文档库 最新最全的文档下载
当前位置:文档库 › STM32全部时钟概述

STM32全部时钟概述

STM32全部时钟概述

STM32时钟概述:

HSE:high speed external clock signal,高速外部时钟,最常用8M无源晶振,可以2分频或不分频,一般不分频,为8M。

HS I:high speed internal clock signal,高速内部时钟,8M,有温漂。

PLL时钟源:来源于HSE或者HSI/2,一般选HSE为时钟源。

PLLCLK时钟:通过设置PLL的倍频因子,对PLL时钟源进行倍频,倍频因子为:2-16。一般设为9,则PLLCLK为72M。(72M为官方推荐的稳定时钟源)。

SYSCLK:系统时钟,可来源于HSE、HSI、PLLCLK,一般设置SYSCLK=PLLCLK=72Mhz。HCLK:AHB总线时钟(也有的说APB总线时钟),可分频,一般不分频,即HCLK=SYSCLK=72M。PCLK2:APB2总线时钟,由HCLK经过APB2预分频器得到,一般1分频,PCLK2=HCLK=72M。PCLK1:APB1总线时钟,由HCLK经过APB1预分频器得到,一般2分频,PCLK1=HCLK/2=36M。RTC时钟:来源于HSE/128、LSE、LSI(一般40KHZ),独立的看门狗时钟由LSI提供。

MCO时钟输出:由PA8复用所得,可以对外提供时钟,可以检查所配置好的时钟(结合示波器使用),可来源于PLLCLK/2 SYSCLK HSE HSI。

stm32:系统时钟

实验4 系统时钟实验 上一章,我们介绍了STM32 内部系统滴答定时器,该滴答定时器产生的延时非常精确。在本章中,我们将自定义RCC系统时钟,通过改变其倍频与分频实现延时时间变化,实现LED灯闪烁效果。通过本章的学习,你将了解 RCC系统时钟的使用。本章分为以下学习目标: 1、了解 STM32 的系统构架。 2、了解 STM32 的时钟构架。 3、了解 RCC 时钟的操作步骤。 1.1 STM32 的系统构架 STM32 的时钟比较复杂,它可以选择多种时钟源,也可以选择不一样的时钟频率,而且在系统总线上面,每条系统的时钟选择都是有差异的。所以想要清楚的了解 STM32 的时钟分配,我们先来了解一下 STM32 的系统构架是什么样的。 从上图我们知道,RCC 时钟输出时钟出来,然后经过 AHB 系统总线,分别

分配给其他外设时钟,而不一样的外设,是先挂在不一样的桥上的。比如: ADC1、ADC2、 SPI1、GPIO 等都是挂在 APB2 上面,而有些是挂在 APB1上面,所以,虽然它们都是从 RCC 获取的时钟,但是它们的频率有时候是不一样的。 1.2 STM32 的时钟树 STM32 单片机上电之后,系统默认是用的时钟是单片机内部的高速晶振时钟,而这个晶振容易受到温度的影响,所以晶振跳动的时候不是有一定的影响,所以一般开发使用的时候都是使用外部晶振,而且单片机刚启动的时候,它的时钟频率是 8MHZ,而 STM32 时钟的最高频率是 72MHZ,所以单片机一般开机之后运行的程序是切换时钟来源,并设置时钟频率。大家可能有点疑惑,在第一章到第三章之中,我们并没有看到单片机开机之后设置时钟来源和时钟频率的。其实在使用库函数的时候,其实在库函数启动文件里面,是帮助我们把时钟频率设置到 72MHZ 了。大家可以打开一个库函数工程,在 system_stm32f10x.c 的第 106行,它定义了一个 SYSCLK_FREQ_72MHz: #if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */ #define SYSCLK_FREQ_24MHz 24000000 #else #define SYSCLK_FREQ_72MHz 72000000 然后在下面的程序中,根据这个 SYSCLK_FREQ_72MHz 定义,它默认设置成 72MHZ。接下来我们来看一下具体的 RCC 时钟树:

stm32时钟详细说明

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。其实是四个时钟源,如下图所示(灰蓝色),PLL是由锁相环电路倍频得到PLL时钟。 ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。 ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。 ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。 其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。 STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。 另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。 系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、 4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用: ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。 ②、通过8分频后送给Cortex的系统定时器时钟。 ③、直接送给Cortex的空闲运行时钟FCLK。 ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。 ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。

