文档库 最新最全的文档下载
当前位置:文档库 › 半导体材料中的杂质

半导体材料中的杂质

半导体材料中的杂质
半导体材料中的杂质

半导体材料中的杂质

半导体材料中的杂质(impurity in semiconductor material)

半导体晶格中存在的与其基体不同的其他化学元素原子。杂质的存在使严格按周期性排列的原子所产生的周期性势场受到破坏,这对半导体材料的性质产生决定性的影响。杂质元素在半导体材料中的行为取决于它在半导体材料中的状态,同一种杂质处于间隙态或代位态,其性质也会不同。电活性杂质在半导体材料的禁带中占有一个或几个位置作为杂质能级。按照杂质在半导体材料中的行为可分为施主杂质、受主杂质和电中性杂质。按照杂质电离能的大小可分为浅能级杂质和深能级杂质。浅能级杂质对半导体材料导电性质影响大,而深能级杂质对少数载流子的复合影响更显著。氧、氮、碳在半导体材料中的行为比较复杂,所起的作用与金属杂质不同,以硅和砷化镓为例叙述杂质的行为。

硅中的杂质主要有金属杂质和氧、碳。

金属杂质分为浅能级杂质和深能级杂质。Ⅲ族元素硼、铝、镓、铟和V族元素磷、砷、锑,它们在硅中的能级,位于导带底或价带顶的附近,电离能级小,极易离化,因此称为浅能级杂质。它们是硅中主要的电活性杂质。Ⅲ族元素起受主作用,V族元素起施主作用,常用作硅的掺杂剂。这两种性质相反的杂质,在硅中首先相互补偿,补偿后的净杂质量提供多数载流子浓度。

其他金属杂质,尤其是过渡元素(重金属),如铜、银、金、铁、钴、镍、铬、锰、钼等,在硅中的能级位置一般远离导带底或价带顶,因此称为深能级杂质。它们在硅中扩散快,并起复合中心作用,严重影响少子寿命。它们本身可产生缺陷,并易与缺陷络合,恶化材料和器件的性能。除特殊用途外,重金属元素在硅中都是有害杂质。

镍、钴、铜、铁、锰、铬和银所造成的“雾”缺陷,按次序降低。铜和镍具有高的扩散系数和高的间隙溶解度,在“雾”缺陷形成中,它们会溶解、扩散并沉淀在硅中,而铁、铬、钴则在热处理中将留在硅的表面。

锂、钠、钾、镁、钙等碱金属和碱土金属离子,在电场作用下易在p—n结中淀积,使结退化,导致击穿蠕变,MOs阈电压漂移,沟道漏电,甚至反型。

锗是替位式杂质,电中性,能有效地消除氧化片滑移,增加硅的机械强度。

氧氧在硅中是间隙型杂质,分散在硅中的氧原半bar1子呈电中性。是硅中含量最多又极为重要的杂质。硅中氧主要来源于熔融硅与石英坩埚的反应。因此直拉硅单晶比区熔硅单晶的氧含量要高得多。前者一般在1~1.7×1018cm-3,后者则可<5×1015cm-3。氧在硅中的极限溶解度约为2×1018cm-3。

间隙氧原子与最邻近的硅原子键合成为si-0-Si键,键角约162°,称为准线性分子。si—O键振动在室温下有三个对应的吸收峰,分别为1205cm-1、1106cm-1和515cm-1。

氧在硅中的行为及其状态与热处理过程有密切关系。表面氧沉淀会造成漏电,甚至使器件失效。体内低密度的氧沉淀有吸除金属杂质的作用。但高密度的氧沉淀则能产生位错,使硅片翘曲。氧施主的存在使硅片电阻率变化,器件的阈值电压漂移。晶体内的氧可起钉扎位错的作用,使硅片机械强度增加,因此制作集成电路多用直拉硅单晶。

在450℃热处理时,硅中氧将会产生热施主。热施主量由硅中氧含量决定,且与热历史、缺陷有一定关系。碳的存在能抑制热施主的产生。

热施主会改变材料的电阻率和少子寿命,对高阻材料影响尤为显著。在650℃左右的温度下退火0.5~3h,大多数热施主可以消除。因此对高阻和高氧的材料必须经过650℃的退火,使其电学参数稳定。

