文档库 最新最全的文档下载
当前位置:文档库 › “电子产品可靠性设计、试验技术与失效分析”系列培训班

“电子产品可靠性设计、试验技术与失效分析”系列培训班

“电子产品可靠性设计、试验技术与失效分析”系列培训班
“电子产品可靠性设计、试验技术与失效分析”系列培训班

“电子产品可靠性设计、试验技术与失效分析”系列

培训班

招生对象

---------------------------------

1、各企事业单位从事电子电器相关的工作人员(电子电气检测实验室工作人员、产品研发、技术、品质管理、安全监督、可靠性设计、质量检验、测试、采购等);

【主办单位】中国电子标准协会

【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生

【报名邮箱】martin#https://www.wendangku.net/doc/c614470290.html, (请将#换成@)

课程内容

---------------------------------

随着电子电器产品的体积与重量日益缩小,技术含量不断扩大、智能化程度成倍提高,对电子电器产品可靠性的要求已成为衡量产品质量最重要的技术指标之一。可靠性不仅在国防、航天、航空等尖端技术领域倍受关注,在工业、民用电子等领域也同样得到重视。国家标准委近期公布了GB2423、GB2424等相关一系列标准的更新,进一步规范化现在可靠性试验、测试等相关内容。重视程度可见一斑。

为进一步加强各企事业单位相关人员针对产品可靠性方面的技术能力及国家标准的应用理解,解决各企事业单位没有相关检验人员或者检验人员没有经过正式培训并持证上岗的现状,实现国家对相关技能人员必须持证上岗的要求。我中心定于近期于深圳、杭州两地分别举办“电子产品可靠性设计、试验技术与失效分析系列培训班”学习结束后,统一考核,考核合格者颁发《可靠性实用工程》专业技能资格证书。具体安排如下:

一、学习内容及时间地点

A 班《电子产品可靠性设计、试验技术》

时间地点:2013年8月30日-9月1日深圳(30日报到)

内容:◆可靠性设计技术

1、可靠性设计的基本概念和运用(A、可靠性设计的思路B、降额设计C、简化设计D、储备(冗余)设计 E、容差设计F、可靠性预计G、可靠性增长(RGT)

2、可靠性设计的相关标准和实施步骤

3、元器件的故障模式、影响及采用的对策(A、电子产品常见的失效B、无源器件常见失效原因、寿命计算C、电子器件常见失效原因、寿命评价方法D、机电元件常见失效原因和对策E、集成电路的主要故障特点及对策。F、可编程器件的程序设计对可靠性的影响G、静电和闩锁对电子产品的破坏和预防设计

4、整机设计规则(A、热设计(温度对电子设备可靠性的影响、电子设备热的来源、热设计的目的、热设计的程序、热设计中元器件布局案例、热设计中元器件的安装原则、鼓风机的选择与安装、冷却剂流道设计、热设计的改善方法及案例)B、版图设计C、接地和抗干扰D、三防和防尘设计E、结构和防振设计F、安全性设计)

5、装配、生产工艺对产品可靠性的影响(A、焊接、静电防护、生产工序、PCB制备、离子污染、应力释放对产品可靠性的影响。)

◆可靠性试验技术

6、设计人员需要了解的可靠性知识(A、可靠性基本知识B、可靠性的发展方向C、如何运用可靠性的特征量D、如何看MTBF、及实验分类)

7、可靠性设计的评价(A、可靠性预计现状、评价,新的评价思路,可靠性增长试验)

8、可靠性鉴定试验、验收试验与型式试验

9、加速寿命实验(A、寿命试验的分类B、寿命试验的测试点C、寿命试验的数据处理D、加速寿命试验的理论依据E、加速应力的选择F、样品数量的选择G、激活能的计算H、双应力加速实验法I 、整机产品的加速寿命试验

10、环境试验对产品缺陷暴露的作用(A、GB2423、GB2424等可靠性试验相关标准要求及应用方式。(包括《可靠性试验第1部分:试验条件和统计检验原理》《可靠性试验第2部分:试验周期设计》《环境试验试验方法编写导则术语和定义》新版标准内容分析讲解)B、失效机理和环境的影响C、如何设计试验条件)

11、筛选、老化试验(A、筛选的作用和筛选度B、筛选应力的选择C、如何快速暴露产品缺陷(HALTD、高加速应力筛选(HASS)介绍E、环境应力筛选试验(三防、盐雾等试验、老化、环境及可靠性试验)(ESS)霉菌试验F、环境试验的顺序与分组

12、抽样技术简介(A、抽样和验收风险B、如何建立抽样方案C、如何运用

抽样的标准)

B 班《电子产品失效分析技术及案例解析》

时间地点:2013年9月13-9月15日杭州(13日报到)

第一单元失效分析基础

A、失效分析基本概念

B、失效分析要求

C、失效分析的目的和意义

D、失效模式分析

E、失效机理分析

F、电子组件失效特点及分析流程

G、失效分析注意事项

第二单元失效分析常用手段

A、电参数测试方法

B、外观测试方法

C、X-ray测试方法

D、声学扫描分析方法

E、金相分析方法

F、染色渗透分析方法

G、红外光谱分析方法

H、材料热分析技术

第三单元电子产品典型失效模式、机理及案例分析

模块一焊接工艺原理、失效机理、案例分析

A、焊接工艺原理

B、典型焊接工艺失效案例分析(案例20个)

失效模式一:温度曲线相关失效

(冷焊、过焊、吹孔、IMC,枕头效应等)

失效模式二:热机械、机械应力引起的失效

应力强度干涉模型及失效案例

1) 焊点过应力开 2) 坑裂失效3) 陶瓷器件开裂失效

焊接工艺质量评价方法(涉及焊点、PCB及器件)

模块二焊点疲劳失效机理、评价方法及案例研究(案例3个)

