文档库 最新最全的文档下载
当前位置:文档库 › 用分立元件设计制作功率放大器

用分立元件设计制作功率放大器

用分立元件设计制作功率放大器
用分立元件设计制作功率放大器

用分立元件设计制作功率放大器

一、功率放大器基本电路特点互补对称式OTL功率放大器基本电路如图①所示。其中:

C1为信号输入偶合元件,须注意极性应于实际电路中的电

位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使

BG1集电极电压为15.4V来得到。

C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其

静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。

BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求Buceo>E、Iceo≤Ic2/100=30μA、β=100~200。在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA~30mA,要求Buceo>E、

Iceo≤Ic4/100=0.1mA、β=50~100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时β>10。

R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等

于0.6V标准参数时,由互补电流放大级的静态工作电流取在3mA~4mA,可计算出R6和R7应取为220Ω。实际上,大功率三级管Ube可能相差较大,BG4和BG5的Ube需通过实测进行配对使用,借助自举电路工作的半边复合管的总电流放大率应应比不借助自举电路工作的另半边复合管要小。

R8和R9分别是防止BG4和BG过流的限流电阻,一般取在0.2Ω~0.5Ω之间。将用200mm长、直径为φ0.08的漆包线两端分别焊接在1k以上电阻两端,把对折起来的漆包线绕在电阻上即可。相当于熔断保险管的作用,属于最简单的非智能式限流烧断保护方式。

C5和C6是信号输出电容,用一只小容量电容与大容量电容并联起来使用,可消除大容量电容内部具有的较大电感对高频率信号的阻碍。注意它实际上是起到中点浮动电源作用,所以电容量不是按照对通拼带下端交流信号的阻抗应为多

大来计算,而是按照输出功率需要消耗多少能量进行计算。在中点浮动电源电压随着输出电流进行波动而导致输出信

号截波时,就会产生严重削波失真。根据电容储存的能量与电压平方成正比关系,中点浮动电源的输出电容,容量应是总电源上储能电容量的4倍。

C9和R10是交流负反馈网路,与R2、R1共同构成电压并联负反愧。R2与R1构成的直流负反愧可使总的电压放大倍

率约等于R2除以1.2k(等于R1与BG1的发射结动态电阻并联),按照图①设计参数约为100倍,加入C9和R10的交流负反馈网路后,总的电压放大倍率约等于R2与R10的并联电阻除以1.2k,约为18倍。实践证明,采用这种方式工作的电压并联负反愧表现效果很不良好。二、对功率放大器基本电路的改进在图①所示的互补对称式OTL功率放大器基本电路中,信号输入激励级的内阻只有1k,需要做阻抗变换才能与大部份中、高阻信号源匹配。将信号输入激励级直接改成复合管是最简单的方式,复合管的接法有多种具体电路,最佳方案是采用图②所示的接法。新增加的前置级实际上相当于简单的电压控制电流型运算放大器,BG0的基极与发射极相当于运算放大器的正输入端和负输入端,正输入端的动态电阻已经提高到10K以上。同时,从功率放大器输出端接到负输入端发射极负反馈电阻R10和取样电阻

R11之比决定着总的电压放大倍率。电路调试要点也是先将R5调节成短路0电阻状况使BG2~BG5处于截止状态,用两只1K/2W电阻分别从总电源两端接到输出端获得中点电压。用一只200K电位器代替R1或R2接在电路板上,用导线将C1输入电容信号输入端与地短路。接通电源,测量BG1的集电极到发射极的电压降Uce,调节200K电位器使Uce等于E/2-0.6;在总电源电压为32V时,BG1的静态Uce应等于15.4V±0.1V。然后测量200K电位器实际所处的

电阻值,换成同阻值固定电阻替换电位器,再测量BG1静态Uce应该在15.4V±0.2V之内。确定好BG1的静态Uce 后,再从小到大调节R5使BG4和BG5的静态工作电流为15mA。为保险起见,可将R8与R9换接成100Ω/2W电阻,先测量R8与R9上的静态电压降应为1.5V。断开电源,测量R5可调电阻实际所处的电阻值,将R5换成相同阻值的固定电阻,拆掉先前从输出端分别连接到电源两端的1k/2W 分压电阻。再接通电源,测量R8与R9上的静态电压降应保持在1.2V~1.8V之间。测量输出中点电平也应为

16V±0.5V之间。把C1输入电容信号输入端与地断开悬空,测量R8与R9的电压降,用起子碰到C1输入端时R8与

R9上的电压降明显变大。然后把R8与R9换成0.3Ω电阻,接上喇叭试听。接通电源时因C0充电,输出端中点电压需要从零缓慢上升,因而只产生轻微冲击声。2秒钟后,用手碰C1输入端时喇叭将发出“呜”的交流声。将C1输入端与地(电源负端)短路,喇叭应不发出声音,实际会发出轻微背景白噪声或很小声的交流哼声。图②所示的互补对称式OTL 功率放大器改进电路,有一个明显的缺点是信号输入端直流电平比输出端中点电压要低2V~3V,在大众还没有运放IC 使用和三极管元件价格高的20世纪80年代初,它已经是很良好的可使用单电源的功率放大器实用电路。20世纪80年代中期,运放IC开始推出,人们开始采用运放IC来担任前

置极和激励极。典型电路如图③所示,因运放IC不需调整静态工作点,只要调节R5使BG2~BG5的静态工作电流10mA~20mA即可。注意,虽然运放IC不需调整静态工作点,但在BG2~BG5处于截止状态时,由R8、R9和BG3、BG5发射结正向导通将运放IC负输入端置为高电平,运放IC输出低电平,于是通过BG3发射结把运放IC负输入端置为低电平,运放IC输出端翻转成高电平,结果处于输出不定的低频率振荡状态,不能提供稳定的参考中点电平。在这种状况下调整BG2~BG5的静态工作电流,运放IC输出端为高电平时调节R5无效;而运放IC输出端为0电平时BG5不能导通,调节R5只能使BG2、BG3、BG4进入工作区,BG2实际只起到二极管的作用,经BG4和BG2的电流直全部灌入运放IC输出端,结果使BG2和运放IC因过流而损坏!(我曾经把当时手头所拥有的几只国产运放IC和十几只中功率三级管全部损坏,也未能将静态工作点调整出来。)必须先用导线将运放IC的负输入端与输出端连通,暂不接上负反馈电阻R6,让运放IC以跟随器方式输出稳定的参考中点电平,在此状态下调节R5使BG2~BG5的静态工作电流为15mA,将R5换成相同阻值的固定电阻后确认BG2~BG5的静态工作电流在10mA~20mA之间,再将运放IC