对于氧含量大于5×1017cm-3的硅,在750℃左右热处理时,又会产生新的热施主,为区别前者,称为新施主。它的产生率远比热施主小,但却不易消除。.氧含量高的直拉硅单晶,在热处理过程中,过饱和的氧会以氧化硅(主要是SiO2)的形式在硅中沉淀,形成缺陷。且在各种热处理温度下会有不同的形态,如棒状缺陷、小方片、无定形八面体等。这些氧沉淀物在高于1200℃的条件下又会溶解重新回到间隙位置。

碳硅中碳主要来源于多晶硅。此外,直拉单晶炉中的石墨加热器和真空系统的密封材料的易挥发的碳化物等都能造成硅中的碳玷污。碳在硅中的极限溶解度约为9×1017cm-3。直拉硅单晶中碳含量一般为

2×1016~4×1017cm-3,区熔硅单晶中碳含量在5×1015~5×1016cm-3之间。

碳在硅中呈替代位置,是中性等电子杂质。但易与氧和缺陷构成复合体,诱生其他缺陷,是硅中的有害杂质。碳在硅中的分布是不均匀的,会产生碳沉淀。碳在区熔硅中强烈影响B缺陷的形成,它是B缺陷的成核中心之一。碳含量高将使中子嬗变掺杂(NTD)硅的径向电阻率均匀性变差。硅中高的碳含量将大大降低器件中的击穿电压,并使开态电压和关闭时间的乘积增加,这对功率器件尤为严重。

砷化镓中的杂质主要包括Ⅳ族、I族、Ⅱ族、Ⅵ族杂质。

Ⅳ族杂质Ⅳ族杂质碳、锗、硅、锡在GaAs中都是双性杂质,即在一定条件下它可能是施主,在另一条件下可能是受主。硅在GaAs中是典型的双性杂质。硅代镓位(Si Ga)是施主,硅代砷位(Si As)是受主。

Si Ga—Si As对呈中性。在单晶中硅是浅施主杂质,能级位置位于导带下2~5.8meV处。在气相外延GaAs中,硅代镓位,呈n型。在液相外延富镓条件下,硅代砷位,呈p型。能级位置位于价带顶35meV处。锗在GaAs 中的行为与硅相似。用于微波器件的GaAs用锗作掺杂剂比用锌更有利。锡也常被用作微波器件的掺杂剂。碳在GaAs中是有害杂质,但现代工艺已可使其含量相当低。

I族杂质锂、铜、金、银在Ga.As中都是快速扩散杂质。锂是最快的扩散杂质,起受主作用。间隙式铜是单施主,替位式铜是双受主。700℃时替位式铜与间隙式铜之比约为30,它能导致n—GaAs单晶转变为p型或半绝缘。银是深受主杂质,金则是浅受主杂质。

Ⅱ族杂质铍、镁是浅受主杂质。锌常作为p型掺杂剂,能级位置位于价带顶上31meV处,溶解度可达1020cm-3。锡是仅次于锌常用作p型掺杂剂,能级位置位于价带顶上35meV处。

Ⅵ族杂质氧在单晶材料中为深施主。氧的存在对材料性能有重要影响。尤其是氧和硅形成不稳定的[Si Ga—O i]受主复合体,使材料性能退化。硫、硒、碲都是浅施主掺杂剂。硒和碲可作为重掺杂剂。

过渡元素铬、铁、钴、锰、镍、钒、钛在GaAs中都是深能级杂质,能控制载流子扩散长度,对材料特性影响较大。铬是快扩散杂质,是深受主。常用来与浅施主硅补偿,得到半绝缘的GaAs(SI—GaAs),但这样的材料,其迁移率较低。