A、焊点热疲劳失效机理

B、焊点疲劳寿命加速试验技术

C、焊点疲劳寿命失效案例分析

模块三离子残留及电化学迁移失效(案例10个)

A、焊接过程中的化学作用

B、离子残留腐蚀失效案例(加上金属腐蚀的失效机理)

C、离子失效特点及验证方法

D、电化学迁移机理

E、电化学失效典型案例分析

F、电化学失效相关评价手段

模块四 PCB工艺失效案例研究(案例20个)

A、PCB典型工艺流程介绍

B、PCB通孔失效案例分析

C、PCB无铅喷锡上锡不良失效机理

D、PCB无铅喷锡上锡不良案例研究

E、PCB化学镍金黑焊盘失效机理

F、PCB化学镍金黑焊盘案例研究

G、PCB爆板失效机理分析

H、PCB爆板失效案例研究I 、PCB CAF失效激励J、PCB CAF失效案例分析

模块五元器件典型失效及案例研究(案例20个)

A、电子元器件可靠性概述

B、元器件可焊性不良失效案例分析

C、元器件潮湿敏感损伤机理及案例

D、无铅器件锡须失效机理及案例分析

E、半导体器件静电损伤失效机理及案例分析

F、器件假冒翻新失效案例及鉴别方法

G、其它失效案例

二、培训鉴定对象

1、各企事业单位从事电子电器相关的工作人员(电子电气检测实验室工作人员、产品研发、技术、品质管理、安全监督、可靠性设计、质量检验、测试、采购等);

2、各大、专院校、职业技术学院等电子专业相关人员;

3、使用相关仪器和测试装置对半导体器件、光电子器件、电真空器件、机电元件、通用元件及特种元件进行质量检验的人员。

**************************************************

【温馨提示】:本公司竭诚为企业提供灵活定制化的内部培训和顾问服务,培训内容可根据客户的需要灵活设计,企业内部培训人数不受限制,培训时间由企业灵活制定。顾问服务由中国电子标准协会顶尖顾问服务团队组成,由专人全程跟进,签约型绩效考核顾问服务效果,

迅速全面提升企业工艺技术水平、产品质量及可靠性、成本节约!

电子产品失效分析大全

电子产品失效分析大全 继电器失效分析 1、样品描述 所送样品是3种继电器,其中NG样品一组15个,OK样品2组各15个,代表性外观照片见图1。委托单位要求分析继电器触点的元素成分、各部件浸出物的成分,确认是否含有有机硅。 图1 样品的代表性外观照片 2、分析方法 2.1 接触电阻 首先用毫欧计测试所有继电器A、B接点的接触电阻,A、B接点的位置见图2所示,检测结果表示NG样品B点的接触电阻均大于100 mΩ,而2种OK样品的A、B点的接触电阻均小于100 mΩ。 图2 样品外观照片

2.2 SEM&EDS分析 对于NG品,根据所测接点电阻的结果,选取B接点接触电阻值高的2个继电器,对于2种OK品,每种任选2个继电器,在不污染触点及其周围的前提下,将样品进行拆分后,用SEM&EDS分析拆分后样品的触点及周围异物的元素成分。触点位置标示如图3所示。所检3种样品共6个继电器的触点中,NG品的触点及触点周围检出大量的含碳(C)、氧(O)、硅(Si)等元素的异物,而OK品的触点表面未检出异物。典型图片如图4、图5所示。 图3 触点位置标识(D指触点C反面) 图4 NG样品触点周围异物SEM&EDS检测结果典型图片

图5 OK样品触点的SEM&EDS检测结果典型图片 2.3 FT-IR分析 在不污染各部件的前提下,将2.2条款中剩下的继电器进行拆分,并将拆分后的部件分成3组,即A组(接点、弹片(可动端子、固定端子))、B组(铁片、铁芯、支架、卷轴)、C组(漆包线),分别将A、B、C组部件装入干净的瓶中,见图6所示,处理后用FT-IR分析萃取物的化学成分,确认其是否含有有机硅。 图6 拆分后样品的外观照片 结果表明,所检3种样品各部件的萃取物中,NG样品B组(铁片、铁芯、支架、卷轴)和C 组(漆包线)检出有机硅,其他样品的部件未检出有机硅。典型图片见图7所示。

电子产品可靠性试验-环境试验要点

一、可靠性理论基础 二、试验(GB) 一.总则:GB2421-2008 电工电子产品环境试验 本系列标准不涉及环境试验样品性能要求,环境试验期间和试验以后,试验样品的容许性能限值由被试验样品的相关规范规定。 基准标准大气压:20℃,101.3KPa 测量与试验标准大气压:15℃-30℃,25%RH-75%RH,86KPa-106KPa。 自由空气条件:无限大空间,空气运动只受散热试验样品本身影响,样品辐射能量全部由周围空气吸收。 散热试验样品与非散热试验样品界定:在自由空气条件和试验标准大气压下,温度稳定后测得的试验样品温度与环境温度是否大于5℃。 环境温度:是采用在试验样品之下0mm - 5 0mm的一个水平面上面,而且与试验样品和试验箱壁等距离处或者距离试样品1 m处若干温度。( 二者取温度值小的) 的平均值。应采取适当措施防止热辐射影响这些温度的测量。 热稳定:试验样品表面温度与最后所测表面温度之差<3℃(非散热试验样最后所测表面温度即试验箱温度;散热试验样品则需多次测量才能确定) A: 低温。 B: 高温 C: 恒定湿热。 D: 交变湿热 E: 冲撞( 例如冲击和碰撞) 。 F: 振动。 G: 稳态加速度。 H: 待定( 原分配在贮存试验) 。 J : 长霉。 K: 腐蚀性大气( 例如盐雾) 。 L: 砂尘。 M: 高气压或低气压 N: 温度变化。 P : 待定( 原分配在“可燃性”试验) Q: 密封( 包括板密封,容器密封与防止流体浸入和漏出的密封) 。 R: 水( 例如雨水、滴水) 。 S : 辐射( 例如太阳辐射,但不包括电磁辐射) T: 锡焊( 包括耐焊接热) 。 U: 引出端强度( 元件的)。 V: 待定( 原分配在“噪声”. 但“噪声诱发的振动”将归于试验F g ,即“振动”系列试验之一) 。W: 待定。 X:作为字头与另一个大写字母一起用于新增加的试验方法命名。例如试验XA:在清洗剂中浸渍 Y: 待定。 Z:用于表示综合试验与组合试验。方法如下:Z后面跟一斜杠和一组综合实验或组合试验相关的大写字母。例如Z/AM:试验低温和低气压综合试验。 综合试验:≥2种试验环境同时作用于试验样品。组合实验:依次连续暴露≥2种试验环境分别进行试验 试验顺序(s e q u e n c e o f t e s t s)试验样品被依次暴露到两种或两种以上试验环境中的顺序。 1 各次暴露之间的时间间隔通常对试验样品不产生明显影响 2 各次暴露之间通常要进行预处理和恢复 3 通常在每次暴露之前和之后进行检测,前一项暴露的最后检测就是下项暴露的初始检测 受控恢复条件:实际试验温度±1℃(15℃-30℃),73%RH-77%RH,86KPa-106KPa。(测量前如果要求对试验样品进行干燥,除有关规范另有规定外,应在下述的条件下干燥6 h。标准干燥条件55±2℃/<20%) 恢复条件: 条件试验后,在检测之前:试验样品应在检测环境温度下稳定;当样品试验后电气参数变化很快,应按受控恢