STM32时钟初始化函数SysInit详解

花了一天的时间,总算是了解了SystemInit()函数实现了哪些功能,初学STM32,,现记录如下(有理解错误的地方还请大侠指出):使用的是3.5的库,用的是STM32F107VC,开发环境RVMDK4.23 我已经定义了STM32F10X_CL,SYSCLK_FREQ_72MHz 函数调用顺序: startup_stm32f10x_cl.s(启动文件)→SystemInit() → SetSysClock () →SetSysClockTo72() 初始化时钟用到的RCC寄存器复位值: RCC_CR = 0x0000 xx83; RCC_CFGR = 0x0000 0000;RCC_CIR = 0x0000 0000; RCC_CFGR2 = 0x0000 0000; SystemInit() 在调用SetSysClock()之前RCC寄存器的值如下(都是一些与运算,或运算,在此就不赘述了): RCC->CR = 0x0000 0083; RCC->CIR = 0x00FF0000; RCC->CFGR2 = 0x00000000;至于这些寄存器都代表着什么意思,详见芯片资料RCC寄存器,该文重点不在此处;SetSysClock()函数如下: static void SetSysClock(void) { #ifdef SYSCLK_FREQ_HSE SetSysClockToHSE(); #elif defined SYSCLK_FREQ_24MHz SetSysClockTo24(); #elif defined SYSCLK_FREQ_36MHz SetSysClockTo36(); #elif defined SYSCLK_FREQ_48MHz SetSysClockTo48(); #elif defined SYSCLK_FREQ_56MHz SetSysClockTo56(); #elif defined SYSCLK_FREQ_72MHz//我的定义的是SYSCLK_FREQ_72MHz,所以调用SetSysClockTo72() SetSysClockTo72(); #endif } SetSysClockTo72()函数如下: static void SetSysClockTo72(void) { __IO uint32_t StartUpCounter = 0, HSEStatus = 0; /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON); /* Wait till HSE is ready and if Time out is reached exit */ do

stm32如何配置时钟

学习STM32笔记2 如何配置时钟 学习STM32笔记2 如何配置时钟 /************************************************************* 该程序目的是用于测试核心板回来后是否能正常工作。包括 两个按键、两个LED现实。按键为PC4、PC5,LED为PA0\PA1。LED为 低电平时点亮。按键为低电平时触发。 ************************************************************/ #i nclude "stm32f10x_lib.h" void RCC_Configuration(void);//设置系统主时钟 void GPIO_Configuration(void);//设置邋邋IO参数 void NVIC_Configuration(void);//设置中断表地址 void delay(void);//延时函数 int main(void) { #ifdef DEBUG debug(); #endifRCC_Configuration(); NVIC_Configuration(); GPIO_Configuration(); while (1) { delay(); //设置指定的数据端口位 GPIO_SetBits(GPIOA,GPIO_Pin_0); //设置指定的数据端口位 delay(); GPIO_ResetBits(GPIOA,GPIO_Pin_0); //清除指定的数据端口位 GPIO_SetBits(GPIOA,GPIO_Pin_1); delay(); GPIO_ResetBits(GPIOA,GPIO_Pin_1); delay(); /********************************************* 使用setbits 与resetbits 是比较简单,其实还是可以使用 其它函数。例如可以使用GPIO_WriteBit GPIO_WriteBit(GPIOA, GPIO_Pin_1, Bit_SET); GPIO_WriteBit(GPIOA, GPIO_Pin_1, Bit_RESET);对于好像流水灯呀这些一个整段IO,可以使用GPIO_Write(GPIOA, 0x1101); *********************************************/

05_STM32F4通用定时器详细讲解

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) 作用:1使能自动重载TIM3_ARR 2定时器的计数器递增或递减计数。 3 事件更新。 4 计数器使能 2 TIM 3 控制寄存器 2 (TIM3_CR2) 3 TIM3 从模式控制寄存器 (TIM3_SMCR) 4 TIM3 DMA/中断使能寄存器 (TIM3_DIER) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

stm32时钟树分析

void RCC_Configuration(void) { /* RCC system reset(for debug purpose) */ RCC_DeInit(); /* Enable HSE */ RCC_HSEConfig(RCC_HSE_ON);

/* Wait till HSE is ready */ HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS) { /* Enable Prefetch Buffer */ FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); /* Flash 2 wait state */ FLASH_SetLatency(FLASH_Latency_2); /* HCLK = SYSCLK */ RCC_HCLKConfig(RCC_SYSCLK_Div1); /* PCLK2 = HCLK */ RCC_PCLK2Config(RCC_HCLK_Div1); /* PCLK1 = HCLK/2 */ RCC_PCLK1Config(RCC_HCLK_Div2); /* PLLCLK = 8MHz * 9 = 72 MHz */ RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* Enable PLL */ RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */ while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } /* Select PLL as system clock source */ RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */ while(RCC_GetSYSCLKSource() != 0x08) { } } }

