文档库 最新最全的文档下载
当前位置:文档库 › TextMining07-过滤

TextMining07-过滤

基于用户的协同过滤算法 UserCF流程图

UserCF算法主要流程: 主要全局变量: const int usersum = 6040; //用户总数 const int itemsum =3952; //项目总数 const int N =10; //为用户推荐前N个物品 int trainuser[usersum][itemsum]={0}; //训练集合user item rate矩阵 int test[usersum][itemsum]={0}; //测试集合user item rate矩阵 struct _simi { double value; //相似值 int num; //相似用户号 }; _simi simiUser[usersum][usersum]; //排序后的相似性矩阵double trainuserItem[usersum][itemsum]={0.0}; // user item 兴趣程度矩阵int recommend[usersum][N]={0}; //为每个用户推荐N个物品

拆分数据集函数int SplitData(int m, int k) 主要流程: 将数据集拆分为测试集test和训练集trainuser,其中1/m为测试集,取不同的k<=m-1值在相同的随即种子下可得到不同的测/训集合

计算用户之间相似度函数double Simility(int* Ua, int*Ub)主要流程:计算用户Ua和Ub的相似性,返回值为Ua和Ub的相似度

用户相似性矩阵排序函数int sort(double *simArr,_simi *simStruct)主要流程:根据相似性由高到低排序,每行第一个是自己

过滤器过滤效率测试方法

过滤器过滤效率测试方法 3.1 计重法Arrestance ⑴计重法一般用于测量中央空调系统中作为预过滤的低 效率过滤器. ⑵将过滤器装在标准试验风洞内, 上风端连续发尘, 每 隔一段时间, 测量穿过过滤器的粉尘重量(或过滤器上 的集尘量), 由此得到过滤器在该阶段按粉尘重量计算 的过滤效率. 最终的计重效率是各试验阶段效率依发 尘量的加权平均值. ⑶试验用的尘源为大粒径、高浓度标准粉尘.各国使用的 粉尘是不相同的. ⑷计重法试验的终止试验条件为: 和用户约定的终阻力 值, 或试验者自己规定的终阻力值. 终阻力值不同, 计重效率就不同. ⑸计重法试验是破坏性试验, 不能用作产品生产中的性 能检验. ⑹计重法试验的相关标准: 美国标准: ANSI/ASHRAE 52.1 - 1992 英国标准: EN 779 - 1993 中国标准: GB 12218 - 1989 3.2 比色法Dust - spot ⑴比色法用于测量效率较高的一般通风用过滤器.中央 空调系统中的大部份过滤器属于这种过滤器. ⑵试验台与试验粉尘与计重法相同. ⑶用装有高效滤纸的采样头在过滤器前后采样.每经过 一段发尘试验,测量不发尘状态下过滤器前后采样点 采样头上高效滤纸的通光量, 通过比较滤纸通光量的

差别, 用规定计算方法得出所谓“过滤效率”. 最终的 比色效率是各试验阶段效率依发尘量的加权平均值. ⑷终止试验条件与计重法相似: 和用户约定的终阻力值, 或试验者自己规定的终阻力值. 终阻力值不同, 比色 效率就不同. ⑸比色法试验是破坏性试验, 不能用作产品生产中的性 能检验. ⑹计重法试验的相关标准: 美国标准: ANSI/ASHRAE 52.1 - 1992 英国标准: EN 779 - 1993 中国从来没有使用过比色法, 国内也没有比色法试验台. ⑺比色法曾经是国外通行的试验方法, 这种方法正逐渐 被计数法所取代. 3.3 大气尘计数法 ⑴中国对一般用通风过滤器的效率分级是建立在大气尘 计数法基础上的. 中国的计数法标准早于欧美, 但应 为它是建立在20世纪80年代国产计数器和相应测量 水平面上, 所以方法 比较粗糙.. ⑵尘源为大气中的“大气尘”. ⑶测量粉尘颗粒数的仪器为普通光学或激光粒子计数 器. ⑷大气尘计数法的效率值只代表新过滤器的初始效率. ⑸标准: GB 12218 - 1989 3.4 计数法Particle Efficiency