电子产品失效模式分析

电子产品失效模式分析 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 01、失效分析流程 图1 失效分析流程 02、各种材料失效分析检测方法 1、PCB/PCBA失效分析

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。 图2 PCB/PCBA 失效模式 爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段 无损检测:外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?显微红外分析(FTIR)

?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(TOF-SIMS) 热分析: ?差示扫描量热法(DSC) ?热机械分析(TMA) ?热重分析(TGA) ?动态热机械分析(DMA) ?导热系数(稳态热流法、激光散射法) 电性能测试: ?击穿电压、耐电压、介电常数、电迁移 ?破坏性能测试: ?染色及渗透检测 2、电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式开路,短路,漏电,功能失效,电参数漂移,非稳定失效等

常用手段电测:连接性测试电参数测试功能测试 无损检测: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 制样技术: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 显微形貌分析: ?光学显微分析技术 ?扫描电子显微镜二次电子像技术 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(SIMS) 无损分析技术: ?X射线透视技术 ?三维透视技术 ?反射式扫描声学显微技术(C-SAM)

电子产品可靠性试验国家标准清单

电子产品可靠性试验国家标准清单 GB/T 15120、1-1994 识别卡记录技术第1部分: 凸印 GB/T 14598、2-1993 电气继电器有或无电气继电器 GB/T 3482-1983 电子设备雷击试验方法 GB/T 3483-1983 电子设备雷击试验导则 GB/T 5839-1986 电子管与半导体器件额定值制 GB/T 7347-1987 汉语标准频谱 GB/T 7348-1987 耳语标准频谱 GB/T 9259-1988 发射光谱分析名词术语 GB/T 11279-1989 电子元器件环境试验使用导则 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 2689、1-1981 恒定应力寿命试验与加速寿命试验方法总则 GB/T 2689、2-1981 寿命试验与加速寿命试验的图估计法(用于威布尔分布) GB/T 2689、3-1981 寿命试验与加速寿命试验的简单线性无偏估计法(用于威布尔分布) GB/T 2689、4-1981 寿命试验与加速寿命试验的最好线性无偏估计法(用于威布尔分布) GB/T 5080、1-1986 设备可靠性试验总要求 GB/T 5080、2-1986 设备可靠性试验试验周期设计导则 GB/T 5080、4-1985 设备可靠性试验可靠性测定试验的点估计与区间估计方法(指数分布)

GB/T 5080、5-1985 设备可靠性试验成功率的验证试验方案 GB/T 5080、6-1985 设备可靠性试验恒定失效率假设的有效性检验 GB/T 5080、7-1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案GB/T 5081-1985 电子产品现场工作可靠性有效性与维修性数据收集指南 GB/T 6990-1986 电子设备用元器件(或部件)规范中可靠性条款的编写指南 GB/T 6991-1986 电子元器件可靠性数据表示方法 GB/T 6993-1986 系统与设备研制生产中的可靠性程序 GB/T 7288、1-1987 设备可靠性试验推荐的试验条件室内便携设备粗模拟 GB/T 7288、2-1987 设备可靠性试验推荐的试验条件固定使用在有气候防护场所设备精模拟 GB/T 7289-1987 可靠性维修性与有效性预计报告编写指南 GB/T 9414、1-1988 设备维修性导则第一部分: 维修性导言 GB/T 9414、2-1988 设备维修性导则第二部分: 规范与合同中的维修性要求 GB/T 9414、3-1988 设备维修性导则第三部分: 维修性大纲 GB/T 9414、4-1988 设备维修性导则第五部分: 设计阶段的维修性研究 GB/T 9414、5-1988 设备维修性导则第六部分: 维修性检验 GB/T 9414、6-1988 设备维修性导则第七部分: 维修性数据的收集分析与表示 GB/T 12992-1991 电子设备强迫风冷热特性测试方法 GB/T 12993-1991 电子设备热性能评定

