文档库 最新最全的文档下载
当前位置:文档库 › 大学物理学(第三版)赵近芳-第5章答案

大学物理学(第三版)赵近芳-第5章答案

大学物理学(第三版)赵近芳-第5章答案
大学物理学(第三版)赵近芳-第5章答案

习题五

5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?

解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =. (2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.

当谐波方程)(cos u

x

t A y -

=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.

(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.

5-2 波动方程y =A cos [ω(u x t -)+0?]中的u

x

表示什么?如果改写为y =A cos (0?ωω+-u x t ),

u x ω又是什么意思?如果t 和x 均增加,但相应的[ω(u

x t -)+0?]的值不变,由此能从波动方程说明什么?

解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;u

x ω则

表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为 )cos(0φωω+-=u

x

t A y t

则t t ?+时刻的波动方程为

])

()(cos[

0φωω+?+-?+=?+u

x x t t A y t t

其表示在时刻t ,位置x 处的振动状态,经过t ?后传播到t u x ?+处.所以在)(u

x

t ωω-中,

当t ,x 均增加时,)(u

x

t ωω-

的值不会变化,而这正好说明了经过时间t ?,波形即向前传

播了t u x ?=?的距离,说明)cos(0φωω+-

=u

x

t A y 描述的是一列行进中的波,故谓之行

波方程.

5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点?

解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ??/.波动势能则是与x y ??/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=??x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.

题5-3图

对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化. 5-4 波动方程中,坐标轴原点是否一定要选在波源处? t =0时刻是否一定是波源开始振动的时刻? 波动方程写成y =A cos ω(u

x

t -

)时,波源一定在坐标原点处吗?在什么前提下波动方程才能写成这种形式?

解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程写成)(cos u

x

t A y -

=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程. 5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同?

解: 取驻波方程为vt x A y απλ

π

cos 2cos

2=,则可知,在相邻两波节中的同一半波长上,

描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律可表示为x A λ

π

2cos

2.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻

两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.

5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别?

解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即B v u u +=',因而单位时间内通过观察者完整波的数目

λ

u '

也会增多,即接收频率也将增高.简单地说,前

者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.

题5-6 图多普勒效应

5-7 一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质点的振动频率为ν=2. 0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程. 解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为2

π,取波动方程为])(

2cos[0φλ

π++=x

T t A y 则有 ]2)12(2cos[1.0π

π++=x t y

)2

24cos(1.0π

ππ++=x t m

5-8 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,

C 为正值恒量.求:

(1)波的振幅、波速、频率、周期与波长;

(2)写出传播方向上距离波源为l 处一点的振动方程;

(3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程

)cos(Cx Bt A y -= (0≥x )

将上式与波动方程的标准形式

)22cos(λ

π

πυx

t A y -=

比较,可知: 波振幅为A ,频率π

υ2B =, 波长C πλ2=

,波速C

B u ==λυ, 波动周期B

T π

υ21==.

(2)将l x =代入波动方程即可得到该点的振动方程

)cos(Cl Bt A y -=

(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=?λ

π

φ

将d x x =-12,及C

π

λ2=

代入上式,即得 Cd =?φ.

5-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,

t 以秒计.求:

(1)波的波速、频率和波长;

(2)绳子上各质点振动时的最大速度和最大加速度;

(3)求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式

)22cos(x t A y λ

π

πυ-

=

相比,得振幅05.0=A m ,频率5=υ1

-s ,波长5.0=λm ,波速5.2==λυu 1

s m -?. (2)绳上各点的最大振速,最大加速度分别为

ππω5.005.010max =?==A v 1s m -? 222max 505.0)10(ππω=?==A a 2s m -?

(3)2.0=x m 处的振动比原点落后的时间为

08.05

.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则

825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m

5-10 如题5-10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.(1)若波沿x 轴正向传播,该时刻O ,A ,B ,C 各点的振动位相是多少?(2)若波沿x 轴负向传播,上述各点的振动 位相又是多少?