STM32时钟系统与软件配置

STM32时钟系统与软件配置 在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。 ①HSI是高速内部时钟,RC振荡器,频率为8MHz。 ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。 ③LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法 如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理: 1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。 2)对于少于100脚的产品,有2种接法: 2.1)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。 2.2)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面2.1)节省2个外部电阻。 使用HSE时钟,程序设置时钟参数流程: 1、将RCC寄存器重新设置为默认值RCC_DeInit; 2、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON); 3、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp(); 4、设置AHB时钟RCC_HCLKConfig; 5、设置高速AHB时钟RCC_PCLK2Config; 6、设置低速速AHB时钟RCC_PCLK1Config;

基于STM32的TFT指针式时钟

基于STM32的TFT指针式时钟 摘要 自时钟发明的那天起,它就注定了与人们有着密不可分的关系,但科学技术在不断发展,人们随着时间的推移对时间计量的精度要求越来越高,机械式时钟也越来越满足不了人们日益增高的要求了。取而代之的事具有高度准确性和直观性且无机械装置,使用寿命更长更长等优点的电子时钟。电子时钟更具人性化,更能提高人们的生活质量,更受人们欢迎,机械时代已经远去,电子时代已经到来。因此本设计是基于意法半导体公司(ST)的STM32开发平台实现一种高精度,智能化的指针式时钟系统,采用STM32内部RTC设计电子时钟时,通常是数字显示,这是由于选用数码管和1602等器件的显示能力有限。而12864是基于点阵式的液晶屏,其像素点为128×64,但12864自身像素较低,使其显示指针式时钟效果远低于2.2寸TFT-LCD液晶,但两者所基于的原理相同。因此本设计采用STM32为控制核心,2.2寸TFT-LCD液晶作为显示芯片,构成了一个指针式电子时钟。 关键词:STM32;RTC;TFT-LCD

第1章绪论 1.1 引言 随着科学技术的发展和电子技术产业结构调整,单片机开始迅速发展,由于家用电器逐渐普及,市场对于智能时钟控制系统的需求也越来越大。单片机以其芯片集成度高、处理功能强、可靠性高等优点,成功应用于工业自动化、智能仪器仪表、家电产品等领域。 近些年,人们对数字钟的要求也越来越高,传统的时钟已不能满足人们的需求。多功能数字钟不管在性能还是在样式上都发生了质的变化,有电子闹钟、数字闹钟等等。而目前,对于指针式时钟来说,所用的指针大多是靠机械装置驱动达到显示时间的目的,例如手表,挂钟,钟楼等等,单片机在指针式时钟中的应用也已经非常普遍的,人们对指针时钟的功能及工作顺序都非常熟悉。但是却很少知道它的内部结构以及工作原理。由单片机作为指针时钟的核心控制器,可以通过它的时钟信号进行计时实现计时功能,将其时间数据经单片机输出,利用显示器显示出来。输出设备显示器可以用液晶显示技术。 1.2 本设计的目的和意义 1.2.1 设计目的 (1)巩固,加深和扩大STM32应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力; (2)培养针对课题需要,选择和查阅有关手册,图表及文献资料的自学能力,提高组成系统,编程,调试的动手能力; (3)对课题设计方案的分析、选择、比较,熟悉用STM32做系统开发,研制的过程,软硬件设计的方法,内容及步骤; (4)进一步掌握C语言在硬件编程中的应用,熟悉怎样用C语言实现TFT-LCD上的绘图功能; (5)掌握STM32内部RTC的原理和应用。 1.2.2设计意义 数字指针式时钟是采用数字电路实现对时,分,秒,星期,年,月,日等数字以及指针表盘显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,