可靠性试验设计与分析1

第四章 (46)可靠性试验设计与分析 §4.6 加速寿命试验(Accelerated Life Testing) 随着科学技术的发展,高可靠性、长寿命的产品愈来愈多,前面讲的截尾寿命试验也 不能适应这种要求,如,不少电子元器件寿命很长,在正常工作温度0 40C 下,寿命可达数 百万小时以上,若取1000个这种元件可能只有1~2个失效,甚至没失效的情况。假如我们把温度提高到0 60C ,甚至0 80C ,只要失效机理不变,仅环境更恶劣一些,则失效数会增加,这种超过正常应力下的寿命试验称为加速寿命试验。 加速寿命试验的目的:用加强应力的办法,加快产品故障,缩短试验时间,以便在较短的时间内预测出产品在正常应力作用下的寿命特征。其基本原则是失效机理不变。 一. 加速寿命试验的类型 (1).恒定应力加速寿命试验(简称恒加试验) 试验之前,先选一组加速应力水平,如12,,......,k s s s ,它们都是高于正常应力水平0s ,一般取012k s s s s <<<鬃鬃鬃<。然后将一定数量的样品分成k 组,每组在一个加速应力下进行寿命试验,直到各组均有一定数量的样品失效为止(如定数截尾0r r )。从图4.32可以看出,恒加试验是由若干个寿命试验组成,为了缩短寿命试验,特别是低应力水平下的寿命试验采用截尾试验,这样才能更好地发挥加速寿命试验缩短试验时间地优点。 (2).步进应力加速寿命试验(简称步加试验) 它也选定一组加速应力水平0s 12k s s s <<<鬃鬃鬃<, (0s 为正常应力水平) 试验时把一定数量的样品都置于应力水平1s 进行寿命,经过一段时间,如1t 小时后,把应力提高到2s ,将未失效的样品在2s 应力下继续进行寿命试验,一直到有一定数量的样品发生失效为止。如图4.33所示。 在本试验中,一个样品先在加速应力1s 下试验一段时间,若失效,则退出试验,若没有失效,将进入2s 应力下的试验,如此下去,一个样品可能会遭遇若干个加速应力水平的考

电子产品可靠性试验

电子产品可靠性试验 第一章 可靠性试验概述 1 电子产品可靠性试验的目的 可靠性试验是对产品进行可靠性调查、分析和评价的一种手段。试验结果为故障分析、研究采取的纠正措施、判断产品是否达到指标要求提供依据。具体目的有: (1) 发现产品的设计、元器件、零部件、原材料和工艺等方面的各种缺陷; (2) 为改善产品的完好性、提高任务成功性、减少维修人力费用和保障费用提供信息; (3) 确认是否符合可靠性定量要求。 为实现上述目的,根据情况可进行实验室试验或现场试验。 实验室试验是通过一定方式的模拟试验,试验剖面要尽量符合使用的环境剖面,但不受场地的制约,可在产品研制、开发、生产、使用的各个阶段进行。具有环境应力的典型性、数据测量的准确性、记录的完整性等特点。通过试验可以不断地加深对产品可靠性的认识,并可为改进产品可靠性提供依据和验证。 现场试验是产品在使用现场的试验,试验剖面真实但不受控,因而不具有典型性。因此,必须记录分析现场的环境条件、测量、故障、维修等因素的影响,即便如此,要从现场试验中获得及时的可靠性评价信息仍然困难,除非用若干台设备置于现场使用直至用坏,忠实记录故障信息后才有可能确切地评价其可靠性。当系统规模庞大、在实验室难以进行试验时,则样机及小批产品的现场可靠性试验有重要意义。 2 可靠性试验的分类 2.1 电子装备寿命期的失效分布 目前我们认为电子装备寿命期的典型失效分布符合“浴盆曲线”,可以划分为三段:早期失效段、恒定(随机或偶然)失效段、耗损失效段。可参阅图1.2.1。 早期失效段,也称早期故障阶段。早期失效出现在产品寿命的较早时期,产品装配完成即进入早期失效期,其特点是故障率较高,且随工作时间的增加迅速下降。早期故障主要是由于制造工艺缺陷和设计缺陷暴露产生,例如原材料缺陷引起绝缘不良,焊接缺陷引起虚焊,装配和调整不当引起参数漂移,元器件缺陷引起性能失效等。早期失效可通过加强原材料和元器件的检验、工艺检验、不同级别的环境应力筛选等严格的质量管理措施加以暴露和排除。 恒定失效段,也称偶然失效段,其故障由装备内部元器件、零部件的随机性失效引起,其特点是故障率低,比较稳定,因此是装备主要工作时段。 耗损失效段,其特点是故障率迅速上升,导致维修费用剧增,因而报废。其故障原因主要是结构件、元器 件的磨损、疲劳、老化、损耗等引起。 2.2 试验类型及其分布曲线的变化 针对电子装备寿命期失效分布的三个阶段,人们在设计制造和使用装备时便有针对地采取措施,以提高可靠性和降低寿命周期的费用。在设计制造阶段,要尽量减少设计缺陷和制造缺陷,即便如此仍然会存在早期失效和随机失效。为此,承制方需要运用工程试验的手段来暴露和消除早期失效,降低随机失效的固有水平。通过这些措施,可以改变产品的寿命分布曲线的形状,可参阅图1.2.2。在耗损阶段,用户可通过维修和局部更新的手段延长装备的使用寿命。 图 1.2.2 示意了两组产品寿命失效率分布曲线,图中表明产品B 的可靠性水平比产品A 的优良,因为B 的恒定失效率比A 的低,B 的早期失效段比A 的短。如果曲线A 和B 是同一种产品的不同阶段的失效率分布,则表明该产品经过了可靠性增长试验,取得成效,因此曲线B 的恒定失效率大为 失效率 早期 耗损 失效 偶然失效段 失效 时间 图1.2.1 电子装备寿命期失效分布的浴盆曲线示意