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

材料物理与文献综述

提高导电高分子电导率的研究概述 摘要:主要介绍了导电高分子材料的分类情况,针对其分类简介了各类导电高分子材料的导电机理,并利用其导电机理集中概述了几种提高高分子电导率的方法,最后指出了导电高分子目前在电导率方面存在的问题及发展趋 关键词:导电高分子;电导率;引言: 导电高分子材料,也可称作导电聚合物,自从1977年【1】科学家发现晶态聚乙炔具有明显的导电性以来,导电聚合物已不再是一个陌生的名词,作为一类新的材料也引起了化学家和物理学家的重视和兴趣。【2】各国科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,导电聚合物已使其成为一门相对独立的学科。人们在制得导电高分子的同时,对其导电机制探索的兴趣也是十分的浓厚。本文将对提高导电高分子的电导率的研究进行简单的概述。 正文: 从导电机理的角度看,导电高分子大致可分为两大类:第一类是复合型导电高分子材料,它是指在普通的聚合物中加入各种导电性填料而制成的;第二类是结构型导电高分子材料,它是指高分子本身或经过“掺杂”(dope)之后具有导电功能的一类材料,这类导电高分子一般为共轭型高聚物。【3】导电聚合物还可以分成以下三类:电子导电聚合物、离子导电聚合物和氧化还原型导电聚合物。【4】所有电子导电聚合物的共同结构特征为分子内有着线性大的共扼π电子体系,即电子聚合物大都为共轭聚合物。目前研究最多的高分子聚合物是:聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯胺(Pan)和聚苯基乙炔(PPV)。下面对导电高分子的电导率进行简单的概述。 1、2结构型导电高分子的导电机理 结构型导电高分子一般为共轭型高聚物,在共轭高聚物中由于价带电子对电导没有贡献,另一方面由于受链规整度的影响,常常使聚合度n不大,使得电子在常温下从P轨道跃迁到P*较难,因而电导率较低。【3】对其导电机理具体分析如下:1、2、1共轭高分子导电应具备的条件 根据能带理论可知,高分子要具有导电性必须满足下列两个条件【7】,才能冲破分子中原子最外层电子的定域,形成具有整个大分子性的能带体系:(1)大分子的分子轨道能强烈地离域;(2)大分子链上的分子轨道间能相互重叠。而能满足上

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

磷化铟晶体半导体材料的研究综述

文献综述 课题名称磷化铟晶体半导体材料的研究学生学院机电工程学院 专业班级2013级机电(3)班 学号31120000135 学生姓名王琮 指导教师路家斌 2017年01月06日

中文摘要 磷化铟(InP)已成为光电器件和微电子器件不可或缺的重要半导体材料。本文详细研究了快速大容量合成高纯及各种熔体配比条件的InP材料;大直径 lnP 单晶生长;与熔体配比相关的缺陷性质;lnP中的VIn心相关的缺陷性质和有关InP材料的应用,本文回顾了磷化铟( InP)晶体材料的发展过程,介绍了磷化铟材料的多种用途和优越特性,深入分析InP合成的物理化学过程,国际上首次采用双管合成技术,通过对热场和其他工艺参数的优化,实现在60—90分钟内合成4.6Kg 高纯InP多晶。通过对配比量的调节,实现了熔体的富铟、近化学配比,富磷等状态,为进一步开展不同熔体配比对InP性质的影响奠定了基础. 关键词:磷化铟磷注入合成晶体材料器件 ABSTRACT Indium Phosphide(InP)has been indispensable to both optical and electronic devices.This paper used a direct P—injection synthesis and LEC crystal growth method to prepare high purity and various melt stoichiometryconditions polycrystalline InP and to grow high quality,large diameter InP single crystal in our homemade pullers.In this work,we have obtained the abstract this paper looks back the developing process on the bulk InP crystals, introduces vario us uses a nd superior character of the InP ma terials and a large quantity of high purity InP crystal material has been produced by the phosphorus in-situ injection synthesis and liquid encapsulated Czochralski(LEC) growth process.In the injection method,phosphorus reacts with indium very quickly so that the rapid polycrystalline synthesis is possible.The quartz injector with two Or multi-transfer tubes was used to improve the synthesis result.It will avoid quartz injector blast when the melt was indraft into the transfer tube.The injection speed,melt temperature,phosphorus excess,and SO on are also important for a successful synthesis process.About 4000—60009 stoichiometric high purity poly InP is synthesized reproducibly by improved P-injection method in the high—pressure puller. Keywords:InP , P-injection synthesis, Crystal , Material, Device 引言 磷化铟( InP)是重要的Ⅲ-Ⅴ族化合物半导体材料之一,是继Si、Ga As之后的新一代电子功能材料。几乎在与锗、硅等第一代元素半导体材料的发展和研究的同时,科学工作者对化合物半导体材料也开始了大量的探索工作。1952年Welker等人发现Ⅲ族和Ⅴ族元素形成的化合物也是半导体,而且某些化合物半导体如Ga As、In P等具有Ge、Si所不具备

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

如何做文献综述(好——有参考价值)