高、中、初效过滤器知识

过滤器是怎么区分低效、中效、高效的? 过滤器一般是根据所过滤尘埃粒子料径大小及过滤效率来确定! 过滤器分类: 初效(低效):G1-G4 主要针对5.0μm以上颗粒的过滤效率 中效:F5-F9 主要针对1.0-5.0μm颗粒的过滤效率 亚高效:H10-H12 主要针对0.3-0.5μm颗粒的过滤效率 高效:H13-H14 主要针对0.3μm颗粒的过滤效率 超高效:U15-U17 主要针对0.12μm颗粒的过滤效率 高效过滤器 主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物。采用超细玻璃纤维纸作滤料,胶版纸、铝膜等材料作分割板,与木框铝合金胶合而成。每台均经纳焰法测试,具有过滤效率高、阻力低、容尘量大等特点。高效空气过滤器可广泛用于光学电子、LCD液晶制造,生物医药、精密仪器、饮料食品,PCB印刷等行业无尘净化车间的空调末端送风处。高效和超高效过滤器均用于洁净室末端,以其结构形式可分为有:有隔板高效、无隔板高效、大风量高效,超高效过滤器等。 另外还有三种高效过滤器,一种是超高效过滤器,能做得到净化 99.9995%。一种是抗菌型无隔板高效空气过滤器,具有抗菌作用,阻止细菌进入洁净车间,一种是亚高效过滤器,价格便宜以前多用于要求不高的净化空间。 过滤器选型的一般原则 1、进出口通径: 原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。 2、公称压力: 按照过滤管路可能出现的最高压力确定过滤器的压力等级。 3、孔目数的选择: 主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 4、过滤器材质: 过滤器的材质一般选择与所连接的工艺管道材质相同,对于不同的服役条件可考虑选择铸铁、碳钢、低合金钢或不锈钢材质的过滤器。

基于协同过滤的推荐算法及代码实现

基于协同过滤的推荐算法与代码实现 什么是协同过滤? 协同过滤是利用集体智慧的一个典型方法。要理解什么是协同过滤(Collaborative Filtering, 简称CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。 协同过滤一般是在海量的用户中发掘出一小部分和你品位比较类似的,在协同过滤中,这些用户成为邻居,然后根据他们喜欢的其他东西组织成一个排序的目录作为推荐给你。当然其中有一个核心的问题: 如何确定一个用户是不是和你有相似的品位? 如何将邻居们的喜好组织成一个排序的目录? 简单来说: 1. 和你兴趣合得来的朋友喜欢的,你也很有可能喜欢; 2. 喜欢一件东西A,而另一件东西B 与这件十分相似,就很有可能喜欢B; 3. 大家都比较满意的,人人都追着抢的,我也就很有可能喜欢。 三者均反映在协同过滤的评级(rating)或者群体过滤(social filtering)这种行为特性上。 深入协同过滤的核心 首先,要实现协同过滤,需要一下几个步骤: 1. 收集用户偏好 2. 找到相似的用户或物品 3. 计算推荐 (1)收集用户偏好 要从用户的行为和偏好中发现规律,并基于此给予推荐,如何收集用户的偏好信息成为系统推荐效果最基础的决定因素。用户有很多方式向系统提供自己的偏好信息,而且不同的应用也可能大不相同,下面举例进行介绍:

以上列举的用户行为都是比较通用的,推荐引擎设计人员可以根据自己应用的特点添加特殊的用户行为,并用他们表示用户对物品的喜好。 在一般应用中,我们提取的用户行为一般都多于一种,关于如何组合这些不同的用户行为,基本上有以下两种方式: 将不同的行为分组:一般可以分为“查看”和“购买”等等,然后基于不同的行为,计算不同的用户/物品相似度。类似于当当网或者Amazon 给出的“购买了该图书的人还购买了...”,“查看了图书的人还查看了...”