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

可靠性试验分析及设计

ji 第四章(44) 可靠性试验与设计 四、最小二乘法 用图估法在概率纸上描出[],()i i t F t 点后,凭目视作分布检验判别所作的回归直线往往因人而异,因此最好再通过数值计算求出精确的分布检验结论和求出数学拟合的回归直线。通常用相关系数作分布检验,用最小二乘法求回归直线。 相关系数由下式求得: ()() n i i X X Y Y γ--= ∑ 其中X,Y 是回归直线的横坐标和纵坐标,它随分布的不同而不同。下表是不同分布的 坐标转换 只有相关系数γ 大于临界值0γ时,才能判定所假设的分布成立。0γ临界系数可查相应的临界相关系数表,如给定显著水平0.05α=,n=10,可查表得00.576γ=。若计算的0γγ,则假设的分布成 立。 如果回归的线性方程为 Y mX B =- 则由最小二乘法得到系数为

1 1 111 221 1??1?1 ()n n i i i i n n n i i i i i i i n n i i i i Y m X B N X Y X Y N m X X N =======-+=-=-∑∑∑∑∑∑∑ 代入上表中的不同的分布,就可以得到相应分布的参数估计值。 五、最好线性无偏估计与简单线性无偏估计 1、无偏估计 不同子样有不同的参数估计值?q ,希望?q 在真值q 附近徘徊。若?()E q q =,则?q 为q 的无偏估计。如平均寿命的估计为?i t n q =? ,是否为无偏估计? Q 1 [] ?()[]n i i i i t E t E E n n n q q q === = =? 邋 \ ?q 为q 的无偏估计 2、最好无偏估计定义 若?k q 的方差比其它无偏估计量的方差都小,即?()min ()k k D D q q =,则?k q 为最好无偏估计。 3、线性估计定义 若估计量?q 是子样的一个线性函数,即1 ?n i i i a q ==C ? ,则称?q 为线性估计。 4、最好线性无偏估计 当子样数25n £时,通过变换具有()F m s C -形式的寿命分布函数,其,m s 的最好线性无偏估计为: 1 ?(,,)r j i D n r j X m ==? ?(,,)j C n r j X s =? 其中(,,),(,,)D n r j C n r j 分别为,m s 的无偏估计,有了,,n r j 后,可有专门表格查无偏系数(,,),(,,)D n r j C n r j 。

电子产品的可靠性试验研究及方法

电子产品的可靠性试验研究及方法 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。 1、引言 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。产品的可靠性不高将会给生产带来 很大损失,随着控制系统的大型化,一个系统所用的电子元件越来越多,只要其中一 个元件发生故障,一般都会导致整个系统发生故障,由此产生的经济损失将远远超过 一个元件本身的价值,所以元件的可靠性越来越重要。电子产品是否适应预定的环境 和满足可靠性指标,必须通过可靠性试验进行鉴定或考核;有时还需通过试验来暴露 产品在设计和工艺中存在的问题,通过故障分析确定主要的故障模式和发生的原因, 进而采取改进措施。所以可靠性试验不仅是可靠性活动的重要环节,也是进一步提高 产品可靠性的有效措施。 2、电子产品可靠性特点 电子产品的可靠性变化一般都有一定的规律,其特征曲线如图1所示,由于其形状象浴盆,通常称之为“浴盆曲线”。从图1可以看出,在产品试验和设计初期,由 于设计制造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率高, 通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品进入稳定的偶然失 效期;使用一段时间后,由于器件耗损、整机老化以及维护等原因,产品进入了耗损 失效期。这就是可靠性特征曲线呈“浴盆曲线”型的原因。 通常我们定义,在多次实验中,某随机事件出现的次数叫做该事件的频数。如在M次试验中,事件A出现的频数是M,则事件A出现的相对频数是M / N。在状态不变的条件下,在多实践中,事件A出现的相对频数就反映了该事件A出现的可能性。它 是事件A出现的一个大概的百分率,称为事件A概率,记为P(A)。 P(A)=M / N (N很大)(1)

电子产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性的质量 要求。 2.范围 本文件适用本公司所有产品。 3.内容 3.1 实验顺序 除客户特殊要求外,试验样品进行试验时,一般按下表的顺序进行: 3.2实验条件 3.2.1 实验条件:

3.2.2 试验机台误差: a.温度误差:高温为+/-2℃,低温为+/-3℃. b.振动振幅误差:+/-15%. c.振动频率误差:+/-1Hz. 3.2.3 落地试验标准 3.2.3.1 落地试验应以箱体四角八边六面(任一面底部相连之四角、与此四角相连之八边, 六面为前、后、左、右、上、下这六个面)按规定高度垂直落下的方式进行。 重量高度 0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 3.2.3.2 注意事项: 5.2.3.2.1 箱内样品及包材在每个步骤后进行外观与功能性检验。 5.2.3.2.2 跌落表面为木板。 3.2.4 推、拉力试验方法和标准 3.2. 4.1、目的:为了评定正常生产加工下焊锡与焊盘或焊盘与基材的粘结质量。 3.2. 4.2、DIP类产品,需把元件用剪钳剪去只留下元件脚部分(要求留下部分 可以自由通过元件孔),且须把该焊盘与所连接的导线分开,然后固定 在制具上用拉力机以垂直于试样的力拉线脚(如下图),直到锡点或焊 盘拉脱为止,然后即可在拉力计上读数。 拉力方向 焊锡 焊盘

(图1) 3.2. 4.3、SMT类产品,片式元件用推力计以如下图所示方向推元件。推至元件或焊盘脱落后在推 拉力计上读数。并把结果记录在报告上。 三极管推力方向如下图所示,推至元件或焊盘脱落后在推拉力计上读数,并记录。 3.2. 4.4、压焊类产品,夹住排线(FFC或FPC)以如下图所示方向做拉力,拉至FFC或FPC 断或焊锡与焊盘脱离(锡点脱离)或焊盘与基材脱离(起铜皮),把结果记录在报告 上。 3.2. 4.5、产品元器件抽样需含盖全面规格尺寸。产品各抗推、拉力标准为;