的负输入端与输出端端开,把反馈电阻R6接入电路中。使用运放IC担任前置极和激励极后,最好将BG2~BG5的静

态工作电流偏置方式改成由三极管与分压电阻构成的稳压器,这样可以在电源电压发生较大变化下保持几乎相同的静态工作电流。图④即是经过改进后的电路,BG1发射结门坎电压与BG2、BG3、BG4的门坎电压一同随温度变化,本身可起到温度补偿作用。为了减少运放IC输出端的静态工作电流,在运放IC输出端赠加了到地端的分流电阻R10。有了该分流电阻后,调整BG2~BG5的静态工作电流时可以先不接入运放IC,直接由其中的R7、R8和R10分压出近似的中点参考电平。先从0到大调节R5使BG2~BG5的静态工作电流在10mA~20mA之间,再接入运放IC,电路即能正常工作。另外,在运放IC输出端串联一只1k限流电阻R15,可保证运放IC输出端处于0电平时BG5也不会进入截止状态。使用运放IC担任前置极和激励极,最大的优点是输出端直流电平与信号输入端直流电平严格一致,相差不大于±0.05V。这样就可以制作出由两个OTL功率放大器构成的反向输出的BTL功率放大器,而在输出端直流电平与信号输入端直流电平相差悬殊情况下,两个OTL功率放大器的正、反相输出端直流电平往往会相差超过0.5V,明显影响喇叭的工作平衡位置。BTL功率放大器的正、反相输出端直流电平直流电平相差必须小于0.1V,喇叭的工作平衡位置才不会发生明显偏离自由平衡位置。喇叭的工作平衡位置明显偏离自由平衡位置时,正反方向的机械振动幅度不对称,

发出的声波将产生畸变不自然。另外,输出端直流电平与信号输入端直流电平严格一致,才使得使用正、负双电源供电的OCL功率放大器成为现实。否则,因输出端直流电平与电源中点电平相差较大,将导致喇叭不能良好的正常工作。由于大部分运放IC的工作电压都不高,性能良好的高电压运放IC品种少、价格高,人们也可以采用与运放IC前置级相同的差动放大电路来达到同样目的。图⑤即是采用差动放大方式做前置极的典型电路,它比图①所示的互补对称式OTL功率放大器基本电路多用2只要求特性一致的三极管,比图②所示的改进型互补对称式OTL功率放大器实用电路多用1只三极管。说倒底,并不是人们不知道怎么设计功率放大器,而是受到器件选择上的限制,在不同历史时期只能使用相应的设计电路。在20世纪80年代后期,人们才开始比较容易找到特性一致的三极管进行配对使用。因差动放大极的静态电流可由电路设计参数准确给定,不用调节差动放大管的静态电流。在图⑤电路使用32V电源的情况下,前置差动放大管的静态电流为0.51mA~0.52mA,只要先调节

R12使BG1的集电极到地端的电压降为15.4V,再调节R5使BG2~BG5的静态工作电流在10mA~20mA之间即可。在调整BG1的静态电流时,同样先要将R5调节成短路0电阻状况使BG2~BG5处于截止状态,暂不接入负反馈电阻R10,用导线将BG6、BG0的基极短路。接通电源,先调节

R12使BG1集电极到地端的电压降为15.4V±0.2V,再调节R5使BG2~BG5的静态工作电流为15mA。为保险起见,先将R8与R9换接成100Ω/2W电阻,测量R8与R9上的静态电压降应为1.5V。断开电源,测量R5与R12可调电阻实际所处的电阻值,将它们换成相同阻值的固定电阻。接通电源,测量R8与R9上的静态电压降应保持在1.2V~1.8V 之间。测量输出中点电平应在16V±0.3V之间。断开电源,将BG6、BG0的基极间连接导线取掉,把负反馈电阻R10接入电路。再接通电源,测量R8与R9上的静态电压降应保持在1.2V~1.8V之间。测量输出中点电平应在16V±0.2V 之间,差分管电流放大倍率越大,输出端直流电平与信号输入端直流电平相差越小。用起子碰C1输入端时R8与R9上的电压降明显变大。然后把R8与R9换成0.3Ω电阻,接上喇叭试听。接通电源时输出端中点电压需要从零缓慢上升,因而只产生轻微冲击声。2秒钟后,用手碰C1输入端喇叭将发出“呜”的交流声。将C1输入端与地(电源负端)短路,喇叭应不发出声音,实际会发出轻微背景白噪声或很小声的交流哼声。三、对功率放大器实用电路的完善采用自举电路设计的功率放大器虽然电路相对较为简单,但却存在下限工作频率截止点。而引入自举电路是为了避免对上半波进行放大时没有足够电流提供给互补管使用,在不缺三极管使用的情况下,可以采用恒流源来保证对上半波进行放大时也