如何做文献综述 文献综述抽取某一个学科领域中的现有文献,总结这个领域研究的现状,从现有文献及过去的工作中,发现需要进一步研究的问题和角度。 文献综述是对某一领域某一方面的课题、问题或研究专题搜集大量情报资料,分析综合当前该课题、问题或研究专题的最新进展、学术见解和建议,从而揭示有关问题的新动态、新趋势、新水平、新原理和新技术等等,为后续研究寻找出发点、立足点和突破口。 文献综述看似简单.其实是一项高难度的工作。在国外,宏观的或者是比较系统的文献综述通常都是由一个领域里的顶级“大牛”来做的。在现有研究方法的著作中,都有有关文献综述的指导,然而无论是教授文献综述课的教师还是学习该课程的学生,大多实际上没有对其给予足够的重视。而到了真正自己来做研究,便发现综述实在是困难。 约翰W.克雷斯威尔(John W. Creswell)曾提出过一个文献综述必须具备的因素的模型。他的这个五步文献综述法倒还真的值得学习和借鉴。他认为,文献综述应由五部分组成:即序言、主题1(关于自变量的)、主题2(关于因变量的)、主题3(关于自变量和因变量两方面阐述的研究)、总结。 1. 序言告诉读者文献综述所涉及的几个部分,这一段是关于章节构成的陈述。在我看也就相当于文献综述的总述。 2. 综述主题1提出关于“自变量或多个自变量”的学术文献。在几个自变量中,只考虑几个小部分或只关注几个重要的单一变量。记住仅论述关于自变量的文献。这种模式可以使关于自变量的文献和因变量的文献分开分别综述,读者读起来清晰分明。 3. 综述主题2融合了与“因变量或多个因变量”的学术文献,虽然有多种因变量,但是只写每一个变量的小部分或仅关注单一的、重要的因变量。 4. 综述主题3包含了自变量与因变量的关系的学术文献。这是我们研究方案中最棘手的部分。这部分应该相当短小,并且包括了与计划研究的主题最为接近的研究。或许没有关于研究主题的文献,那就要尽可能找到与主题相近的部分,或者综述在更广泛的层面上提及的与主题相关的研究。 5. 在综述的最后提出一个总结,强调最重要的研究,抓住综述中重要的主题,指出为什么我们要对这个主题做更多的研究。其实这里不仅是要对文献综述进行总结,更重要的是找到你要从事的这个研究的基石(前人的肩膀),也就是你的研究的出发点。 在我看来,约翰.W.克雷斯威尔所提的五步文献综述法,第1、2、3步其实在研究实践中都不难,因为这些主题的研究综述毕竟与你的研究的核心问题有距

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料

半导体材料 应用物理1001 20102444 周辉 半导体材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度 范围内随温度升高而增加电荷载流子的浓度,电阻率下降。由化合物构成的半导 体材料,通常是指无机化合物半导体材料。比起元素半导体材料来它的品种更多, 应用面更广。 半导体材料结构特征主要表现在化学键上。因为化合物至少由两个元素构 成,由于它们彼此间的原子结构不同,价电子必然向其中一种元素靠近,而远离 另一种元素,这样在共价键中就有了离子性。这种离子性会影响到材料的熔点、 带隙宽度、迁移率、晶体结构等。 化合物半导体的组成规律一般服从元素周期表排列的法则。对已知的化合物 半导体材料,其组成元素在同一族内垂直变换,其结果是随着元素的金属性增大 而其带隙变小,直到成为导体。反之,随着非金属性增加而其带隙变大,直至成 为绝缘体。 类别按其构成元素的数目可分为二元、三元、四元化合物半导体材料。它 们本身还可按组成元素在元素周期表中的位置分为各族化合物,如Ⅲ—V族,I —Ⅲ—Ⅵ族等。下面介绍二元化合物,其中主要的类别为Ⅲ—v族化合物半导体 材料,Ⅱ—Ⅵ族化合物半导体材料,Ⅳ—Ⅳ族化合物半导体材料。 Ⅳ—Ⅵ族化合物半导体材料。已发现具有半导体性质的有格式,GeSe,GeTe, SnO ,SnS,SnSe,SnTe,Pb0,PbS,PbSe,PbTe,其中PbO,PbS,PbSe,PbTe 2 已获重要用途。