关联规则数据挖掘

关联规则数据挖掘 学习报告

目录 引言 2 案例 2 关联规则 3 (一)关联规则定义 (二)相关概念 (三)关联规则分类 数据 6 (一)小型数据 (二)大型数据 应用软件7 (一)WEKA (二)IBM SPSS Modeler 数据挖掘12 总结27

一、引言 数据库与互联网技术在日益发展壮大,人们每天可以获得的信息量呈指数级增长。如何从这浩如瀚海的数据中找出我们需要的数据显得尤为重要。数据挖掘又为资料探勘、数据采矿。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 数据挖掘大致分为以下几类:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。 二、案例 "尿布与啤酒"的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。

净化过滤器知识(DOC)

净化过滤器知识 基本常识 ◎过滤概述 过滤材料 既有效地拦截尘埃粒子,又不对气流形成过大的阻力。杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。 效率 过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。小于0.1?m(微米)的粒子主要作扩散运动,粒子越小,效率越高;大于0.5?m的粒子主要作惯性运动,粒子越大,效率越高。 阻力 纤维使气流绕行,产生微小阻力。无数纤维的阻力之和就是过滤器的阻力。 过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。 动态性能 被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。 被捕捉的粉尘大都聚集在过滤材料的迎风面上。滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。 使用寿命 滤料上积尘越多,阻力越大。当阻力大到设计所不允许的程度时,过滤器的寿命就结束。有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。静电 若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。 ◎过滤效率 在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。实用中,有粉尘的总重量、粉尘的颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。 对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。离开测试方法,过滤效率就无从谈起。 ◎过滤器阻力 过滤器对气流形成阻力。过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。 新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。 终阻力 终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。 大多数情况下,终阻力是初阻力的2~4倍。 终阻力建议值 效率规格建议终阻力Pa

基于项目的协同过滤算法 ItemCF流程图

ItemCF算法主要流程: 主要全局变量: const int usersum = 6040; //用户总数 const int itemsum =3952; //项目总数 const int N =10; //为用户推荐前N个物品 int trainuser[usersum][itemsum]={0}; //训练集合user item rate矩阵 int test[usersum][itemsum]={0}; //测试集合user item rate矩阵 struct _simi { double value; //相似值 int num; //相似物品号 }; _simi simiItem[itemsum][itemsum]; //排序后的相似性矩阵double trainuserItem[usersum][itemsum]={0.0}; // user item 兴趣程度矩阵int recommend[usersum][N]={0}; //为每个用户推荐N个物品

拆分数据集函数int SplitData(int m, int k) 主要流程: 将数据集拆分为测试集test和训练集trainuser,其中1/m为测试集,取不同的k<=m-1值在相同的随即种子下可得到不同的测/训集合

计算项目之间相似度函数double Simility(int* ItemA, int* ItemB)主要流程:计算用户ItemA和ItemB的相似性,返回值为ItemA和ItemB的相似度

用户i对物品j预测兴趣程度函数double getUserLikeItem(int i,int j,int k)主要流程: 利用k个最近邻来计算

滤波器基本知识

有源滤波器Active Filter(信号分离电路) 测量系统从传感器拾取的信号往往包含噪声和许多与被测量无关的信号,并且原始的测量信号经传输、放大、变换、运算及各种其它处理过程,也会混入各种不同形式的噪声,从面影响测量精度。 这些噪声一般随机性很强,很难从时域中直接分离,但限于其产生的机理,其噪声功率是有限的,并按一定规律分布于频率域中某一特定频带中。 滤波器(信号分离电路):从频域中实现对噪声的抑制,提取所需要的信号,是各种测控系统中必不可少的组成部分。 对滤波器的要求:(1)滤波特性好;(2)级联特性好(输入,输出); (3)滤波频率便于改变 滤波器举例: 心电信号的滤波:主要受到50Hz的工频干扰,采用50Hz陷波(带阻)滤波器。

一.滤波器的基本知识 ⒈按处理信号的形式分类:模拟:连续的模拟信号 (又分为:无源和有源) 数字:离散的数字信号。 ⒉理想滤波器对不同频率的作用: 通带内,使信号受到很小的衰减而通过。阻带内,使信号受到很大的衰减而抑制,无过渡带。

