男生少6%,城关一中一共有学生多少人? 13. (5分)某商店进了一批笔记本,按30%的利润定价。当售出这批笔记本的80%后,为了尽早销完,商店把余下的笔记本按定价的一半出售。销完后商店实际获得利润百分数是多少? 14. (5分)猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布? 15. (5分)学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人? 16. (5分) (2020六上·高新期末) 笑笑前年3月1日把3000元压岁钱存入银行,定期五年,年利率是3.60%.到期时,笑笑应得利息多少元? 17. (5分)智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果? 18. (5分)王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?

小学奥数盈亏问题题库教师版

小学奥数盈亏问题题库教师版

盈亏问题 知识点说明: 盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”. 可以得出盈亏问题的基本关系式: (盈+亏)÷两次分得之差=人数或单位数 (盈-盈)÷两次分得之差=人数或单位数 (亏-亏)÷两次分得之差=人数或单位数 物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”. 注意1.条件转换2.关系互换

板块一、直接计算型盈亏问题 【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2 块砖.这个班少先队有几个人?要搬的砖共有多少 块? 【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541 -=(块).第一种余7块,第二种少2 块,那么第二次与第一次总共相差砖数:729 +=(块),每人相差1块,结果总数就相差9块,所以有少先 队员919 ?+=(块). ÷=(人).共有砖:49743 【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那 么有多少个同学去买蛋糕?这个蛋糕的价钱是多 少? 【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个 桃子?

盈亏问题公式

盈亏问题公式 (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)+ (两次每人分配数的差)=人数。 盈亏问题公式 (盈+亏)+ (两次每人分配数的差)=人数。 例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子” 解(7+9)十(10-8 )=16- 2 =8 (个).......... 人数 10X 8-9=80-9=71 (个)................ 桃子 或8 X 8+7=64+7=71 (个)(答略) (2)两次都有余(盈),可用公式: (大盈-小盈)+ (两次每人分配数的差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多 200发。问:有士兵多少人有子弹多少发” 解(680-200 )-(50-45 )=480 - 5 =96 (人) 45 X 96+680=5000 (发) 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子” 解(90-8 )-(10-8 )=82 - 2 =41 (人) 10X 41-90=320 (本)(答略) (4)一次不够(亏),另一次刚好分完,可用公式:

鸡兔问题公式 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数X总头数)+ (每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数X总头数-总脚数)+ (每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只” 解一(100-2X 36) + (4-2 )=14 (只)... 兔; 36-14=22 (只)................... 鸡。 解二(4X 36 -100 ) + (4-2 )=22 (只).鸡; 36-22=14 (只).................. 兔。 (答略) (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数X总头数-脚数之差)+ (每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数X总头数+鸡兔脚数之差)+ (每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数X总头数+鸡兔脚数之差)+ (每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数X总头数-鸡兔脚数之差)十(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (4 )得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1只合格品得分数X产品总数-实得总分数)+ (每只合格品得分数+每只不合格品扣 分数)=不合格品数。或者是总产品数-(每只不合格品扣分数X总产品数+实得总分数)+ (每只合格品得分数+每只不合格品扣分数)=不合格品数。 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每 生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分, 问其中有多少个灯泡不合格” 解一(4X 1000 -3525 ) + (4+15) =475+ 19=25 (个) 解二1000- (15X 1000+3525)+ (4+15) =1000-18525+ 19

【三年级数学】小学三年级奥数下册盈亏问题教案

小学三年级奥数下册盈亏问题教案 盈亏问题 解盈亏问题,常常用到比较法。 例1 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块? 分析比较两种搬砖法中各个量之间的关系: 每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。 第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块) 每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。 共有砖:4×9+7=43(块)。 解:(7+2)÷(5-4)=9(人) 4×9+7=43(块)或5×9-2=43(块) 答:共有少先队员9人,砖的总数是43块。 如果把例1中的“少2块砖”改为“多1块砖”,你能计算出有多少少先队员,有多少块砖吗? 由本题可见,解这类问题的思路是把盈余数与不足数之和看作采用两种不同搬法产生的总差数,被每人搬砖的差即单位差除,就可得出单位的个数,对这题来说就是搬砖的人数. 例2 妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天? 分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。 解:(48+8)÷(6-4) =56÷2

六年级奥数之盈亏问题

六年级奥数之盈亏问题 (一)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次分配数的差)=份数。 总数量=每次分配的数量×份数+盈, 总数量=每次分的数量×份数-亏。 (1)、幼儿园老师给每个小朋友分饼干,每个小朋友5块饼干,就多22快;每个小朋友分7 块饼干,就少18块。问:有几个小朋友和多少块饼干? 本类题是两次分配方案中一盈一亏的盈亏问题,解题的基本方法是: 份数=(盈+亏)÷两次分配差; 由题意可知:小朋友的人数和饼干的块数是不变的,按第一种方案,分配多22块,而按第二种方案分配就少18块,两种子选手不同的方案的结果相差22+18=40(块),为什么会多分出40块呢?是因为两种方案,每人相差7-5=2(块),每人相差2块,多少人相差40块呢?40÷2=20(人)就是小朋友的人数.再根据关系式(2)可以求出饼干的总数量. 解:( 22+18) ÷(7-5)=20(人) 20×5+22=122(块)或20×7-18=122(块) (2)、四(1)班同学植树,每人植12棵,刚好植完,每人植14棵差8棵。有多少个同学?多少棵树苗? 8÷(14-12)=4(人)12×4=48 (3)、学雷锋小组为学校搬砖。如果每人搬18块,还剩2块;如果每人搬20块,就有一位同学没砖可搬。问共有多少块砖? (20+2)÷(20-18)=11 (11-1)*20=200 (二)两次都有余(盈),可用公式: (大盈-小盈)÷(两次分配数的差)=份数。 (1)、四(1)班将一批练习本奖给三好学生。如果每人奖5本,则缺9本,如果每人奖3本,则缺1本。这个班有三好学生多少人?练习本有多少本? 本类题是两次分配分配中都亏的盈亏问题,解题的基本方法是: 份数=(大亏-小亏)÷两次分配差; 由题意可知,三好学生人数和练习本数是不变的.比较两种分配方案,结果相差 9-1=8(本),这是因为两次分配方案每人得到的练习本相差5-3=2(本).所以三好学生人数为:8÷2=4(人),练习本有:5×4-9=11(本) 解:(9-1) ÷(5-3)= 8÷2=4(人) 5×4-9=11(本)或3×4-9=1=11(本) (三)两次都不够(亏),可用公式: (大亏-小亏)÷(两次每人分配数的差)=人数。 (1)、某班为男生分配宿舍,如果每间住6人,则多8人;如果每间住8人,恰好合适。问:有几间宿舍,男生有几人? 本类题是两次分配方案中一种盈,一种正好分完的盈亏问题,解题的基本方法是份数=盈÷两次分配差; 由题意可知:宿舍的间数和男生人数不变.按第一种分配方案分配多出8人,而按第二种分配方案的结果相差8人,每间房增加的人数为8-6=2(人).因此,可以先求出房间数,再求出男生人数. 解:8÷(8-6)=8÷4=2(人) 6×4+8=32(人)或8×4=32(人) 列方程解应用题 例1 兄弟两人每月收入之比为4:3,支出钱数之比为18:13,他们每月都结余360元,

相关文档
相关文档 最新文档