STM32滴答时钟

关于STM32 滴答时钟 相信不论是初学者还是高手,都会被STM32的滴答时钟所吸引。STM32有很多计数器,也有很多计数器中断。当别人还在用计数器做定时扫描的时候,我们就默默的开始了滴答时钟做扫描了。让他们去任意的浪费资源吧,我们节约资源,把计数器发挥更大的作用。 Systick定时器属于cortex内核部件,在芯片介绍的datasheet中没有提到过,可以参考 《CortexM3权威指南》或《STM32xxx-Cortex编程手册》。 首先来看Systick的时钟来源,如图一。可以看出在STM32中Systick以HCLK(AHB 时钟)或HCLK/8作为运行时钟。 图1 另外要注意Systick是一个24位的定时器,即一次最多可以计数224个时钟脉冲,这个脉冲计数值被保存到当前计数值寄存器STK_VAL中,这个计数器只能向下计数,每接收到一个时钟脉冲STK_VAL的值就向下减1,直至0,当STK_VAL的值被减至0时,由硬件自动把重载寄存器STK_LOAD中保存的数据加载到STK_VAL,意思就是它会自动重装。当STK_VAL 的值被倒计至0时,触发中断,就可以在中断服务函数中处理定时事件了。 要让Systick正常工作,必须要对Systick进行配置。它的配置很简单,只有三个控制位和一个标志位,都位于寄存器STK_CRL中,见图二。

图二 ENABLE: 为Systick timer的使能位,此位为1的时候开始计数,为0则关闭Systick timer。 TICKINT: 为中断触发使能位,此位为1的时候并且STK_VAL倒计至0的时候会触发Systick 中断,此位为0的时候不触发中断。 CLKSOURCE: 为Systick的时钟选择位,此位为1的时候Systick的时钟为AHB时钟,此位为0 的时候Systick的时钟为AHB/8(AHB的8分频)。 COUNTFLAG: 为Systick的标志位,当STK_VAL倒计至0,此标志位会被置1。 现在我们不会再为滴答时钟而感到迷惑了吧! 下面将详细描述如何去设置计数器,我们在很多地方看到这样一个函数: SysTick_Config(SystemCoreClock / 1000) 配置为1ms中断一次 SysTick_Config(SystemCoreClock / 100000) 配置为10us中断一次 SysTick_Config(SystemCoreClock / 1000000) 配置为10us中断一次 我们将细说一下,SystemCoreClock/100000 为什么是10us 我们从图1时钟数可以看出Systick的时钟和AHB有关,从图2中了解到滴答时钟可设置,结合两处就能看明白。若不去设置,系统默认为AHB时钟,即72MHz。 系统文件中可查找出以下描述: /************************************************************************** ***** * Clock Definitions *************************************************************************** ****/ #ifdef SYSCLK_FREQ_HSE uint32_t SystemCoreClock = SYSCLK_FREQ_HSE; /*!< System Clock Frequency (Core Clock) */ #elif defined SYSCLK_FREQ_24MHz uint32_t SystemCoreClock = SYSCLK_FREQ_24MHz; /*!< System Clock Frequency (Core Clock) */ #elif defined SYSCLK_FREQ_36MHz uint32_t SystemCoreClock = SYSCLK_FREQ_36MHz; /*!< System

图文详解stm32时钟树

对于广大初次接触STM32的读者朋友(甚至是初次接触ARM器件的读者朋友)来说,在熟悉了开发环境的使用之后,往往“栽倒”在同一个问题上。这问题有个关键字叫:时钟树。 众所周知,微控制器(处理器)的运行必须要依赖周期性的时钟脉冲来驱动——往往由一个外部晶体振荡器提供时钟输入为始,最终转换为多个外部设备的周期性运作为末,这种时钟“能量”扩散流动的路径,犹如大树的养分通过主干流向各个分支,因此常称之为“时钟树”。在一些传统的低端8位单片机诸如51,AVR,PIC等单片机,其也具备自身的一个时钟树系统,但其中的绝大部分是不受用户控制的,亦即在单片机上电后,时钟树就固定在某种不可更改的状态(假设单片机处于正常工作的状态)。比如51单片机使用典型的12MHz晶振作为时钟源,则外设如IO口、定时器、串口等设备的驱动时钟速率便已经是固定的,用户无法将此时钟速率更改,除非更换晶振。 而STM32微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速率不再有固定的关系,本文将来详细解析STM32微控制器的时钟树。