⒊按频谱结构分为5种类型: 滤波器对信号不予衰减或以很小衰减让其通过的频段称为通带;对信号的衰减超过某一规定值的频段称为阻带;位于通带和阻带之间的频段称为过渡带。根据通带和阻带所处范围的不同,滤波器功能可分为以下几种: 低通(Low Pass Filter) 高通(High Pass Filter) 带通(Band Pass Filter) 带阻(Band Elimination Filter) 全通(All Pass Filter)(理想)各种频率信号都

能通过,但不同的频率信号的相位有不同的变化, 一种移相器。 图2-2 按频谱结构分类的各种滤波器的衰减(1-幅频)特性 几个定义: (1)通带的边界频率:一般来讲指下降—3dB即对应的频率。 (2)阻带的边界频率:由设计时,指定。 (3)中心频率:对于带通或带阻而言,用f0或ω0表示。 (4)通带宽度:用Δf0或Δω0表示。 (5)品质因数:衡量带通或带阻滤波器的选频特性。定义为: Q=f0/Δf0或ω0/Δω0,Q值越高,选频性能越好。

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

电源滤波器基本知识

术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V, 50Hz;美国:115V, 60Hz) 2. 额定电流 在额定电压和指定温度条件下(常为环境温度40C), EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出: 3. 试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。4. 泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出: 其中 F为工作频率, C为接地电容的容量, V为线-地电压 5. 插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Q系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL- 插入损耗(单位:dB) EO-负载直接接到信号源上的电压 E1-插入滤波器后负载上的电压

6. 气候等级指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注: XX/XXX/XX 前 2 位数字代表滤波器的最低工作温度中间数字代表滤波器的最高工作温度后 2 位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。 8. 电磁干扰(EMI) 电磁干扰经常与无线电频率干扰(RFI )交替使用。从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。滤波器用以消除EMI和RFI 中的多余电磁能。 9. 频率范围 电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz,每秒循环千次数)表示。电源滤波器的典型频率范围在150kHz to 30MHz (超过30MHz即为辐射)10. 阻抗失配 为了达到更好的滤波效果,要使滤波器与它的源阻抗和负载阻抗失配。如图所示。 11. 工作频率 电源滤波器的工作频率标称值为50/60Hz(中国、欧洲等为50Hz;北美为60Hz)。然而,电源滤波器在直流或400Hz的情况下工作,并不会损害其效力。 二、滤波器的作用 1. 什么是射频干扰(RFI)? RFI 是指产生在无线电通讯时,所用频率范围内的一种多余的电磁能。传导现象的频率范围介于10kHz到30MHN间;辐射现象的频率范围介于30MHz到1GHz间。 2. 为何要关注RFI? 之所以必须考虑RFI,基于两点原因:(1)他们的产品必须在其工作环境下正常运行,然而该工作环境常常伴随有严重的R F I。(2)他们的产品不能辐射RFI,以确保不干扰对健康及安全都至关重要的射频(RF)通讯。法律已对可靠的RF 通讯做出了规定,以确保电子设备的RFI 控制。 3. 什么是RFI 的传播模式?