电子产品的可靠性试验

:电子产品的可靠性试验 评价分析电子产品可靠性而进行的试验称为可靠性试验。试验目的通常有如下几方面: 1. 在研制阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况; 2. 生产阶段为监控生产过程提供信息; 3. 对定型产品进行可靠性鉴定或验收; 4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理;5.为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。? 对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。可靠性试验有多种分类方法. 1.如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验; 2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验;3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验; 4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。?5.但通常惯用的分类法,是把它归纳为五大类: A. 环境试验 B. 寿命试验 C.筛选试验 D. 现场使用试验 E. 鉴定试验? 1.环境试验是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。 2. 寿命试验是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。3. 筛选试验是一种对产品进行全数检验的非破坏性试验。其目的是为选择具有一定特性的产品或剔早期失效的产品,以提高产品的使用可靠性。产品在制造过程中,由于材料的缺陷,或由于工艺失控,使部分产品出现所谓早期缺陷或故障,这些缺陷或故障若能及早剔除,就可以保证在实际使用时产品的可靠性水平。??可靠性筛选试验的特点是:A.这种试验不是抽样的,而是100%试验; B. 该试验可以提高合格品的总的可靠性水平,但不能提高产品的固有可靠性,即不能提高每个产品的寿命; C. 不能简单地以筛选淘汰率的高低来评价筛选效果。淘汰率高,有可能是产品本身的设计、元件、工艺等方面存在严重缺陷,但也有可能是筛选应力强度太高。淘汰率低,有可能产品缺陷少,但也可能是筛选应力的强度和试验时间不足造成的。通常以筛选淘汰率Q和筛选效果β值来评价筛选方法的优劣:合理的筛选方法应该是β值较大,而Q值适中。? 上述各种试验都是通过模拟现场条件来进行的。模拟试验由于受设备条件的限制,往往只能对产品施加单一应力,有时也可以施加双应力,这与实际使用环境条件有很大差异,因而未能如实地、全面地暴露产品的质量情况。现场使用试验则不同,因为它是在使用现场进行,故最能真实地反映产品的可靠性问题,所获得的数据对于产品的可靠性预测、设计和保证有很高价值。对制定可靠性试验计划、验证可靠性试验方法和评价试验精确性,现场使用试验的作用则更大。??鉴定试验是对产品的可靠性水平进行评价时而做的试验。它是根据抽样理论制定出来的抽样方案。在保证生产者不致使质量符合标准的产品被拒收的条件下进行鉴定试验。

可靠性测试内容及GB参考.pdf剖析

可靠性测试鬼谷子品质联盟——乐天提供 可靠性测试内容 可靠性测试应该在可靠性设计之后,但目前我国的可靠性工作主要还是在测试阶段,这里将测试放在前面(目前大部分公司都会忽略最初的可靠性设计,比如我们公司,设计的时候,从来都没有考虑过可靠性,开发部的兄弟们不要拿砖头仍我……这是实话,只有在测试出现失效后才开始考虑设计)。 为了测得产品的可靠度(也就是为了测出产品的MTBF),我们需要拿出一定的样品,做较长时间的运行测试,找出每个样品的失效时间,根据第一节的公式计算出MTBF,当然样品数量越多,测试结果就越准确。但是,这样的理想测试实际上是不可能的,因为对这种测试而言,要等到最后一个样品出现故障――需要的测试时间长得无法想象,要所有样品都出现故障——需要的成本高得无法想象。 为了测试可靠性,这里介绍:加速测试(也就增加应力*),使缺陷迅速显现;经过大量专家、长时间的统计,找到了一些增加应力的方法,转化成一些测试的项目。如果产品经过这些项目的测试,依然没有明显的缺陷,就说明产品的可靠性至少可以达到某一水平,经过换算可以计算出MTBF(因产品能通过这些测试,并无明显缺陷出现,说明未达到产品的极限能力,所以此时对应的MTBF是产品的最小值)。其它计算方法见下文。(*应力:就是指外界各种环境对产品的破坏力,如产品在85℃下工作受到的应力比在25℃下工作受到的应力大;在高应力下工作,产品失效的可能性就大大增加了); 一、环境测试 产品在使用过程中,有不同的使用环境(有些安装在室外、有些随身携带、有些装有船上等等),会受到不同环境的应力(有些受到风吹雨湿、有些受到振动与跌落、有些受到盐雾蚀侵等等);为了确认产品能在这些环境下正常工作,国标、行标都要求产品在环境方法模拟一些测试项目,这些测试项目包括:

电子产品可靠性测试报告.docx

XXXX股份有限公司检测中心 检测报告 报告编号:2019-5-25 样品名称电子产品可靠性测试样品编号2019-5-25 委托单位XXXX 实业有限公司型号/规格RC661-Z2委托单位 XXXXXX检测类别委托试验地址 样品来源 收样日期2019年4月15日 委托方送样 方式 2019 年4月15日~ 样品数量120检测日期 2019年5月15日 1.高低温工作试验10.外箱跌落试验18.标签酒精测试 2.高温高湿工作试验11.外箱振动试验19.盐雾测试 3.外箱温湿度交变储存试验 12.稳定性测试20.外箱抗压测试 4.外箱高温高湿储存试验13.铅笔硬度测试21.ESD 测试 检测项目 5.冷热冲击试验14.底噪测试22.电源通断测试 6.裸机跌落试验15.防水测试23.裸机振动试验 7.裸机微跌试验16.大头针缝隙安全测试 https://www.wendangku.net/doc/c614470290.html,B 线摇摆测试 8.彩盒包装跌落试验17.标签橡皮测试25.125℃高温存放 9.快递盒包装跌落试验 样品说明委托方提供120 个样品用于本次试验,其中: 裸机 40台, PCBA 20 块,带包装 3 箱( 60台)。

参考标准: 检测依据 YD/T 1539-2006《移动通信手持机可靠性技术要求和测试方法》 检测结论样品按照要求完成了测试,测试结果见报告正文 备注--- 编制:审核:批准: 批准人职务: 年月日年月日年月日 第1页共 9页