解: (1)波沿x 轴正向传播,则在t 时刻,有

题5-10图

对于O 点:∵0,0<=O O v y ,∴2

πφ=

O

对于A 点:∵0,=+=A A v A y ,∴0=A φ 对于B 点:∵0,0>=B B v y ,∴2π

φ-

=B

对于C 点:∵0,0<=C C v y ,∴2

φ-=C

(取负值:表示C B A 、、点位相,应落后于O 点的位相) (2)波沿x 轴负向传播,则在t 时刻,有

对于O 点:∵0,0>'='O O

v y ,∴2

π

φ-='O

对于A 点:∵0,='+='A A v A y ,∴0='A φ 对于B 点:∵0,0<'='B B v y ,∴2

π

φ=

B

对于C 点:∵0,0>'='C C v y ,∴2

φ='C

(此处取正值表示C B A 、、点位相超前于O 点的位相)

5-11 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1

,波长为2m ,原点处质点的振动曲线

如题5-11图所示. (1)写出波动方程;

(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.

解: (1)由题5-11(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴2

30πφ=

又5.22

5

==

=

λ

υu

Hz ,则ππυω52== 题5-11图(a)

取 ])(cos[0φω+-=u

x

t A y , 则波动方程为

)]2

35(5cos[1.0π

π+-

=x t y m (2) 0=t 时的波形如题5-11(b)图

题5-11图(b) 题5-11图(c) 将5.0=x m 代入波动方程,得该点处的振动方程为

)5cos(1.0)2

35.05.055cos(1.0πππ

ππ+=+?-

=t t y m 如题5-11(c)图所示.

5-12 如题5-12图所示,已知t =0时和t =0.5s 时的波形曲线分别为图中曲线(a)和(b) ,波沿x 轴正向传播,试根据图中绘出的条件求: (1)波动方程;

(2)P 点的振动方程.

解: (1)由题5-12图可知,1.0=A m ,4=λm ,又,0=t 时,0,000<=v y ,∴2

0πφ=,

而25.01==??=

t x u 1s m -?,5.04

2

===λυu Hz ,∴ππυω==2 故波动方程为

]2

)2(cos[1.0π

π+-=x t y m

(2)将1=P x m 代入上式,即得P 点振动方程为

t t y ππ

π

πcos 1.0)]2

2cos[(1.0=+-

= m

题5-12图

5-13 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s -1

,波长为2m ,求: (1)波动方程;

(2) P 点的振动方程及振动曲线; (3) P 点的坐标;

(4) P 点回到平衡位置所需的最短时间. 解: 由题5-13图可知1.0=A m ,0=t 时,0,200<=

v A y ,

∴3

φ=,由题知2=λm , 10=u 1s m -?,则52

10

==

=

λυu

Hz

∴ ππυω102==

(1)波动方程为

]3

)10(10cos[.01π

π+-

=x t y m

题5-13图

(2)由图知,0=t 时,0,2<-=P P v A y ,∴3

φ-=

P (P 点的位相应落后于0点,故取负值)

∴P 点振动方程为)3

4

10cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-

=t x t ∴解得 67.13

5

==x m

(4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由P 点回到平衡位置应经历的位相角

题5-13图(a)

ππ

π

φ6

523

=+

=? ∴所属最短时间为

12

1

106/5=

=

?=

?ππω

φ

t s

5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =A cos(0?ω+t ).

(1)分别就图中给出的两种坐标写出其波动方程; (2)写出距P 点距离为b 的Q 点的振动方程. 解: (1)如题5-14图(a),则波动方程为

])(cos[0φω+-+

=u

x

u l t A y 如图(b),则波动方程为

题5-14图

])(cos[0φω++=u

x

t A y (2) 如题5-14图(a),则Q 点的振动方程为

])(cos[0φω+-=u

b t A A Q 如题5-14图(b),则Q 点的振动方程为

])(cos[0φω++=u

b

t A A Q

5-15 已知平面简谐波的波动方程为)24(cos x t A y +=π(SI).

(1)写出t =4.2 s 时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何时通过原点?

(2)画出t =4.2 s 时的波形曲线. 解:(1)波峰位置坐标应满足

ππk x t 2)24(=+ 解得 )4.8(-=k x m (,2,1,0±±=k …) 所以离原点最近的波峰位置为4.0-m . ∵u

x

t t t ωωππ+=+24 故知2=u 1

s m -?,

∴ 2.02

4

.0=-=

'?t s ,这就是说该波峰在2.0s 前通过原点,那么从计时时刻算起,则应是42.02.4=-s ,即该波峰是在4s 时通过原点的.