有足够的电流提供给互补管使用。与此同时,将差动放大器也设计成由恒流源提供工作电流,可以大大提高对共态噪声的抑制比和放宽对电源电压的准确要求。图⑥是使用恒流源的功率放大器典型电路,其中:BG3与BG4构成标准恒流源,前者给前置差动放大极提供1mA恒定总电流,2只差分管BG1、BG2各得到0.5mA的静态工作电流;后者提供2mA 恒定电流,与激励极BG5的静态工作电流2mA相等,从而使放大器输出端Q的静态中点电压完全由阻值相同的R13与R14分压确定出来,不会过大偏离E/2。串联在下方R14上的D1是为了补偿上方复合管的门坎压降比下方单一的互补管门坎压降多一个PN结压降,确保由阻值相同的R13与R14分压确定出来的中点电压更准确。激励极BG5的静态工作电流已经由R4上的1V压降和R12阻值200Ω确定为2mA,也不用调节。所以,在调节BG7~BG10的静态工作电流时先不接入BG4和BG5,直接在R13与R14分压出中点参考电压并提供有0.4mA~1.1mA的偏置电流给BG6工作状况下,由最小零电阻起始调节R10使BG7~BG10的静态工作电流为15 mA即可。然后把R10换成固定电阻,将BG4和BG5接入电路板,放大器即刻正常工作。虽然元件参数存在离散性,可能使BG5激励极的实际静态工作电流与BG4恒流源电流有少量相差,差动放大极也会根据输出端Q的静态电压偏离中点状况自动改变BG1的实际静态工

作电流,使BG5的实际静态工作电流与BG4恒流源电流完全相等。当然,对BG5实际静态工作电流进行自动调节后,差动放大极的静态工作电流不允许其中任何一个明显减少

太多。按照图⑥中的元件参数,只要变化0.1mA就可以让BG5的静态工作电流变化1mA,足以实现对BG5的静态工作电流调整。然而,由于恒流源限制了激励极处于截止状

态时所能提供的最大电流,提高电源电压后并不能相应的提高输出幅值。虽然相应增加恒流源电流可以提高输出幅值,但却使激励极静态工作电流也相应增大,稳定性变差。较好的办法是引入镜像电路,采用上下对称的差动电流放大方式驱动后面的互补对称功率放大管工作。图⑦即是采用上下对称差动电流放大方式作激励极的功率放大器实用电路,因输出功率较大,为避免过载损坏器件,电路中加进了限制最大输出电流的保护功能。其中,BG4和BG5构成的镜像电路,可使BG5的工作电流Ic5与BG4的工作电流Ic4保持完全

相等,进而对驱动BG6。实现由BG6、BG7构成上下对称

的差动电流放大方式。这样,即可保证在上半波信号需要激励极提供更大驱动电流时,BG6也同步能输出更大的驱动电流给后极功率放大管。要达到同样目的,人们也可以采取再并联一对互补对称的前置差动放大器,由它实现对BG6的

驱动。但由于镜像电路对元件的要求没有前置差动放大器高,采用两对前置差动放大器并不能对整个电路提高任何性能,

大可不必使用那种多花代价的笨办法。该电路的调整方式与图⑥所示的使用恒流源的功率放大器电路完全相同。从工作原理上考虑,采用上下对称差动电流放大方式作激励极的电路已无缺陷。但由于大功率三极管的特性并不理想,在输出电流达到1A以上时,电流放大倍率只有10~25,将使得驱动大功率三极管工作的互补管必须提供超过200mA以上电流给后极。互补管本身的功耗经常超过2W,发热严重,互补管也需要另外装散热器。在电子元件厂家已经研制生产出大功率达林顿管的情况下,改用内部已做成复合管的达林顿管作最后级电流放大管,可以大大减轻对互补管的输出驱动电流要求。如SGS公司生产的TIP系列大功率达林顿管,在输出电流达到2A以上时,电流放大倍率也能达到500以上,从而只需要互补管提供20mA以下驱动电流给后极工作,互补管本身的功耗降低到0.2W以下。需要修改的设计参数只是根据达林顿管的门坎电压等于普通三极管门坎电压的2倍,把提供静态工作电流的偏置分流电阻R18、R19增加一倍阻值,以便保持互补管的静态工作电流不改变。同时互补管BG9、BG10基级间的电压降比先前增加一只普通三极管的门坎电压,它对电路静态工作电流的调整方式毫无影响。由于达林顿管不是专为音频功率放大器研制的器件,工作频率上限并不很高。普通大功率三极管的频率上限只达到

1MHz,专为音频功率放大器研制的大功率三极管也只能达

到10MHz,最好的不超过100MHz。虽然音频范围只有

10Hz~20kHz,可是三极管的电流放大倍率与工作频率相关,处于工作频率上限时,电流放大倍率会下降到1倍。这使得工作频率上限低的三极管对20kHz高音的放大能力比2kHz 中音的放大能力要低,也就导致开环状态下高音与中音的电流放大倍率已经不保持相同。而闭环负反馈对整个音频保持相同的取样倍率,并不改变混合信号里高音电流放大倍率比中音电流放大倍率低的状况,从而使混合信号里的高音实际比中音的放大倍率要低。所以,使用工作频率上限高的大功率三极管,可使混合信号里高音电流放大倍率比中音电流放大倍率下降得要少。如果使用频率上限只达到1MHz的大功率三极管制作音频功率放大器,将感到8kHz以上的高音成分严重不足。故此,国外的电子元件制造厂已经在20世纪90年代研制出性能超群的音频功率放大器专用大功率三极管。日本三肯公司制造的三肯管是最早出名的音频功率放大器专用大功率三极管,但它们都不是达林顿管,需要性能同样超群的中功率来做驱动前极,而且要给驱动前极中功率安装散热器。

到20世纪80年代后期,人们研制出性能更高的大功率场效应管。任何大功率场效应管的工作频率上限也能达到

100MHz,但因起初缺少高工作电压的大功率场效应管,生

产厂家制作输出功率超过40W的功率放大器还是以选用大

功率三极管。实际上,使用大功率场效应管制作功率放大器比使用大功率三极管制作功率放大器更方便。但需要特别注意一点,虽然效应管是电压控制型器件,但大功率场效应管的输入栅极与源极之间存在较大的结电容,可达到800P左右,因此在工作频率较高的状况下同样要提供5mA~10mA 充放电驱动电流。窜联在栅极前的电阻会影响对输入结电容的充放电,阻值尽量取小。图⑨即是采用大功率场效应管的实用功率放大器电路,由于某些大功率场效应管栅极没有内置限压保护稳压管,特地在电路中加入了限压保护稳压管。使用没有内置限压保护稳压管的大功率场效应管,焊接时必须先用导线将栅极与源极短路,焊接好大功率场效应管和限压保护稳压管后才能将栅极与源极间的短路导线去除。采用大功率场效应管设计的功率放大器,调试方式与采用大功率三极管设计的功率放大器完全相同。需要注意的是,大功率场效应管的门坎电压在2V~3V之间,(三星公司生产的大功率场效应管门坎电压多为2V),大功率场效应管的实际工作电压不要超过最大允许电压的一半值,最大工作电流峰值不要超过允许电流的2/3方能确保安全可靠工作。这个要求已经比对三机管的要求宽很多,三机管的实际工作电压也不能超过最大允许电压的一半值,而三机管的最大工作电流峰值不能超过最大允许电流的1/3方能正常工作。大功率场效应管还有一个极大的优点是温度稳定性能十分良好,从