XXXX股份有限公司检测中心 检测报告 报告编号:2019-5-25 试验情况综述 序号项目 1高低温1 标准要求 温度45℃ 试验情况 工作 试验 2高温 高湿 工作 试验3外箱 温湿度 交变 储存 试验 持续时间 6 小时 2温度45℃~ -10 ℃ 降温时间 2 小时 3温度-10 ℃ 持续时间 6 小时 4温度-10 ℃~ 45℃ 升温时间 1 小时 每循环时间15小时 循环次数4 样品状态在线测试 温度40℃ 相对湿度90﹪ 持续时间96h 样品状态在线测试 1温度70℃ 湿度40﹪ 持续时间12 小时 2温度70℃~ -20 ℃ 降温时间 2 小时 3温度-20 ℃ 4持续时间12 小时 温度-20 ℃~ 湿度40 ﹪ 升温时间 1 小时 每循环时间27 小时 循环次数4 样品状态包装、不

可靠性试验设计与分析5

第四章(45) 可靠性试验设计与分析 §4.4可靠性增长试验(Reliability Growth Test) 一、概述 可靠性增长:通过改正产品设计和制造中的缺陷,不断提高产品可靠性的过程。 产品试制阶段,由于设计缺陷与工艺上的不成熟,其可靠性一定会远低于预计的标准,通过试验发现故障,通过机理分析找出故障源,通过再设计与工艺的更改,以达到消除故障的目的,保证研制期间的可靠性达到预期的指标。 可靠性增长是不断反复设计、试验、故障、纠正这样一个循环过程。是为达到可靠性增长目的而执行可靠性秩序中所采用的一种试验方法。 可靠性增长的三个主要因素: 1).通过分析和试验找出产品的潜在故障源。 2).将存在问题(返馈),采取纠正措施更改设计。 3).对改进后的产品重新进行试验。 图4.23 可靠性增长过程 二、可靠性增长试验 目的:通过试验诱导出设计不良或工艺不成熟而引起的潜在故障,通过机理分析找出问题,在设计与工艺上加以纠正,从而达到可靠性增长目的。可靠性增长试验耗费的资源和时间比较多,试验总时间通常为预期的MTBF目标值的5~25倍,所以也并不是所有产品都适宜于安排可靠性增长试验。其试验大纲按照试验、分析、纠正(Test, Analysis And Fix test简称TAAF)这一过程来制定,为此要选定一个可靠性增长的模型,以便确定试验计划时所需考虑的因素。 1、可靠性增长模型 目前在可修产品的增长试验中,普遍使用的杜安(Duane)模型。有时为了使杜安模型的

适合性和最终评估具有较坚实的统计学依据,可用AMSAA 模型作为补充。 杜安模型是用于飞机发动机和液压机械装置等复杂可修产品的增长试验的。模型未涉及随机现象,是确定性模型,即工程模型,而不是数理统计模型。 其基本假设: 只要不断进行可靠性试验,系统可靠性增长(用MTBF 的提高表示)与累积试验时间在双对数纸上成线性关系,直线的斜率是可靠性增长率的一个度量。 图4.24 可靠性增长曲线 上述描绘了杜安可靠性增长模型。其增长率范围在0.3~0.7之间,若增长在0.3以下,说明纠正措施不够有力,在0.7以上表明采用了强有力的纠正措施。 从曲线上还可表明,制定可靠性增长大纲所需要的四个因素: (1).系统固有的MTBF 值P q 与要求的MTBF 值s θ关系: p θ在设计时用预测的方法确定,而s q (可接受值)比P q 低些,这是验证试验之前应增长到的值。 (2).增长曲线的起始MTBF 值0q :当P q 预期值为200h £时,增长线以100试验小时(横坐标)与10%P q (纵坐标)为起始点。当200P h q >,则以100h 试验与50%P q 为起始点。 (3).关于MTBF 增长率a :取决于大纲要求,如制定合理并执行严格,增长率可达0.6, 没有特殊考虑时可取0.1a =。 (4).增长所要求的总时间: 增长线与指标要求的MTBF 值的水平线交点所对应的总试验时间即为预计总试验时间。美国军用标准有个试验指南: 当固定的试验持续时间为规定的MTBF (s q )的10~25倍时,该时间完全可以满足达到50~2000hMTBF 内预期的设备可靠性增长需要。当规定的MTBF 在2000h 以上时,其持续试验时间取决于设备的复杂性和大纲要求,但至少应是要求的MTBF 的一倍。无论任何情况下,持续时间试验都不得少于2000h 或不多于10000h 。