题5-15图

(2)∵2,4==u πω1

s m -?,∴12===ω

π

λu

uT m ,又0=x 处,2.4=t s 时,

ππφ8.1642.40=?=

A A y 8.02.44cos 0-=?=π

又,当A y -=时,πφ17=x ,则应有

πππ1728.16=+x 解得 1.0=x m ,故2.4=t s 时的波形图如题5-15图所示

5-16 题5-16图中(a)表示t =0时刻的波形图,(b)表示原点(x =0)处质元的振动曲线,试求此波的波动方程,并画出x =2m 处质元的振动曲线.

解: 由题5-16(b)图所示振动曲线可知2=T s ,2.0=A m ,且0=t 时,0,000>=v y , 故知2

0πφ-

=,再结合题5-16(a)图所示波动曲线可知,该列波沿x 轴负向传播,

且4=λm ,若取])(

2cos[0φλ

π++=x

T t A y

题5-16图

则波动方程为

]2

)42(2cos[2.0ππ-+

=x t y 5-17 一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为18.0×10-3

J ·m -2

·s -1

,频

率为300 Hz ,波速为300m ·s -1

,求 : (1)波的平均能量密度和最大能量密度? (2)两个相邻同相面之间有多少波的能量?

解: (1)∵ u w I =

∴ 53

106300

100.18--?=?

==u I w 3m J -? 4max 102.12-?==w w 3m J -?

(2) νπλπωu d w d w V W 224141=== 7251024.9300

300

)14.0(41106--?=????=πJ

5-18 如题5-18图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4

λ

,1S 较2S 位相超前

2

π

,求: (1) 1S 外侧各点的合振幅和强度; (2) 2S 外侧各点的合振幅和强度

解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为

πλλππ

φ=??

?

???+--

=

?)4(22

11r r 0,0211===-=A I A A A

(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.

0)4

(22

22=-+

-

=

?r r λ

λ

π

π

φ

2

121114,2A A I A A A A ===+=

5-19 如题5-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为

t y π2cos 10231-?=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+?=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波速u =0.2m ·s -1,求:

(1)两波传到P 点时的位相差;

(2)当这两列波的振动方向相同时,P 处合振动的振幅;

*(3)当这两列波的振动方向互相垂直时,P 处合振动的振幅. 解: (1) )(2)(12BP CP --

-=?λ

π

?φφ

)(BP CP u --

π

0)4.05.0(2

.02=--=ππ

题5-19图

(2)P 点是相长干涉,且振动方向相同,所以

321104-?=+=A A A P m

(3)若两振动方向垂直,又两分振动位相差为0,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,所以合振幅为

3312

2211083.210222--?=?==+=A A A A m

5-20 一平面简谐波沿x 轴正向传播,如题5-20图所示.已知振幅为A ,频率为ν 波速为u .

(1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程; (2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置. 解: (1)∵0=t 时,0,000>=v y ,∴2

0πφ-

=故波动方程为

]2

)(2cos[π

π--=u x t v A y m

题5-20图

(2)入射波传到反射面时的振动位相为(即将λ43=

x 代入)2

432π

λλπ-?-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为

πππ

λλπ

-=+-?-

2

432 若仍以O 点为原点,则反射波在O 点处的位相为 ππλλπ25432-=-?-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2

π-,故反射波的波动方程为

]2

)(2cos[π

πυ-+=u x t A y 反

此时驻波方程为

]2)(2cos[π

πυ--=u

x t A y ]2

)(2cos[π

πυ-++u x t A )22cos(2cos 2ππυπυ-=t u x A 故波节位置为

2

)12(22πλππυ+==k x u x 故 4

)

12(λ

+=k x (,2,1,0±±=k …)

根据题意,k 只能取1,0,即λλ4

3,41=

x 5-20 一驻波方程为y =0.02cos20x cos750t (SI),求:

(1)形成此驻波的两列行波的振幅和波速; (2)相邻两波节间距离. 解: (1)取驻波方程为

t u

x

A y πυπυ2cos 2cos 2= 故知 01.02

02

.0==

A m 7502=πυ,则πυ2750=

, 202=u

πυ

∴ 5.3720

2/7502202=?==π

ππυu 1s m -?