25℃~125℃,工作特性几乎完全相同。所以使用大功率场效应管时,散热器上的温度也可以相应允许高到90℃,而三极管还存在二此击穿的可能,实际允许工作的温度应限制在70℃以下。四、使用多组电源供电高效功率放大器没有把输出端中点电压严格控制在要求理想数值状况下,功率放大器只能使用单电源供电,中点电源采用自动跟随的浮动方式实现。只要给足够大容量的储能电容,实际输出能力与使用双电源的OCL输出方式并无区别。之所以要采用OCL输出方式,除了面可以进一步设计出性能更好功率放大器外,更大的实际意义是使用正负双电源供电的OCL输出方式可以进一步降低电路背景噪声。在功率放大器前置信号输入级采用差动放大电路后,输出端直流电平已经能与信号输入端直流电平保持基本相等,相差小于±0.2V。在这种状况下,将信号输入端直流电平偏置电阻连接到正负双电源中点电位上,就可以把单电源供电的OTL输出方式改成使用正负双电源供电的OCL输出方式,不再使用自动跟随的浮动中点电源。其实,使用运放IC做前置信号输入级能使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于

±0.02V,正是因为运放IC内部也采用差动放大电路做输入级,而且一般都采用复合管方式的差动放大电路做输入级,从而使流进或流出IC正、负输入端的静态电流低于0.1μA,在负反馈电阻上的静态直流压降已低于0.01V。若能找到特

性非常一直的配对管,当然也可以采用复合管方式的差动放大电路做输入级,使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于±0.02V,特性极其一致的配对管需要在一片半导体材料上做成,这正是运放IC的制作工艺优势。简言之,仅仅把OTL输出方式改成OCL输出方式,在电路设计上没有任何提高。实际上,以甲乙类工作方式制作的互补对称式功率放大器存在一个缺陷,就是最后级大功率电流放大管的静态处于接近截止区位置,无论使用大功率三级管,还是使用大功率场效应管,在截止区附近的动态电阻都明显比线性区的动态电阻要大得很多,实际可以相差数倍到10多倍。静态电流越小,动态电阻越大。当放大器输出电压归零时,喇叭振动盆还会继续作阻尼振动到停止。音圈在磁场中运动产生的电流将阻碍喇叭振动盆自由振动,如果与音圈串联的放大器内阻比较大,就会使音圈在磁场中运动产生的电流减少,降低电阻尼作用,振动盆的阻尼振动就不容易停止下来,发出的声音出现“拖泥带水”的发散收不住状况。与此同时,中低音单元喇叭的音圈在磁场中移动所产生的感应电流不能被功率放大器尽可能短路掉,会成为妨碍中高音单元喇叭工作的干扰驱动信号。甲类放大器之所以有较好的重放音质,奥妙就在于它具有很低的静态输出阻抗。但由于甲类放大器功耗大、发热严重,不宜在大工作电压下采用。为此,可以在使用高低两组正负电源供电的方式下对

最后级大功率电流放大管的工作状态实施动态偏置,使放大器输出电压幅度小于4V时大功率电流放大管工作于甲类状况,输出幅度大于4V时变换为乙类状况。由于轮流处于工作中的大功率电流放大管始终是在大电流状态下工作,实际效果与纯甲类工作方式相同。

图⑩即是采用大功率达林顿管设计的高效率动态偏置甲类功率放大器典型电路,为了较好的实现动态偏置,T1、T2上下两只大功率达林顿管采用互补管,以便增加偏置电路上的门坎电压。要求两只互补管特性参数完全相同,实际电流放大倍率相差不要超过20%。因动态偏置是在每一个半波输出信号经过4V参考值进行变换,要求动态偏置变换速度必须比输出信号上限20KHz频率至少高100倍,光电隔离变换器件的响应频率至少应达到1MHz,所使用的二极管也必须采用高速管。当输出信号电压处于±4V以内时,光电输出端三极管处于截止状态,两只互补大功率电流放大管被偏置在1A静态电流下工作,而当输出信号电压超过±4V时,光电输出端三极管处于导通状态,两只互补大功率电流放大管被偏置在10mA静态电流下工作。但由于输出信号电压超过±4V时,大功率电流放大管的工作电流必须超过0.5A,4Ω负载时必须超过1A,实际也等同于甲类工作方式。与此同时,在输出信号电压处于±6V以内时,BG11、BG12处于截止状态,T3、T4达林顿开关管也截止,T1、T2两只互补大

功率电流放大管是由±8V低压电源供电。而在输出信号电压超过±6V时,BG11、BG12处于导通状态,T3、T4达林顿开关管也导通,T1、T2两只互补大功率电流放大管改由±30V 高压电源供电,从而使大功率电流放大管的功耗降低。在N 道沟和P道沟高压大功率场效应管都很容易购买到的情况下,可改用大功率场效应管来制作高效率动态偏置甲类功率放

大器。同样,T1、T2上下两只大功率场效应管要采用互补管,要求两只互补管特性参数相同,实际的电流放大倍率相差不要超过20%。由于使用动态偏置工作方式,偏置电路的参数调整稍微复杂一些。具体方式与前面介绍的方法相同,先把T1、T2由R11、R12串联确定出的1A静态电流调节