图1是STM32微控制器的时钟树,表1是图中各个标号所表示的部件。 标号图1标号释义 1 内部低速振荡器(LSI,40Khz) 2 外部低速振荡器(LSE,32.768Khz) 3 外部高速振荡器(HSE,3-25MHz) 4 内部高速振荡器(HIS,8MHz) 5 PLL输入选择位 6 RTC时钟选择位 7 PLL1分频数寄存器 8 PLL1倍频寄存器 9 系统时钟选择位 10 USB分频寄存器 11 AHB分频寄存器 12 APB1分频寄存器 13 AHB总线 14 APB1外设总线 15 APB2分频寄存器 16 APB2外设总线 17 ADC预分频寄存器 18 ADC外设 19 PLL2分频数寄存器 20 PLL2倍频寄存器 21 PLL时钟源选择寄存器 22 独立看门狗设备 23 RTC设备 图1 STM32的时钟树 在认识这颗时钟树之前,首先要明确“主干”和最终的“分支”。假设使用外部8MHz 晶振作为STM32的时钟输入源(这也是最常见的一种做法),则这个8MHz便是“主干”,而“分支”很显然是最终的外部设备比如通用输入输出设备(GPIO)。这样可以轻易找出第一条时钟的“脉络”:3——5——7——21——8——9——11——13 对此条时钟路径做如下解析: 对于3,首先是外部的3-25MHz(前文已假设为8MHz)输入; 对于5,通过PLL选择位预先选择后续PLL分支的输入时钟(假设选择外部晶振); 对于7,设置外部晶振的分频数(假设1分频); 对于21,选择PLL倍频的时钟源(假设选择经过分频后的外部晶振时钟); 对于8,设置PLL倍频数(假设9倍频); 对于9,选择系统时钟源(假设选择经过PLL倍频所输出的时钟); 对于11,设置AHB总线分频数(假设1分频); 对于13,时钟到达AHB总线; 在上一章节中所介绍的GPIO外设属于APB2设备,即GPIO的时钟来源于APB2总线,同样在图1中也可以寻获GPIO外设的时钟轨迹:

STM32 时钟详解及范例

一、综述: 1、时钟源 在STM32 中,一共有5 个时钟源,分别是HSI 、HSE 、LSI 、LSE 、PLL 。 ①HSI 是高速内部时钟,RC 振荡器,频率为8MHz ; ②HSE 是高速外部时钟,可接石英/ 陶瓷谐振器,或者接外部时钟源,频率范围是4MHz –16MHz ; ③LSI 是低速内部时钟,RC 振荡器,频率为40KHz ; ④LSE 是低速外部时钟,接频率为32.768KHz的石英晶体; ⑤PLL 为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL 的输入可以接HSI/2 、HSE 或者HSE/2 。PLL倍频可选择为2– 16 倍,但是其输出频率最大不得超过72MHz 。 其中,40kHz 的LSI 供独立看门狗IWDG 使用,另外它还可以被选择为实时时钟RTC 的时钟源。另外,实时时钟RTC 的时钟源还可以选择LSE ,或者是HSE 的128 分频。 STM32 中有一个全速功能的USB 模块,其串行接口引擎需要一个频率为48MHz 的时钟源。该时钟源只能从PLL 端获取,可以选择为 1.5 分频或者1分频,也就是,当需使用到USB 模块时,PLL 必须使能,并且时钟配置为48MHz 或72MHz 。 另外STM32 还可以选择一个时钟信号输出到MCO 脚(PA.8) 上,可以选择为PLL 输出的2分频、HSI 、HSE 或者系统时钟。 系统时钟SYSCLK ,它是提供STM32 中绝大部分部件工作的时钟源。系统时钟可以选择为PLL 输出、HSI 、HSE 。系系统时钟最大频率为72MHz ,它通过AHB 分频器分频后送给各个模块使用,AHB 分频器可以选择 1 、2 、4 、8 、16 、64 、128 、256 、512 分频,AHB分频器输出的时钟送给5大模块使用: ①送给AHB 总线、内核、内存和DMA 使用的HCLK 时钟; ②通过8分频后送给Cortex 的系统定时器时钟STCLK; ③直接送给Cortex 的空闲运行时钟FCLK ; ④送给APB1 分频器。APB1 分频器可以选择1 、2 、4 、8 、16 分频,其输出一路供APB1 外设使用(PCLK1 ,最大频率36MHz ),另一路送给定时器(Timer)2 、3 、4 倍频器使用。该倍频器根据PCLK1的分频值自动选择1或者2倍频,时钟输出供定时器2、3、4使用。 ⑤送给APB2 分频器。APB2 分频器可以选择1 、2 、4 、8 、16 分频,其输出一路供APB2 外设使用(PCLK2 ,最大频率72MHz ),另外一路送给定时器(Timer)1 倍频使用。该倍频器根据PCLK2的分频值自动选择1 或2 倍频,时钟输出供定时器1使用。另外APB2 分频器还有一路输出供ADC 分频器使用,分频后送给ADC 模块使用。ADC 分频器可选择为 2 、4 、6 、8 分频。 需要注意的是定时器的倍频器,当APB 的分频为1 时,它的倍频值为1 ,否则它的倍频值就为2 。file:///C:/DOCUME~1/LU/LOCALS~1/Temp/msohtml1/01/clip_image002.jpg 2、APB1和APB2连接的模块 ①连接在APB1( 低速外设)上的设备有:电源接口、备份接口、CAN 、USB 、I2C1 、I2C2 、UART2 、UART3 、SPI2 、窗口看门狗、Timer2 、Timer3 、Timer4 。注意USB 模块虽然需要一个单独的48MHz 的时钟信号,但是它应该不是供USB 模块工作的时钟,而只是提供给串行接口引擎(SIE) 使用的时钟。USB 模块的工作时钟应该是由APB1 提供的。 ②连接在APB2 (高速外设)上的设备有:UART1 、SPI1 、Timer1 、ADC1 、ADC2 、GPIOx(PA~PE) 、第二功能IO 口。 file:///C:/DOCUME~1/LU/LOCALS~1/Temp/msohtml1/01/clip_image004.jpg 二、寄存器介绍: typedefstruct { __IO uint32_t CR;