(2)∵314.01.020

/2====πυ

πυυλu m 所以相邻两波节间距离

157.02

==

x m

5-22 在弦上传播的横波,它的波动方程为1y =0.1cos(13t +0.0079x ) (SI)

试写出一个波动方程,使它表示的波能与这列已知的横波叠加形成驻波,并在x =0处为波 节.

解: 为使合成驻波在0=x 处形成波节,则要反射波在0=x 处与入射波有π的位相差,故反射波的波动方程为

)0079.013cos(1.02π--=x t y 5-23 两列波在一根很长的细绳上传播,它们的波动方程分别为

1y =0.06cos(t x ππ4-)(SI), 2y =0.06cos(t x ππ4+)(SI).

(1)试证明绳子将作驻波式振动,并求波节、波腹的位置; (2)波腹处的振幅多大?x =1.2m 处振幅多大? 解: (1)它们的合成波为

)4cos(06.0)4cos(06.0t x x y ππππ++-= t x ππ4cos cos 12.0=

出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动. 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;

令2)

12(π

π+=k x ,则2

1

)

12(+=k x ,,2,1,0±±=k …,此即波节的位置.

(2)波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即

097.0)2.1cos(12.0=?=π驻A m

5-24 汽车驶过车站时,车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz ,设空气中

声速为330m ·s -1

,求汽车的速率.

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理学第三版课后习题参考答案

习 题 1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度 2/2s m a ,则一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R 2, 2 (B) t R 2,0 (C) 0,0 (D) 0,2t R [答案:B] 1.2填空题 (1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初

始时刻质点的速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 [答案: 23m ·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以 速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321 V V V ] 1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零

大学物理学 答案

作业 1-1填空题 (1) 一质点,以1-?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大 小是 ;经过的路程 是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间 的变化关系为a=3+2t (SI),如果初始时刻 质点的速度v 0为5m 2s -1,则当t 为3s 时, 质点的速度v= 。 [答案: 23m 2s -1 ] 1-2选择题 (1) 一质点作直线运动,某时刻的瞬时 速度s m v /2=,瞬时加速度2/2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (2) 一质点沿半径为R 的圆周作匀速率运 动,每t 秒转一圈,在2t 时间间隔中,其

平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] (3)一运动质点在某瞬时位于矢径) ,(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx + [答案:D] 1-4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3) x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的 速度和加速度,并说明该时刻运动是加速 的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于

大学物理课后习题答案(北邮第三版)下

大学物理习题及解答 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 20 220)33(π4130cos π412a q q a q '=?εε 解得 q q 33 - =' (2)与三角形边长无关. 题8-1图 题 8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ????? ===22 0)sin 2(π41sin cos θεθθl q F T mg T e 解得 θ πεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式 204r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解? 解: 2 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则 这两板之间有相互作用力f ,有人说f =2 02 4d q πε,又有人说,因为f =qE , S q E 0ε= ,所

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理学(第三版)第二章课后标准答案

习题2 2.1 选择题 (1) 一质点作匀速率圆周运动时, (A)它的动量不变,对圆心的角动量也不变。 (B)它的动量不变,对圆心的角动量不断改变。 (C)它的动量不断改变,对圆心的角动量不变。 (D)它的动量不断改变,对圆心的角动量也不断改变。 [答案:C] (2) 质点系的内力可以改变 (A)系统的总质量。 (B)系统的总动量。 (C)系统的总动能。 (D)系统的总角动量。 [答案:C] (3) 对功的概念有以下几种说法: ①保守力作正功时,系统内相应的势能增加。 ②质点运动经一闭合路径,保守力对质点作的功为零。 ③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。 在上述说法中: (A)①、②是正确的。 (B)②、③是正确的。 (C)只有②是正确的。 (D)只有③是正确的。 [答案:C] 2.2填空题 (1) 某质点在力i x F )54(+=(SI )的作用下沿x 轴作直线运动。在从x=0移动到x=10m 的过程中,力F 所做功为。 [答案:290J ] (2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。则物体加速度的大小为,物体与水平面间的摩擦系数为。 [答案:2 2 ;22v v s gs ] (3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为。 [答案:2; 3 k k E E ] 2.3 在下列情况下,说明质点所受合力的特点: (1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。 解:(1)所受合力为零;