出来,再适当分配二者的实际阻值,使R12处于短路时T1、T2的静态电流为2mA~10mA。即不要完全截止,也没必要调大。鉴于动态偏置甲类功率放大器的最主要目的是要降

低放大器本身的输出内阻,在上下大功率电流放大管中不宜串联限流保护电阻,对放大器最大输出电流的限制特改设计在电源部分电路之中。这样,与动态偏置甲类功率放大器匹配使用的高低两组正负电源也同时都设计成稳压电源。参见图12,使用大功率场效应管制作供功率放大器使用的稳压电源非常简单,功率放大器对电源电压的准确值要求不高,使用大功率场效应管制作的简单稳压电源完全能达到要求,同时还可以获得很好的电子滤波效果,可大大降低从电源带进

来的杂波噪声。必须明白,每一只大功率器件都受到最大功耗的使用限制,尤其在温度明显升高的状况下,最大允许功耗将大大降低。把功率放大器的电源设计成稳压电源,除了能使功率放大器电路处于稳定状况下工作外,由稳压电源调整管分担掉一部分功耗,可减轻由功率放大管承担的无用功耗,使功率放大器发挥出最大工作能力。在缺少大功率器件的时代,只能使用简单的整流电源,结果使放大器实际能够输出的功率比理论计算值小得很多,原因就是功率放大管的最大允许功耗已经被无用功耗占去太多。五、结束语如果仅从对功率放大器性能的完美追求上去考虑,我们还可以把许多只功率放大管并联起来工作获得更高的性能。然而这乃是在用高投入成本来获得实际效果增加不多的笨蛋干法。事实上,当人们把功率放大器的输出功率制做得很巨大时,它也成为中高音单元喇叭的致命杀手!而且使用级后分频方式,在使用到高中低三个单元喇叭的情况下就开始明显表现不佳,级后分频方式仅能在二分频情况下表现得比较良好。只有改为采用级前分频方式来设计制作音频功率放大器,我们才能从根本上克服级后分频的缺点,并根据不同工作频带范围要求选用适合的器件,以最少的制造成本获得最高的效果。

分立元件OTL功放资料剖析

典型OTL音频功率放大器组装与维修 场景描述 OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。 本任务流程如图3-1-1所示。 图3-1-1任务流程图 一、实训工具及器材准备 完成本次实训任务所需工具及器材见表3-1-1。 表3-1-1拆装与检修动圈式扬声器实训工具及器材准备

二、简易OTL音频功率放大器组装 (一)电路原理的熟悉 图3-1-2简易OTL功放电路原理图 1、电路特点 本功放电路结构简单,元件易购,成本低廉,原理典型,非常适合初学者组装学习。电路包括: A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。 B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放部分来推动喇叭。图中以VT3、VT4为核心组成的电路完成功率放大功能。 C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。改变R8的阻值可以改变功放管的静态电流。 D.负反馈电路:利用负反馈的特性,控制整个放大电路的增益,提高电路稳定性。其中R4为放大器提供交直流负反馈,R5、C4对反馈的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。 2、电路原理和各元件的作用

音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。 第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压(正常要求为电源电压的一半)。C3为输入隔直耦合电容。R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进行放大。直流耦合就等于直接耦合,所以,信号传输没有损耗,电路工作效率很高。 C4、R4、R5组成负反馈电路,对于直流而言,C4表现出无穷大的阻抗,这可以使直流工作点非常稳定。对交流来说,C4相当于短路,R4和R5的比值决定了放大倍数。R5为零欧姆时,增益最大,灵敏度极高。我们一般可以根据实际情况在10-100欧姆中取值。 第二级共射极放大:以VT2为核心构成的放大电路。VT2是推动级放大管。输入信号经过VT1、VT2两级放大后,具备了驱动VT3、VT4(输出级)的能力。本功放电路只有三级,主要由第一二级(VT1、VT2)决定最大放大倍数,第三级(VT3、VT4)决定最大电流的驱动能力,想要电路放大倍数大,VT1、VT2要选放大倍数大的三极管,想要带负载能力强,VT3、VT4应该用大功率大电流的三极管,当然,放大倍数也不能太小。 C6是中和电容,起高频负反馈作用,该电容主要是为了减小高频的增益,当高频过强时,听起来会感觉声音尖、剌耳,当高频增益太强时,甚至出现高频寄生振荡,严重影响功放电路效率和音质。该电容一般取值在47-4700PF之间,要求不严时也可以取消。 VT3、VT4这对末级互补输出对管在工作时会发出较大的热量。改变R8可以改变VT3、VT4的工作电流,随着温度的升高,VT3、VT4的电流还会自动变大,电流变大就会更加发热,更加发热就会电流更加变大,这是一个恶性循环,所以,要求严格时,R8应该使用负温度系数的热敏电阻,并且紧挨着VT3、VT4感受温度来补偿VT3、VT4的电流变化。 R8和VD5、R6和R7、VT3的CE极三部分共同组成VT3、VT4的偏置电路,保证VT3、VT4在无信号时输出中点电压。R8和VD5千万不能开路,否则VT3、VT4会有很大的基极电流,导致VT3、VT4的集电极电流剧增,立即发热烧坏。但是,R8和VD5的分压也不能太低,否则,在小信号时会听出明显的截止失真(和交越失真相同)。这种失真只在小信号时才有明显的反应。在高档功放电路中,VD5和R8会用其它元件代替,同时还会引入温度补偿。 R6、R7主要是给VT3、VT4提供基极偏置电流。当信号正半周时,VT3基极电压会上升,R6、R7两端的电压会变小,将不能给VT3提供足够大的基极电流。由于C5自举电容的出现,信号正半周时会将C5的正极电压也“举”高,这就可以通过