STM32时钟简述教学文稿

在STM32F4中,有5个重要的时钟源,为 HSI、 HSE、 LSI、 LSE、 PLL。其中 PLL 实际是分为两个时钟源,分别为主 PLL 和专用 PLL。从时钟频率来分可以分为高速时钟源和低速时钟源,在这 5 个中 HSI, HSE 以及 PLL 是高速时钟, LSI 和 LSE 是低速时钟。从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中 HSE 和LSE 是外部时钟源,其他的是内部时钟源。下面我们看看 STM32F4 的这 5 个时钟源,我们讲解顺序是按图中红圈标示的顺序: ①、LSI 是低速内部时钟,RC 振荡器,频率为32kHz 左右。供独立看门狗和自动唤醒单元使用。 ②、LSE 是低速外部时钟,接频率为32.768kHz 的石英晶体。这个主要是RTC 的时钟源。 ③、HSE 是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~26MHz。核心板接的是8M 的晶振。HSE 也可以直接做为系统时钟或者PLL 输入。 ④、HSI 是高速内部时钟,RC 振荡器,频率为16MHz。可以直接作为系统时钟或者用作PLL输入。 ⑤、PLL 为锁相环倍频输出。STM32F4 有两个PLL:

1)主PLL(PLL)由HSE 或者HSI 提供时钟信号,并具有两个不同的输出时钟。第一个输出PLLP 用于生成高速的系统时钟(最高168MHz) 第二个输出PLLQ 用于生成USB OTG FS 的时钟(48MHz),随机数发生器的时钟和SDIO时钟。 2)专用PLL(PLLI2S)用于生成精确时钟,从而在I2S 接口实现高品质音频性能。

STM32F4时钟树外设挂靠总线学习小结

STM32F4时钟树学习小结 时钟是单片机的心脏,重要性不言而喻,STM32F4的时钟树是比较复杂的。 时钟树图一

时钟树图二 1:STMF4xx系统共计有三个主要时钟源(HSI、HSE和PLL)和两个次要时钟源(LSE、LSI)。2:SYSCLK可以来自HSI、HSE和PLL,多数采用PLL频率最高能达到168MHz。 3:RTC时钟可以来自LSE、LSI和HSE,但只有用LSE时,才能保证系统电源掉电时RTC仍能正常工作。 4:可通过多个预分频器配置AHB 频率、高速APB (APB2) 和低速APB (APB1)。AHB 域的最大频率为168 MHz。高速APB2 域的最大允许频率为84 MHz。低速APB1 域的最大允许频率为42 MHz。 5:STM32F405xx/07xx 和STM32F415xx/17xx 的定时器时钟频率由硬件自动设置。如果APB 预分频器为1,定时器时钟频率等于APB 域的频率。否则,等于APB 域的频率的两倍(×2)。 6:除以下时钟外,所有外设时钟均由系统时钟(SYSCLK) 提供: ●来自于特定PLL 输出(PLL48CLK) 的USB OTG FS 时钟(48 MHz)、基于模拟技术的随机数发生器(RNG) 时钟(<=48 MHz) 和SDIO 时钟(<= 48 MHz)。 ●I2S 时钟 ●由外部PHY 提供的USB OTG HS (60 MHz) 时钟 ●由外部PHY 提供的以太网MAC 时钟(TX、RX 和RMII)。 下面介绍挂在不同总线上的设备情况 1、挂在AHB1总线的外设有:最高时钟频率:168MHZ 1)GPIOA~K 2)RCC_AHB1Periph_CRC 3)FLITF 4)SRAM1 5)SRAM2 6)BKPSRAM 7)SRAM3 8)CCMDATARAMEN 9)DMA1 10)DMA2 11)DMA2D 12)ETH_MAC、ETH_MAC_Tx、ETH_MAC_Rx、ETH_MAC_PTP