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理学(第三版)课后习题参考答案

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx + [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R ππ2, 2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的 速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 [答案: 23m ·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321=++V V V ]

1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2 -4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 2 2484 dx v t dt d x a dt = =+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2 。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.6 |r ?|与r ? 有无不同?t d d r 和d d r t 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度在径向上的分量,

大学物理学第三版下册习题答案习题8

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 2 20) 33( π4130cos π41 2 a q q a q '= ?εε 解得 q q 3 3-=' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ?? ??? ===22 0)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθ tan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 02 4d q πε,又有人 说,因为f =qE ,S q E 0ε= ,所以f = S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强 也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 3 02cos r p πεθ, θE = 3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

最新大学物理第三版下册答案

大学物理第三版下册 答案

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ?? ? ? ? = = = 2 2 ) sin 2( π4 1 sin cos θ ε θ θ l q F T mg T e 仅供学习与交流,如有侵权请联系网站删除谢谢103

仅供学习与交流,如有侵权请联系网站删除 谢谢103 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷 很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解? 解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说 f = 2 02 4d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作 用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力.

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理学(第三版)第三章课后答案(主编)赵近芳

习题3 3.1选择题 (1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转 动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台 中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J + (B) 02)(ωR m J J + (C) 02ωmR J (D) 0ω [答案: (A)] (2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角 速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止, 其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s (a) (b) 题3.1(2)图 [答案: (A)] (3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端 连结此物体,;另一端穿过桌面的小孔,该物体原以角速度w 在距孔为R 的圆周 上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。 (B )动量不变,动能改变。 (C )角动量不变,动量不变。 (D )角动量改变,动量改变。 (E )角动量不变,动能、动量都改变。 [答案: (E)] 3.2填空题 (1) 半径为30cm 的飞轮,从静止开始以0.5rad ·s -2的匀角加速转动,则飞轮边缘 上一点在飞轮转过240?时的切向加速度a τ= ,法向加速度

a n= 。 [答案:0.15; 1.256] (2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。 题3.2(2)图 [答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒] (3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B,则有J A J B 。(填>、<或=) [答案: <] 3.3刚体平动的特点是什么?平动时刚体上的质元是否可以作曲线运动? 解:刚体平动的特点是:在运动过程中,内部任意两质元间的连线在各个时刻的位置都和初始时刻的位置保持平行。平动时刚体上的质元可以作曲线运动。 3.4刚体定轴转动的特点是什么?刚体定轴转动时各质元的角速度、线速度、向心加速度、切向加速度是否相同? 解:刚体定轴转动的特点是:轴上所有各点都保持不动,轴外所有各点都在作圆周运动,且在同一时间间隔内转过的角度都一样;刚体上各质元的角量相同,而各质元的线量大小与质元到转轴的距离成正比。因此各质元的角速度相同,而线速度、向心加速度、切向加速度不一定相同。 3.5刚体的转动惯量与哪些因素有关?请举例说明。 解:刚体的转动惯量与刚体的质量、质量的分布、转轴的位置等有关。如对过圆心且与盘面垂直的轴的转动惯量而言,形状大小完全相同的木质圆盘和铁质圆盘中铁质的要大一些,质量相同的木质圆盘和木质圆环则是木质圆环的转动惯量要大。

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=, 12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中 dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加 速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而求 得结果;又有人 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v == 其二,可能是将22d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明 t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理学(第三版)课后习题参考答案

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2 /2s m a ,则一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R 2, 2 (B) t R 2,0 (C) 0,0 (D) 0,2t R [答案:B] 1.2填空题 (1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小 是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。 [答案: 23m·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321 V V V ]

1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 2 2484 dx v t dt d x a dt t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.6 |r |与r 有无不同?t d d r 和d d r t 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r 是位移的模, r 是位矢的模的增量,即r 12r r ,12r r r ; (2) t d d r 是速度的模,即t d d r v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r (式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r 式中 t r d d 就是速度在径向上的分量,

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

相关文档
相关文档 最新文档