数字功放原理

数字功放原理 数字功放也称D类功放,与模拟功放的主要差别在于功放管的工作状态。传统模拟放大器有甲类、乙类和甲乙类、丙类等。一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25% 。乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效率高达78.5%。但因为这样的放大,小信号时失真严重,实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降,虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质差,音频放大中一般都不用,这几种模拟放大电路的共同的特点是晶体管都有工作在线性放大区域中,它按照输入音频信号大小控制输出的大小,就像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能。 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗。所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高。 图1是数字D类功放的工作原理框图。D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中。 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低。双向信号可用其它方式调制,如占空比50%,即脉冲

宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负。因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制。 音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频。二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码。获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码。输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定。功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便。由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠。 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确。

!用分立元件设计放大器电路教程

用分立元件设计放大器教程 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。 其中: C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA 进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。

用分立元件设计制作互补对称式功率放大器

用分立元件设计制作互补对称式功率放大器 2008-08-18 13:49:31 作者:未知来源:中国电子网 关键字:功率放大器运放达林顿管恒流源工作电流稳压管差动放大器电压放大集电极元件 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。其中:C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3C2>1/10、(R3+R4)Ic1=E/2-1.2,因R4 是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。 BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求Buceo>E、Iceo≤Ic2/100=30μA、β=100~200。在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA~30mA,要求Buceo>E、Iceo≤Ic4/100=0.1mA、β=50~100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时β>10。 R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等于0.6V标准参数时,由互补电流放大级的静态工作电流

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

利用场效应管实现放大电路

利用场效应管实现放大电路 一、设计题目 设计一个场效应管放大器,要求电压增益大于40,输出阻抗小与500欧姆,电源电压15V,输出信号峰峰值不小于8 V,非线性失真度小于10%。 二、技术参数要求 1, 要求电压增益大于40 2,输出阻抗小与500欧姆 3,电源电压15V 4,输出信号峰峰值不小于8 V 5,非线性失真度小于10% 三、所用设备、仪器及清单 示波器一个、信号发生器一个、直流稳压电源一个、数字万用表一个、3DJ6F场效应管三个、47μF电容五个、面包板一个、电阻若干。 四、电路图 五、原理介绍

(1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。 (2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;

分立元件功放电路OTL

OTL功放电路,耦合元件 一、功率放大器电路基本特点: 互补对称式OTL功率放大器基β本电路如图所示: C1为信号输入耦合元件,需注意极性应和实际电路中的电位状态保持一致。 R1和R2组成BG1的偏置电路,为BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100,Ic1为2mA计算,R1就不大于6k,故给定为5.1k,C1也相应给定为22uf,它对20Hz信号的阻抗为362Ω;R2根据电源采用的具体电压确定,约为R1(E/1-0.6)/0.6,按照32V电压值,即5.1×(32÷0.6-0.6) ÷0.6≈130,就取120K,确切的值通过实际调试使BG1集电结电压为15.4V来得到。 C2与R3构成自举电路,要: R3×C2>1/10,(R3+R4)×IC1=E/2-1.2 因R4是B G1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。 按照32V的电压值和IC1为2mA计算,R3和R4之和为7.2k,实际将R3给为820Ω,R4给为6.8k,IC1则为1.94mA;C2因此可取为220u。 R5和D是BG2和BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取3mA-4mA;改变R5的阻值可使BG2、BG3的基极间的电压降改变,而实现其对静态工作的调整。与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管门坎电压随温度发生的变化,使互补管静态工作点稳定。 并联在BG2和BG3基极间的C4,可使动态工作时的△UAB减小,一般取47u。 C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P —200P。 BG1起放大作用,在该电路中被称为激励级,要求:Buceo>E, Iceo≤IC1/400=5uA、β=100~200,所以应选用小功率低噪声管。

BTL功放电路

BTL功放电路的原理与应用实例 2012年11月3日星期六 集成功率放大器由于不仅具有体积小、重量轻、成本低、外围元件少、安装调试简单、使用方便的优点;而且在性能上也优于分立元件,例如温度稳定性好,功耗小、失真小,特别是集成功率放大器内部还设置有过热、过电流、过电压等自动保护功能的电路对电路自行进行保护。由于集成功率放大器具有分立元件不具有的很多优点,近年来集成功率放大器件发展很快,使用相当广泛。产品有单通道和双通道、单功放、双功放及多功放等器件。集成功放在实际应用中通常接成OCL电路,或OTL电路,接成BTL(Balanced Transformer Less,一说是Bridge Transformerless)电路却很少,而BTL电路的优点是电源利用率比前面两种电路高4倍。本文从BTL电路的结构、原理出发,分析BTL电路输入、输出信号特点,最后介绍如何用集成功率放大器件构成BTL电路。 1.1BTL电路的组成及工作原理 大家知道OCL和OTL两种功放电路的效率很高,但是他们的缺点就是电源的利用率都不高,其主要原因是在输入正弦信号时,在每半个信号周期中,电路只有一个晶体管和一个电源在工作。为了提高电源的利用率,也就是在较低电源电压的作用下,使负载获得较大的输出功率,一般采用平衡式无输出变压器电路,又称为BTL电路。电路如图1所示。 在输入信号 U i正半周时,V1,V4导通,V2,V3截止,负载电流由V CC经V1,R L,V4流到虚地端。如图1中的实线所示。 在输入信号Ui负半周时,V1,V4载止,V2,V3导通,负载电流由V CC经V2,R L,V3流到虚地端。如图1中虚线所示。可见: (1)该电路仍然为乙类推挽放大电路,利用对称互补的2个电路完成对输入信号的放大;其输出电压的幅值为:U OM≈V CC 最大输出功率为: (2)同OTL电路相比,同样是单电源供电,在V CC,R L相同条件下,BTL电路输出功率为OTL电路输出功率的4倍,即BTL电路电源利用率高;