超透彻的STM32讲解资料——RTC时钟

这部分的内容实现的功能是将时间传输到上位机。 第一:串口的配置,前面已经详细的讲过,这里不再讲解。 第二:中断的配置,由于我们需要时间每秒自加一次,一次需要用到中断,在中断服务程序中实现秒的自加,前面也已讲过中断的配置,这里就不详细讲解,只给出代码 /* * 函数名:NVIC_Configuration * 描述:配置RTC秒中断的主中断优先级为1,次优先级为0 * 输入:无 * 输出:无 * 调用:外部调用 */ void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; /*设置先占优先级1位,从占优先级3位*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); /*选择RTC的IRQ通道*/ NVIC_InitStructure.NVIC_IRQChannel =RTC_IRQn; /*设置中断先占优先级为1*/ NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =1; /*设置中断从占优先级为1*/ NVIC_InitStructure.NVIC_IRQChannelSubPriority =0; /*使能RTC的IRQ通道*/ NVIC_InitStructure.NVIC_IRQChannelCmd =ENABLE; NVIC_Init(&NVIC_InitStructure); }

第三:对于RTC的使用,首先我们要判断是否是第一次使用RTC,如果是第一次使用那么肯定要设置时间的初始值以及对RTC进行相应的配置,而如果不是第一次使用,那么我们就无需再设置时间的初始值以及对RTC进行相应的配置,只需让RTC计数器继续计数就可以了。那么我们如何才能判断RTC是否为第一次使用呢?STM32中有一个后备寄存器,寄存器中的值不会因为掉电而改变,既然如此那我们肯定会这样想,当我第一次使用RTC时,往后备寄存器中写入一个值,下次再使用RTC时,我只要判断后备寄存器中的值是否为我第一次用RTC时写入的值,如果相等,说明我以前已经用过RTC了,现在我无需再对RTC进行配置了,因为第一次都配置好了(RTC和后备寄存器一样,RTC寄存器中设置的值不会因为掉电而改变),但要注意的是RTC的允许中断这一位在每次复位后会回到默认值,所以每次复位后我们都要再次设置允许RTC中断。下面我们就看看RTC的配置程序: /* * 函数名:RTC_Configuration * 描述:配置RTC * 输入:无 * 输出:无 * 调用:外部调用 */ void RTC_Configuration(void) { /* 使能PWR和BKP时钟*/ RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE); /*取消后备区域的写保护,因为后备寄存器中放的是重要的数据,默认是不允许往里面写入值的*/ PWR_BackupAccessCmd(ENABLE); /* 将后背寄存器的寄存器值设为默认值*/ BKP_DeInit(); /* 打开外部低速晶振,RTC可以选择的时钟源是外部和内部低速晶振及外部高速晶振,这里我们选择外部低速晶振32768HZ */