基于协同过滤算法的电影推荐系统设计

高级数据挖掘期末大作业

基于协同过滤算法的电影推荐系统 本电影推荐系统中运用的推荐算法是基于协同过滤算法(Collaborative Filtering Recommendation)。协同过滤是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。 电影推荐系统中引用了Apache Mahout提供的一个协同过滤算法的推荐引擎Taste,它实现了最基本的基于用户和基于内容的推荐算法,并提供了扩展接口,使用户方便的定义和实现自己的推荐算法。 电影推荐系统是基于用户的推荐系统,即当用户对某些电影评分之后,系统根据用户对电影评分的分值,判断用户的兴趣,先运用UserSimilarity计算用户间的相似度.UserNeighborhood根据用户相似度找到与该用户口味相似的邻居,最后由Recommender提供推荐个该用户可能感兴趣的电影详细信息。将用户评过分的电影信息和推荐给该用户的电影信息显示在网页结果页中,推荐完成。 一、Taste 介绍 Taste是Apache Mahout 提供的一个个性化推荐引擎的高效实现,该引擎基于java实现,可扩展性强,同时在mahout中对一些推荐算法进行了MapReduce 编程模式转化,从而可以利用hadoop的分布式架构,提高推荐算法的性能。 在Mahout0.5版本中的Taste,实现了多种推荐算法,其中有最基本的基于用户的和基于内容的推荐算法,也有比较高效的SlopeOne算法,以及处于研究阶段的基于SVD和线性插值的算法,同时Taste还提供了扩展接口,用于定制化开发基于内容或基于模型的个性化推荐算法。 Taste 不仅仅适用于Java 应用程序,还可以作为内部服务器的一个组件以HTTP 和Web Service 的形式向外界提供推荐的逻辑。Taste 的设计使它能满足企业对推荐引擎在性能、灵活性和可扩展性等方面的要求。 下图展示了构成Taste的核心组件:

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

过滤器知识

1为什么空气中油的危害是最大的? 答:在一些要求严格的地方,比如气动控制系统中,一滴油能改变气孔的状况。使原本正常自动运行的生产线瘫痪。有时,油还会将气动阀门的密封圈和柱体胀大,造成操作迟缓,严重的甚至堵塞。在由空气完成的工序中,如吹形件,油还会造成产品外形缺陷或外表污染。 2油污的主要来源是怎样的? 答:由于大部分压缩空气系统都使用润滑油式压缩机,该机在工作中将油汽化变成油滴。它以二种方式形成的: 一种是由于活塞压缩或叶片旋转的剪切作用产生的所谓“分散型液滴”。其直径从1~5μm。 另一种是在润滑油冷却高温的机体时,汽化形成的“冷凝型液滴”,其直径一般小于lμm.这种冷凝油滴通常占全部油污重量超过50%,占全部油污实际颗粒数量超过99%。 3过滤器的工作原理是什么? 答:一般过滤器滤芯是由纤维介质、滤网、海绵等材料组成,压缩空气中的固体的、液体的微粒(滴)经过过滤材料的拦截后,凝聚在滤芯表面(内外侧)。积聚在滤芯表面的液滴和杂质经过重力的作用沉淀到过滤器的底部再经自动排水器或人工排出。 4玻璃纤维材质应用于过滤中有什么特点? 答:玻璃纤维能十分有效地分离直径从50~0.0lμm间的润滑油滴,它在过滤时既不必吸附也不用吸收。而且十分有效,比其他材质更优胜。 5高效的凝聚式过滤器的简单工作过程是怎样的? 答:压缩空气进入滤芯的中部后,经重力、碰撞、拦截和渗透作用被滤层搜集起来。当油滴被滤层清除后,首先要收集它们。小油滴先聚合成大油滴,聚合的大油滴质量足够大时,会沉降至滤层底部。然后流入过滤糟内,经人工或自动排油装置从系统中排除。 6过滤器的等级是如何具体划分的? 答:一般过滤器的等级可分为预过滤、初过滤、精过滤和活性碳过滤。其中预过滤器一般滤除直径3~5μm微粒,初过滤器一般滤除直径O.5~1μm微粒和油雾剩余含量1ppm w/w,精过滤器一般滤除直径0.01μm微粒和油雾剩余含量0.0lppm w/w.活性碳过滤器则主要用来去除臭味和油蒸汽(油雾剩余含量仅0.003ppm w/w). 7过滤器不同等级标准的适用场合如何? 答:预过滤器一般用于压缩机(后冷却器)的下游,使用场合要求不高。初过滤器一般用于工具、马达、气缸等。精过滤器一般用于喷漆、注塑、仪表、控制阀、传动、搅拌、电子元件制造、氮分离等。活性碳过滤器一般用于食品和药品制造、呼吸空气、气体加工等。 8为什么过滤器要搭配选购? 答:一般人的误区是,认为根据所需要的空气质量选择对应处理精度的单支过滤器就能达到要求,并且节约开支。其实不然,所需要的空气质量虽然由所选的单支过滤器的处理精度决定,但没有前置低一级过滤器的预处理保护,高精密滤芯很快就会因负载过大而堵塞,加快了滤芯的更换频率,从而会变相地增加生产成本。 9过滤器效率与空气温度的关系是什么?