分立功放

实用低频功率放大器 一、任务 设计并制作具有弱信号放大能力的低频功率放大器。其原理示意图如下: 二、要求 1、基本要求 (1)在放大通道的正弦信号输入电压幅度为(5~700)mV ,等效负载电阻R L 为8Ω 下,放大通道应满足: ①额定输出功率P OR ≥10W ; ②带宽BW ≥(50~10000)Hz ; ③在P OR 下颌BW 内的非线性失真系数≤3%; ④在P OR 下的效率≥55%; ⑤在前置放大级输入端交流短接到地时,R L =8Ω上的交流声功率≤10mW ; (2)实际测量时输入为音频信号,要求设置有音量、高音、低音大小调节电路; (3)功放部分不能使用集成功率放大器。 2、发挥部分 放大通道性能指标的提高和实用功能的扩展,如设置有保护电路、提高效率、减小非线性失真等。 一、方案设计及验证 1、设计要求前置放大器输入交流短接到地时,R L =8Ω的电阻负载上的交流噪声功率低于10mW ,因此要选用低噪声运放。本系统选用优质低噪声运放NE5532N 。设计要求输入电压幅度为5—700mV 时,输出都能以P 0≥10W 满功率不失真输出,信号需放大几千倍;又考虑到运放的放大倍数与通频带的关系,固应采用两级放大。赠以调节可用电位器手动调节,也可以自动增益控制,但考虑到题目中的“实用”两字(例如输入信号不是正弦信号,而是大动态音乐信号),故采用手动增益调节。前置放大器采用低噪声双运放,分别以同相放大的方式,作为左右通道的信号放大。 2、功率放大器常用电路有两种,一种用输入输出变压器的推挽电路,另一种是无输入输出变压器的推挽电路。如OCL 、OTL 、BTL 等。相比之下,前者的频响和失真方面都表现较

奇声AV-757DB功放电路原理与分析

奇声AV-757DB功放电路原理与分析 奇声A V-757DB功放电路原理与分析整机电路由系统控制、信号源选择、杜比定向逻辑解码、卡拉OK、前置、功放与保护等电路组成,如图2-63所示。 (1).系统控制电路 系统控制电路由IC501(767DB)和有关外围元件组成,如图2-64所示。 767DB是微处理器集成电路,内部结构及引脚功能(见表2-6)均与89C55基本相同。 767DB根据键矩阵电路送入的键控指令脉冲,去控制杜比环绕声解码等电路的工作,同时驱动LED显示电路显示整机的工作状态。 767DB⑦脚为复位端,外接复位电容C501。在每次开机时,+5V电压均会经C501在⑨脚产生一个高电平脉冲电压,使微处理器内部电路清零复位,进入初始化状态。 767DB⑦脚为工作模式控制端,外接控制开关K702-2,可分别选择DSP声场处理、PRO杜比定向逻辑解码、3CH三声道和2CH二声道共四种工作模式。 IC502(4094)在微处理器767DB的作用下,通过C1~C3、D1和D2的输出信号去控制杜比定向逻辑解码电路。

(2).信号源选择电路 信号源选择电路由电子开关集成电路IC001(4052)、转换开关K001和有关外围元件组成,如图2-65所示。 K001为四挡转换开关,可控制IC001⑨脚和⑩脚的电平,从而控制其内部的电子开关,分别选择ID,VCD、TAPE和TUNER四路音频信号。

(3).杜比定向逻辑解码电路 杜比定向逻辑电路由IC704(M69032P)和IC2701(YSS228)、IC702(4053)等组成,见图2-66和图2-67。 信号源选择电路选出的左、右声道音频信号分别从IC2704的(15)脚和(22)脚输人,经环绕声解码处理后的左、右声道信号分别从(32)脚和(33)脚输出,经信号直通/解码处理转换继电器J801送往前置放大电路的E端和F端。中置声道信号从(38)脚输出,经C761送往前置放大电路的C端。 解码后的环绕声道信号从IC704(39)脚输出,经IC702转换后送入IC701进行延时处理。延时处理后的环绕声信号经IC704(47)脚内部的7kHz低通滤波器滤波后从其(42)脚馈入,再经杜比B降噪电路降噪后,从(29)脚输出,经C762送往前置放大电路的D端。 IC704的(36)脚外接中置声道模式控制电路,(23)脚~(25)脚接受来自微处理器IC501的测试控制信号和IC502的调配组合转换控制信号。IC501还通过DA TA、CLK和REQ信号对IC701进行控制。 IC704(34)脚输出L+R信号,经C765、11743加至前置放大器的B端。

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

功放设计方案

音频功率放大器设计方案 31102140 宇洋通信1103 31102391 宇超自动化1102 一、设计任务和设计要求: (1)功能:音频功率放大器用于驱动扬声器发声,将话筒接收到的电信号放 大后从扬声器传出。音频放大器有两种,一种是专用于音频放大的运算放大器,它在音频围有比较好的性能(主要是频响特性和失真特性,好的音频放大器这两个特性都非常好),一般用于音响的前置放大级;另一种是音频功放,也就是功率放大电路,用于音响的驱动级,可以驱动功率比较大的喇叭或者音响,使之发出声音;运算放大器是集成放大电路的统称,其概念围比音频放大器(特指用于前置放大的音频放大器)大,且有更大的应用围,其频率适用围远远大于音频放大器,往低到直流,高的可以达到几百M甚至G赫兹级。简单的说,音频放大器就是一种特殊的运放。 (2)主要设计指标: 1、负载阻抗:R L=8Ω 2、额定功率:P0=20W 3、带宽:BW≥20Hz~20KHz。 4、音调控制: 低音:100Hz±12dB 高音:10kHz±12dB 1KHz处增益为0dB 5、失真度:γ≤3% 6、输入灵敏度:Vi<775mV, Vi’<5mV 二、详细设计方案: 根据设计课题的要求,该音频功率放大器可由图1所示框图实现。下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线

路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要要有足够宽的频带,以保证音频信号进行不失真的放大。 图2 前置级放大器电路图 由于信号远输入的信号幅度较小。不足以推动以后的功放电路。因此要用电压放大电路对信号输入的音频信号电压进行放大,对于信号源,其负载约为47K Ω,所以选用电压串联负反馈方式的同相比例放大器,它可以使输入电阻增大,输出电阻减小,且输入输出电压同相。又因为前置放大级的增益为44dB,即158倍,取160倍,前置放大级电路采用二级,第一级与第二级采用电容耦合方式,总的电压放大倍数为Auf=160,设计中选用Auf1=1,Auf2=160。 其中第一级实际上是一个电压跟随器,它提高了带负载的能力。 电路中二极管D1作用是:当线路输入是0.775V时,D1导通,此时LF353(2)也为一个电压跟随器,信号不经过放大直接到音调控制级的输入端。当输入为

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

数字功放

数字功放 数字功放概述 ?·数字功放简介 ?·数字功放原理 ?·数字功放制作方法 ?·数字功放中音质和载波频率... 数字功放的应用 ?·DDX的数字功放解决方案 ?·基于德仪音频的高保真数字功放 数字功放简介 数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。 数字功放原理 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗; 而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高. 图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中. 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.