V—Ⅵ族化合物半导体材料。已发现具有半导体性质的有Bi 2O 3 ,Bi 2 S 3 ,Bi 2 Se 3 , Bi 2Te 3 ,Sb 2 O 3 ,Sb 2 S 3 ,Sb 2 Te 3 、As 2 O 3 ,As 2 S 3 ,其中Bi 2 Te 3 ,Bi 2 Se 3 等已获实际应用。 I—Ⅵ族化合物具有半导体性质的有Cu 2 O,Cu 2 S,Ag 2 S,Ag 2 Se,Ag 2 Te等,其 中Cu 20,Cu 2 S已获应用。 三元化合物种类较多,如I—Ⅲ—Ⅵ、I—v—Ⅵ、Ⅱ—Ⅲ—Ⅵ、Ⅱ—Ⅳ—V 族等。多数具有闪锌矿、纤锌矿或黄铜矿型晶体结构,黄铜矿型结构的三元化合 物多数具有直接禁带。比较重要的三元化合物半导体有CuInSe 2,AgGaSe 2 , CuGaSe 2,ZnSiP 2 ,CdSiP 2 ,ZnGeP 2 ,CdGaS 4 ,CdlnS 4 ,ZnlnS 4 和磁性半导体。后者 的结构为AB 2X 4 (A—Mn,Co,Fe,Ni;B—Ga,In;X—S,Se)。 四元化合物研究甚少,已知有Cu 2FeSnS 4 ,Cu 2 FeSnSe 4 ,Cu 2 FeGeS 4 等。 应用化合物及其固溶体的品种繁多,性能各异,给应用扩大了选择。在光电子方面,所有的发光二极管、激光二极管都是用化合物半导体制成的,已获工业应用的有GaAs,GaP,GaAlAs,GaAsP,InGaAsP等。用作光敏元件、光探测器、光调制器的有InAsP,CdS,CdSe,CdTe,GaAs等。一些宽禁带半导体(SiC,ZnSe等)、三元化合物具有光电子应用的潜力。GaAs是制作超高速集成电路的最主要的材料。微波器件的制作是使用GaAs,InP,GaAlAs等;红外器件则用GaAs,GaAlAs,CdTe,HgCdTe,PbSnTe等。太阳电池是使用CdS,CdTe,CulnSe2,GaAs,GaAlAs等。最早的实用“半导体”是「电晶体/ 二极体」。 一、在无线电收音机及电视机中,作为“讯号放大器用。 二、近来发展「太阳能」,也用在「光电池」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。 其中在半导体材料中硅材料应用最广,所以一般都用硅材料来集成电路,因为硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于

半导体材料文献综述

姓名:高东阳 学号:1511090121 学院:化工与材料学院专业:化学工程与工艺班级:B0901 指导教师:张芳 日期: 2011 年12月 7日

半导体材料的研究综述 高东阳辽东学院B0901 118003 摘要:半导体材料的价值在于它的光学、电学特性可充分应用与器件。随着社会的进步和现代科学技术的发展,半导体材料越来越多的与现代高科技相结合,其产品更好的服务于人类,改变着人类的生活及生产。文章从半导体材料基本概念的界定、半导体材料产业的发展现状、半导体材料未来发展趋势等方面对我国近十年针对此问题的研究进行了综述,希望能引起全社会的关注和重视。 关键词:半导体材料,研究,综述 20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;20世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。彻底改变人们的生活方式。在此笔者主要针对半导体材料产业的发展、半导体材料的未来发展趋势等进行综述,希望引起社会的关注,并提出了切实可行的建议。 一、关于半导体材料基础材料概念界定的研究 陈良惠指出自然界的物质、材料按导电能力大小可分为导体、半导体、和绝缘体三大类。半导体的电导率在10-3~ 109欧·厘米范围。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。凡具有上述两种特征的材料都可归入半导体材料的范围。[1] 半导体材料(semiconductormaterial)是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。[2]随着社会的进步以及科学技术的发展,对于半导体材料的界定会越来越精确。 二、关于半导体材料产业的发展现状及解决对策的分析 王占国指出中国半导体产业市场需求强劲,市场规模的增速远高于全球平均水平。不过,产业规模的扩大和市场的繁荣并不表明国内企业分得的份额更大。相反,中国的半导体市场正日益成为外资公司的乐土。[3]

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期: ?