聚类分析、数据挖掘、关联规则这几个概念的关系

聚类分析和关联规则属于数据挖掘这个大概念中的两类挖掘问题, 聚类分析是无监督的发现数据间的聚簇效应。 关联规则是从统计上发现数据间的潜在联系。 细分就是 聚类分析与关联规则是数据挖掘中的核心技术; 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。 关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

过滤器分级标准

过滤器分级标准 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

由于现在许多企业选用的是进口的过滤器,而它们表示效率的方法与国 内的不同,为便于比较,将它们之间的换算关系列表如下: 按欧洲标准,粗效过滤器分为四级(G1~~G4): G1 效率对粒径≥5.0μm,过滤效率E≥20% (对应美国标准C1) G2 效率对粒径≥5.0μm,过滤效率50>E≥20% (对应美国标准C2~C4) G3 效率对粒径≥5.0μm,过滤效率70>E≥50% (对应美国标准L5) G4 效率对粒径≥5.0μm,过滤效率90>E≥70% (对应美国标准L6) 中效过滤器分为两级(F5~~F6): F5 效率对粒径≥1.0μm,过滤效率50>E≥30% (对应美国标准M9、M10) F6 效率对粒径≥1.0μm,过滤效率80>E≥50% (对应美国标准M11、 M12) 高中效过滤器分为三级(F7~~F9): F7 效率对粒径≥1.0μm,过滤效率99>E≥70% (对应美国标准H13) F8 效率对粒径≥1.0μm,过滤效率90>E≥75% (对应美国标准H14) F9 效率对粒径≥1.0μm,过滤效率99>E≥90% (对应美国标准H15) 亚高效过滤器分为两级(H10、H11):

H10 效率对粒径≥0.5μm,过滤效率99>E≥95% (对应美国标准H15) H11 效率对粒径≥0.5μm,过滤效率99.9>E≥99% (对应美国标准H16) 高效过滤器分为两级(H12、H13): H12 效率对粒径≥0.5μm,过滤效率E≥99.9% (对应美国标准H16) H13 效率对粒径≥0.5μm,过滤效率E≥99.99% (对应美国标准H17)

空气过滤器基本知识

过滤器知识 空气过滤器是空调净化系统的核心设备,过滤器对空气形成阻力,随着过滤器积尘的增加,过滤器阻力将随着增大。当过滤器积尘太多,阻力过高,将使过滤器通过风量降低,或者过滤器局部被穿透,所以,当过滤器阻力增大到某一规定值时,过滤器将报废。因此,使用过滤器,要掌握合适的使用周期。在过滤器没有损坏的情况下,一般以阻力判定使用寿命。 过滤器的使用寿命除了取决于其本身的优劣,如:过滤材料、过滤面积、结构设计、初始阻力等,还与空气中的含尘浓度,实际使用风量,终阻力的设定等因素有关。 掌握合适的使用周期,必须了解其阻力的变化情况,首先必须了解如下定义: 1. 额定初阻力:在额定风量下,过滤器样本、过滤器特性曲线或过滤器检测报告所提供的初阻力。 2. 设计初阻力:系统设计风量下,过滤器阻力(应由空调系统设计师提供)。 3. 运行初阻力:系统运行之初,过滤器的阻力,如果没有测量压力的仪表,就只能取设计风量下的阻力作为运行初阻力(实际运行的风

量不可能完全等于设计风量); 运行中应定期检查过滤器的阻力超出初阻力的情况(每个过滤段都应安装阻力监测装置),以决定何时更换过滤器。过滤器更换周期,见下表(仅供参考):