音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠. 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确. 数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起. 从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低. 利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.

如何设计出理想的D类数字功放

数字功放仍需模拟功夫 —如何设计出理想的D类放大器? 在多通道和数字音源时代,采用D类放大器以简化前级线路、提高功放效率从而降低对电源及散热的要求,这已是大势所趋。但D类功放虽然也被称作数字化功放,但在电路设计上绝不像纯粹的数字电路那么简单,也不是直接采用一两块芯片就可以大功告成的。以数字手段实现模拟功能,仍然需要考虑许多模拟方面的因素,但考虑的因素和角度与传统的线性功放又有很大差异。本文除了介绍D类放大器的基本原理和好处之外,还着重讲解了输出级设计、功放管选择、电源、电磁兼容,以及电路板布局方面需要注意的一些问题,这些实用知识有助于设计师减少走弯路的麻烦。 D类放大的好处 凭借诸如极佳的功率效率、较小的热量以及较轻的供电电源等优点,D类放大器正在音频世界掀起风暴,这一点儿也不令人惊奇。的确,随着技术的成熟以及其所达到越来越好的声音重现效果,看起来继续使用D类放大器向市场渗透是一个颇有把握的赌注,以往在这个市场上只有传统的线性(A类、B类或AB类)功率放大器能够提供令人满意的性能。 环绕声格式的不断进步加速了这种趋势。由于越来越多的家庭和车内娱乐系统、DVD播放器以及AV接收机需要驱动六个或更多的扬声器,线性放大器及其电源的尺寸增大了,并且产生了更多的热量。例如,Dolby Digital(杜比数字)格式要求六个独立的输出级,而更新推出的Dolby Digital EX要求更多的8声道。鉴于此,D类放大技术的优势显得比以往更加突出。 输出级数模转换机制 所有D类系统的共同特点及其超群的功率效率的奥秘就在于输出级(通常是MOSFET)的电源器件总是要么全通要么全关。这与线性放大器形成对比,线性放大器输出晶体管的导通状态随时间变化。晶体管消耗的功率是其压降与流过电流之积(P=IV),通常占到线性放大器消耗的总功率的50%或更多。在D类系统中不是这样。由于所有输出晶体管要么压降为零(处于“通”状态)要么流过的电流为零(处于“关”状态),理论上根本不会损失能量。回到现实世界中,安装在数以百万计的微处理器之上的冷却风扇表明即使是纯数字系统也会以发热的形式浪费能量,D类放大器达到的功率效率在85至90%之间。 不过,如何使一个天生只能产生方波的开关器件再现音乐中多种多样的波形呢?某些类型的高频“数字”信号可以通过低通滤波产生平滑的“模拟”输出。最广泛使用的就是脉宽调制(PWM:pulse width modulation)技术,其中矩形波的占空比与音频信号的振幅成正比。通过与一个高频锯齿波比较,可以很容易地将模拟输入转换为PWM(参见图1)。

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

制作功放必备知识

初级音响爱好者制作功放必备知识 一、常见Hi-Fi集成功放 而今市面上常见的Hi-Fi集成功放,主要是以下三家公司的产品: 1.美国国家半导体公司(NSC),代表产品有LM1875、LM1876、LM3876、LM3886、LM4766等。 2.荷兰飞利浦公司(PHILIPS),代表产品是TDA15××系列,比较著名的是TDA1514及TDA1521。 3.意法微电子公司(SGS),比较著名的是TDA20××系列及DMOS管的TDA7294、TDA7295、TDA7296。 NSC公司与SGS公司的产品音色中性偏暖,飞利浦公司的产品则较为明亮。 二、功放输出功率的选取 爱好者可按通常使用功率的两倍来确定,不要盲目追求大功率。功率过大,不仅成本上升(变压器、散热器、滤波电容,甚至机壳都得加大),而且散热设计、抗干扰、布局等也变得困难。费的功夫多,却造成不必要的浪费。 集成功放的自带散热片有绝缘与非绝缘两类。绝缘类,比如LM系列后缀为TF的品种,采用整体塑封工艺,只需将集成块与散热器直接固定即可。金属散热片外露的大部分集成功放属非绝缘类,其散热片一般与负电源相通,使用中切勿将其与功放其他部分接触(尤其是机壳与地线),否则集成块会马上损坏。非绝缘类功放块由于热阻较低,输出功率要稍大。 三、功放电路形式的选择 厂家推荐的电路以电压反馈型居多,且给出的指标也是在此基础上测试出来的,既然推荐,该电路应该能比较好地发挥集成块的性能,实际上也是如此。电流反馈与直流伺服是对集成功放应用的有益尝试,但结果不应作过分夸大。用LM1875分别制作两种反馈形式的功放,主观听感并无多少差别。直流化是必要的,对于低失调电压的品种(如LM1875),可以直接取消反向输入端对地电容实现直流化。直流伺服电路使线路复杂化,没有必要采用。 直流电压不宜取得过高,否则不仅集成块发热严重,而且音质劣化,还可能引发过压保护电路的误动作。应优先使用厂家推荐电压,若没有,可用极限电压×85%得到直流电压,再以直流电压除以1.25得交流电压。 功放无需使用稳压电源,但电源的功率容量一定要足够。变压器的功率可取总输出功率的两倍,并作好屏蔽。整流管要选低内阻的,且在每个管子两端

相关文档
相关文档 最新文档