单片机STM32时钟图文理解

单片机STM32时钟图文理解 其中,高速时钟(HSE和HSI)提供给芯片主体的主时钟.低速时钟(LSE和LSI)只是提供给芯片中的RTC(实时时钟)及独立看门狗使用,图中可以看出高速时钟也可以提供给RTC。内部时钟是在芯片内部RC振荡器产生的,起振较快,所以时钟在芯片刚上电的时候,默认使用内部高速时钟。而外部时钟信号是由外部的晶振输入的,在精度和稳定性上都有很大优势,所以上电之后我们再通过软件配置,转而采用外部时钟信号. 高速外部时钟(HSE):以外部晶振作时钟源,晶振频率可取范围为4~16MHz,我们一般采用8MHz的晶振。 高速内部时钟(HSI):由内部RC振荡器产生,频率为8MHz,但不稳定。 低速外部时钟(LSE):以外部晶振作时钟源,主要提供给实时时钟模块,所以一般采用32.768KHz。 低速内部时钟(LSI):由内部RC振荡器产生,也主要提供给实时时钟模块,频率大约为40KHz。 OSC_OUT和OSC_IN开始,这两个引脚分别接到外部晶振8MHz,第一个分频器PLLXTPRE,遇到开关PLLSRC(PLL entry clock source),我们可以选择其输出,输出为外部高速时钟(HSE)或是内部高速时钟(HSI)。这里选择输出为HSE,接着遇到锁相环PLL,具有倍频作用,在这里我们可以输入倍频因子PLLMUL,要是想超频,就得在这个寄存器上做手脚啦。经过PLL的时钟称为PLLCLK。倍频因子我们设定为9倍频,也就是说,经过PLL之后,我们的时钟从原来8MHz的HSE变为72MHz的PLLCLK。紧接着又遇到了一个开关SW,经过这个开关之后就是STM32的系统时钟(SYSCLK)了。通过这个开关,可以切换SYSCLK的时钟源,可以选择为HSI、PLLCLK、HSE。我们选择为PLLCLK 时钟,所以SYSCLK就为72MHz了。PLLCLK在输入到SW前,还流向了USB预分频器,这个分频器输出为USB外设的时钟(USBCLK)。回到SYSCLK,SYSCLK经过AHB 预分频器,分频后再输入到其它外设。如输出到称为HCLK、FCLK的时钟,还直接输出

STM32芯片时钟配置

对STM32进行软件开发时,最基本的就是对STM32芯片进行时钟和端口配置,然后是对项目所用到的片上资源进行配置并驱动,下面给出时钟和端口配置代码,该代码几乎涵盖了片上所有时钟和端口配置项目,可根据自己需要进行删除不必要的配置项: /****************************************************************** * Function Name :RCC_Configuration 复位时钟控制配置 * Description : Configures the different system clocks. * Input : None * Output : None * Return : None *******************************************************************/ void RCC_Configuration(void) { /* system clocks configuration -----系统时钟配置----*/ /* RCC system reset(for debug purpose) */ RCC_DeInit(); //将外设RCC寄存器重设为缺省值 /* Enable HSE */ RCC_HSEConfig(RCC_HSE_ON);//开启外部高速晶振(HSE) /* Wait till HSE is ready */ HSEStartUpStatus = RCC_WaitForHSEStartUp();//等待HSE起振 if(HSEStartUpStatus == SUCCESS) //若成功起振,(下面为系统总线时钟设置) { /* Enable Prefetch Buffer */

stm32时钟输出

STM32 RCC实验MCO脚输出时钟波形 2012-5-1 08:05|发布者: benben|查看: 1457|评论: 0 摘要: 为了能用示波器看到系统时钟,决定将系统时钟输出到MCO引脚上去。弄了一晚上, 看见波形了。首先建立空的工程,将下面三行代码注释掉:;IMPORT SystemInit ;删除SystemInit自己写RCC初始化函数;LDR R0, =SystemInit ... 为了能用示波器看到系统时钟,决定将系统时钟输出到MCO引脚上去。 弄了一晚上,看见波形了。 首先建立空的工程,将下面三行代码注释掉: ;IMPORT SystemInit ;删除SystemInit自己写RCC初始化函数 ;LDR R0, =SystemInit ;BLX R0 下面是设置函数,使用HSI作为系统时钟,不实用PLL,直接将HSI输出到MCO引脚:void My_RccInitMCOHSI(void) { uint8_t temp; My_Rcc_DeInit(); RCC->CR |= 1<<0; //复位HSION 开启内部时钟;其实内部时钟不用管的,开机自动使用内部时钟。 while(!(RCC->CR>>1)); //检查HSI是否就绪 RCC->CFGR &= (~0x03); //清零CFGR的0、1位HSI作为系统时钟 while(temp!=0x00) //读取CFGR的2、3为,判断是否是HSI作为系统时钟设置

{ temp=RCC->CFGR>>2; temp&=0x03; } //此时HSI已经成为系统时钟 //HSI时钟就绪后,直接输出到MCO(PA8) RCC->APB2ENR |= 1<<2; //使能PA时钟 RCC->APB2ENR|=1<<5; //使能PORTD时钟 GPIOA->CRH&=0XFFFFFFF0; GPIOA->CRH|=0X0000000B;//PA8 推挽输出(MCO) // //设置MCO输出内部HSI时钟 RCC->CFGR |= 5<<24; //MCO输出HSI时钟 //RCC->CFGR |= 4<<24; MCO输出系统时钟SYSCLK //此时就可以在PA8即MCO引脚看见输出波形了对比下,两者是一样的。} 下边是示波器出来的图:

相关文档