特别说明:低效率过滤器一般使用粗纤维滤料,纤维间空隙大,过大的阻力有可能将过滤器上的积尘吹散,这种情况下,过滤器阻力不再增高,但过滤效率降到几乎为零,因此要严格控制粗效过滤器的终阻力值! 确定终阻力要综合考虑几种因素。终阻力定的低,使用寿命短,长期更换费用(过滤器费用、人工费用,和废弃处理费用)相应就高,但运行能耗低,因此每种过滤器应该有最经济的终阻力值。 过滤器越脏,阻力增长越快。过高的终阻力不意味着过滤器使用寿命会延长,过高阻力会使空调系统风量锐减。过高的终阻力是不可取的。 顾客关于过滤器使用寿命短的抱怨:主要由三种原因造成 a、过滤器的过滤材料面积太小或单位容尘能力太小;

空气过滤器知识

空气过滤器知识 ◎空气过滤器概述 过滤材料 既有效地拦截尘埃粒子,又不对气流形成过大的阻力。杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。 效率 过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。小于0.1 m(微米)的粒子主要作扩散运动,粒子越小,效率越高; 大于0.5 m的粒子主要作惯性运动,粒子越大,效率越高。 阻力 纤维使气流绕行,产生微小阻力。无数纤维的阻力之和就是过滤器的阻力。 KLC过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。 动态性能 被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。 被捕捉的粉尘大都聚集在过滤材料的迎风面上。滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。 使用寿命

滤料上积尘越多,阻力越大。当阻力大到设计所不允许的程度时,过滤器的寿命就结束。有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。 静电 若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。 ◎过滤效率 在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。实用中,有粉尘的总重量、粉尘的 颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。 对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。离开测试方法,过滤效率就无从谈起。◎过滤器阻力 过滤器对气流形成阻力。过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。 新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。 终阻力 终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。 大多数情况下,终阻力是初阻力的2~4倍。

协同过滤推荐算法与应用

机器学习算法day03_协同过滤推荐算法及应用课程大纲 课程目标: 1、理解协同过滤算法的核心思想 2、理解协同过滤算法的代码实现 3、掌握协同过滤算法的应用步骤:数据处理、建模、运算和结果判定

4、 1. CF协同过滤推荐算法原理 1.1 概述 什么是协同过滤(Collaborative Filtering, 简称CF)? 首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做? 大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。 协同过滤算法又分为基于用户的协同过滤算法和基于物品的协同过滤算法 1.2 案例需求 如下数据是各用户对各文档的偏好: 现在需要基于上述数据,给A用户推荐一篇文档

1.3 算法分析 1.3.1 基于用户相似度的分析 直觉分析:“用户A/B”都喜欢物品A和物品B,从而“用户A/B”的口味最为相近 因此,为“用户A”推荐物品时可参考“用户B”的偏好,从而推荐D 这种就是基于用户的协同过滤算法UserCF指导思想 1.3.2 基于物品相似度的分析 直觉分析:物品组合(A,D)被同时偏好出现的次数最多,因而可以认为A/D两件物品的相似度最高,从而,可以为选择了A物品的用户推荐D物品

这种就是基于物品的协同过滤算法ItemCF指导思想 1.4 算法要点 1.4.1、指导思想 这种过滤算法的有效性基础在于: 1、用户偏好具有相似性,即用户可分类。这种分类的特征越明显,推荐准确率越高 2、物品之间具有相似性,即偏好某物品的人,都很可能也同时偏好另一件相似物品 1.4.2、两种CF算法适用的场景 什么情况下使用哪种算法推荐效果会更好? 不同环境下这两种理论的有效性也不同,应用时需做相应调整。 a.如豆瓣上的文艺作品,用户对其的偏好程度与用户自身的品位关联性较强;适合UserCF b.而对于电子商务网站来说,商品之间的内在联系对用户的购买行为影响更为显著。 1.5 算法实现 总的来说,要实现协同过滤,需要一下几个步骤: 1.收集用户偏好 2.找到相似的用户或物品 3.计算推荐