电子产品的可靠性试验

电子产品的可靠性试验 评价分析电子产品可靠性而进行的试验称为可靠性试验。试验目的通常有如下几方面: 1. 在研制阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况; 2. 生产阶段为监控生产过程提供信息; 3. 对定型产品进行可靠性鉴定或验收; 4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理; 5. 为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。 对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。可靠性试验有多种分类方法. 1. 如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验; 2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验; 3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验; 4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。 5. 但通常惯用的分类法,是把它归纳为五大类: A. 环境试验 B. 寿命试验 C. 筛选试验 D. 现场使用试验 E.鉴定试验 1. 环境试验是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。 2. 寿命试验是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。 3. 筛选试验是一种对产品进行全数检验的非破坏性试验。其目的是为选择具有一定特性的产品或剔早期失效的产品,以提高产品的使用可靠性。产品在制造过程中,由于材料的缺陷,或由于工艺失控,使部分产品出现所谓早期缺陷或故障,这些缺陷或故障若能及早剔除,就可以保证在实际使用时产品的可靠性水平。 可靠性筛选试验的特点是: A. 这种试验不是抽样的,而是100%试验; B. 该试验可以提高合格品的总的可靠性水平,但不能提高产品的固有可靠性,即不能提高每个产品的寿命; C. 不能简单地以筛选淘汰率的高低来评价筛选效果。淘汰率高,有可能是产品本身的设计、元件、工艺等方面存在严重缺陷,但也有可能是筛选应力强度太高。淘汰率低,有可能产品缺陷少,但也可能是筛选应力的强度和试验时间不足造成的。通常以筛选淘汰率Q和筛选效果β值来评价筛选方法的优劣:合理的筛选方法应该是β 值较大,而Q值适中。 上述各种试验都是通过模拟现场条件来进行的。模拟试验由于受设备条件的限制,往往只能对产品施加单一应力,有时也可以施加双应力,这与实际使用环境条件有很大差异,因而未能如实地、全面地暴露产品的质量情况。现场使用试验则不同,因为它是在使用现场进行,故最能真实地反映产品的可靠性问题,所获得的数据对于产品的可靠性预测、设计和保证有很高价值。对制定可靠性试验计划、验证可靠性试验方法和评价试验精确性,现场使用试验的作用则更大。 鉴定试验是对产品的可靠性水平进行评价时而做的试验。它是根据抽样理论制定出来的抽样方案。在保证生产者不致使质量符合标准的产品被拒收的条件下进行鉴定试验。 1 .可靠性设计的意义 ①可靠性贯穿于电子产品的整个寿命周期,从产品的设计、制造到安装、使用、维护的个阶段都有一个可靠性问题。但首先要抓好可靠性设计。产品可靠性的定量指标应该在设计过程就得到落实,为产品的固有可靠性奠定良好的基础。反之,一个忽视可靠性设计的产品,必然是“先天不足,后患无穷”,在使用过程中大部会暴露出一系列不可靠问题。据统计,由于设计不当而影响产品可靠性的程度占各种不可靠因素的首位。所以,我们必须扭转只搞性能指标设计,忽视可靠性设的倾向,在产品研制、设计阶段,认真开展可靠性设计,为产品固有可靠性奠定基础。②随着科学技术的进步和经济技术发展的需要,电子产品日益向多功能、小型化、高可靠方向发展。功能的复杂化,使设备应用的元器件、零部件越来越多,对可靠性要求也越来越高。每一个元器件的失效,都可能使设备或电子系统发生故障。

电子产品可靠性试验汇总

電子產品可靠性試驗 第一章 可靠性試驗概述 1 電子產品可靠性試驗的目的 可靠性試驗是對產品進行可靠性調查、分析和評價的一種手段。試驗結果為故障分析、研究採取的糾正措施、判斷產品是否達到指標要求提供依據。具體目的有: (1) 發現產品的設計、元器件、零部件、原材料和工藝等方面的各種缺陷; (2) 為改善產品的完好性、提高任務成功性、減少維修人力費用和保障費用提供資訊; (3) 確認是否符合可靠性定量要求。 為實現上述目的,根據情況可進行實驗室試驗或現場試驗。 實驗室試驗是通過一定方式的類比試驗,試驗剖面要儘量符合使用的環境剖面,但不受場地的制約,可在產品研製、開發、生產、使用的各個階段進行。具有環境應力的典型性、資料測量的準確性、記錄的完整性等特點。通過試驗可以不斷地加深對產品可靠性的認識,並可為改進產品可靠性提供依據和驗證。 現場試驗是產品在使用現場的試驗,試驗剖面真實但不受控,因而不具有典型性。因此,必須記錄分析現場的環境條件、測量、故障、維修等因素的影響,即便如此,要從現場試驗中獲得及時的可靠性評價資訊仍然困難,除非用若干台設備置於現場使用直至用壞,忠實記錄故障資訊後才有可能確切地評價其可靠性。當系統規模龐大、在實驗室難以進行試驗時,則樣機及小批產品的現場可靠性試驗有重要意義。 2 可靠性試驗的分類 2.1 電子裝備壽命期的失效分佈 目前我們認為電子裝備壽命期的典型失效分佈符合“浴盆曲線”,可以劃分為三段:早期失效段、恒定(隨機或偶然)失效段、耗損失效段。可參閱圖1.2.1。 早期失效段,也稱早期故障階段。早期失效出現在產品壽命的較早時期,產品裝配完成即進入早期失效期,其特點是故障率較高,且隨工作時間的增加迅速下降。早期故障主要是由於製造工藝缺陷和設計缺陷暴露產生,例如原材料缺陷引起絕緣不良,焊接缺陷引起虛焊,裝配和調整不當引起參數漂移,元器件缺陷引起性能失效等。早期失效可通過加強原材料和元器件的檢驗、工藝檢驗、不同級別的環境應力篩選等嚴格的品質管制措施加以暴露和排除。 恒定失效段,也稱偶然失效段,其故障由裝備內部元器件、零部件的隨機性失效引起,其特點是故障率低,比較穩定,因此是裝備主要工作時段。 耗損失效段,其特點是故障率迅速上升,導致維修費用劇增,因而報廢。其故障原因主要是結構件、元器 件的磨損、疲勞、老化、損耗等引起。 2.2 試驗類型及其分佈曲線的變化 針對電子裝備壽命期失效分佈的三個階段,人們在設計製造和使用裝備時便有針對地採取措施,以提高可靠性和降低壽命週期的費用。在設計製造階段,要儘量減少設計缺陷和製造缺陷,即便如此仍然會存在早期失效和隨機失效。為此,承制方需要運用工程試驗的手段來暴露和消除早期失效,降低隨機失效的固有水準。通過這些措施,可以改變產品的壽命分佈曲線的形狀,可參閱圖1.2.2。在耗損階段,用戶可通過維修和局部更新的手段延長裝備的使用壽命。 圖 1.2.2 示意了兩組產品壽命失效率分佈曲線,圖中表明產品B 的可靠性水準比產品A 的優良,因為B 的恒定失效率比A 的低,B 的早期失效段比A 的短。如果曲線A 和B 是同一種產品的不同階 失效率 早期 耗損 失效 偶然失效段 失效 時間 圖1.2.1 電子裝備壽命期失效分佈的浴盆曲線示意

相关文档