过滤器基本知识

基本知识 一、过滤器可实现的功能 1、过滤:除去液体或气体等流体中的杂质。 2、混合:按要求将不同的流体混合在一起。 3、油气分离:除去气体中的油污等杂质。 4、缓冲:保护测量仪器免遭高压脉动压力的破坏。 5、发泡:使空气或气体在液体中均匀产生所需要的气泡。 6、消音:消除排气装置中的噪音。 二、过滤器适用范围 1、石油、化工系统 2、化纤、纺织系统 3、工程机械系统 4、电子、电力系统 5、冶金系统 6、感光材料系统 7、制药系统 8、烟草、食品、饮料、造酒系统 9、矿山、能源系统 三、过滤器种类及主要性能 1、油气分离过滤器 主要用于空气压缩机。

当螺杆压缩机工作时,靠油液密封。油气混合物在高速旋 转的螺杆挤压下产生雾化、气化,从而使螺杆出气口的压 缩空气中含有较多的油分。为使油液回收循环使用及净化 压缩空气,必须使用油气分离器。 规格:处理风量0、1~40 M3 /min(米3 /分钟) 过滤精度:1、3、5、10、25、40、50μm(微米) 分离率:99、9%~99、999% 2、空气过滤器 用在空气压缩机入口。用于洁净厂房空调系统、气体送料 系统、自动喷漆房、车船发动机进气口等空气净化领域。 效率:45%~99、99% 3、高、中、低压过滤器 带有外壳体,适用于有压力的液压系统。一般带有压差指 示器。滤芯采用不锈钢超细纤维烧结毡,强度高,耐高温, 耐腐蚀,纳污量大,过滤性能好,滤芯可反复清洗。  (1) YPH系列高压过滤器 工作压力:42Mpa (420公斤/平方厘米) 温度:-10℃~+100℃ 精度:5、10、20μm 滤芯耐压差:21Mpa 工作介质:一般液压油

基于用户的协同过滤推荐算法原理和实现

在推荐系统众多方法中,基于用户的协同过滤推荐算法是最早诞生的,原理也较为简单。该算法1992年提出并用于邮件过滤系统,两年后1994年被GroupLens 用于新闻过滤。一直到2000年,该算法都是推荐系统领域最著名的算法。 本文简单介绍基于用户的协同过滤算法思想以及原理,最后基于该算法实现园友的推荐,即根据你关注的人,为你推荐博客园中其他你有可能感兴趣的人。 基本思想 俗话说“物以类聚、人以群分”,拿看电影这个例子来说,如果你喜欢《蝙蝠侠》、《碟中谍》、《星际穿越》、《源代码》等电影,另外有个人也都喜欢这些电影,而且他还喜欢《钢铁侠》,则很有可能你也喜欢《钢铁侠》这部电影。 所以说,当一个用户A 需要个性化推荐时,可以先找到和他兴趣相似的用户群体G,然后把G 喜欢的、并且A 没有听说过的物品推荐给A,这就是基于用户的系统过滤算法。 原理 根据上述基本原理,我们可以将基于用户的协同过滤推荐算法拆分为两个步骤: 1. 找到与目标用户兴趣相似的用户集合 2. 找到这个集合中用户喜欢的、并且目标用户没有听说过的物品推荐给目标用户1. 发现兴趣相似的用户 通常用Jaccard 公式或者余弦相似度计算两个用户之间的相似度。设N(u) 为用户u 喜欢的物品集合,N(v) 为用户v 喜欢的物品集合,那么u 和v 的相似度是多少呢: Jaccard 公式: 余弦相似度:

假设目前共有4个用户:A、B、C、D;共有5个物品:a、b、c、d、e。用户与物品的关系(用户喜欢物品)如下图所示: 如何一下子计算所有用户之间的相似度呢?为计算方便,通常首先需要建立“物品—用户”的倒排表,如下图所示: 然后对于每个物品,喜欢他的用户,两两之间相同物品加1。例如喜欢物品a 的用户有A 和B,那么在矩阵中他们两两加1。如下图所示:

相关文档