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

上海电子文献综述

1.2.1国外全球价值链研究 全球价值链理论根源于20世纪80年代国际商业研究者提出和发展起来的价值链(vahieChain)理论,其中波特的价值链理论最为普遍,但是对全球价值链理论的形成来讲,寇加特的价值链理论却更为重要。生产网络学说对GVC理论的形成也贡献不少。所相异的是,生产网络学说更强调的是企业间的关系网络和由此而形成的具有规模的经济群落,而价值链学说则是突出生产序列和垂直分离、整合。 波特(Porter,1985)分析公司行为与竞争优势时,认为公司价值创造的过程主要是由基本活动和支持性活动两部分完成的,且这两部分活动在此价值创造过程中互相联系而构成的行为链条称之为价值链。其中,基本活动主要包括生产、营销、运输还有售后服务等,支持性活动主要包括原材料供应、技术、人力资源与财务等等。随着国际外包业务出现,波特又在此基础上突破公司界限,将视角扩展到了不同公司间的经济交往,提出了价值体系,此概念跟现在统一的全球价值链概念基本无异。波特认为,一个公司价值链和其他经济单位的价值链是联系在一起的,不仅仅是公司内部价值链,且任何公司的价值链都存在于一个多价值链的价值体系中。公司竞争优势大小与该价值体系中各价值行为之间有着密不可分的联系。 波特初次提出价值链概念的同期,寇加特(Kogut,1985)则认为,价值链基本上就是技术与原料和劳动融合在一起形成各种投入环节的过程,然后通过组装把这些环节结合起来形成最终商品,最后通过市场交易、消费等最终完成价值循环过程。在这一价值不断增值的链条上,单个企业或许仅仅参与了某一环节,或者企业将整个价值增值过程都纳入了企业等级制的体系中。寇加特认为国际商业战略的设定形式其实是国家的比较优势和企业的竞争力之间相互作用的结果。当国家的比较优势决定了整个价值链条上的各个环节在国家或地区之间如何进行空间配置时,企业的竞争能力就决定了企业应该在价值链哪个环节和技术层面投入其所有资源,以确保其竞争优势。比较波特的强调单个企业竞争优势的价值链观点而言,寇加特的价值链观点更能反映出价值链的垂直分离和全球空间再配置之间的关系。从这个角度看,寇加特对全球价值链理论的形成功不可没。 1.2.2国内全球价值链研究 全球价值链是针对经济全球化提出的,而不是从环境、经济、人口、政府和文化等广义的全球化角度来考察全球化的(杨雪东,2002)。全球价值链各个价值环节分散与全球各地,同时各个环节之间企业产权是相互独立的(刘伟、李风圣,1997)。 有些学者认识到在经济全球化的背景下,现代企业竞争优势的基础己经超出了单个企业自身的能力和资源范围,越来越多地源与企业与产业价值链上各环节的有效整合中,现代企业的竞争已经演绎为企业所加入的产业价值链间的竞争(冯丽、李海舰,2003)。 张辉(2006)指出,全球价值链是指为实现商品或服务价值而连接生产、销售、回收处理过程的全球性跨企业的网络组织,涉及从原材料的采集和运输,半成品和成品的生产与分销,直至最终消费和回收处理的整个过程。它包括所有参与者和生产活动的组织及其利润分配。散布在全球的价值链上的企业进行着从生产设计、产品开发生产制造、营销、出售、消费、售后服务、最后的循环利用等各种增值活动。 2.1.2全球价值链的动力机制 全球价值链关于动力机制的研究,基本延续了Gereffi等人在全球商品链研 究中给出的全球商品链运行的生产者驱动和购买者驱动两种模式,即全球价值链 条的驱动力基本来自生产者和购买者两个方面。 二元动力论是基于进入不同产品市场的进入门槛差异给出的(Dicken等, 2001),因此其动力机制基本是按产业部门划分的,而现实世界中,同一产业部 门内两种动力机制是有可能共存的,以致同一产业部门不同价值环节的动力机制

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

文献综述

文献综述 黄铁矿黄铁矿因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。成分中通常含钴、镍和硒,具有NaCl型晶体结构。成分相同而属于正交(斜方)晶系的称为白铁矿。成分中还常存在微量的钴、镍、铜、金、硒等元素,含量较高时可在提取硫的过程中综合回收和利用。 简介 黄铁矿因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。 黄铁矿是铁的二硫化物。纯黄铁矿中含有46.67%的铁和53.33%的硫。我国一般将黄铁矿作为生产硫磺和硫酸的原料,而不是用作提炼铁的原料,因为提炼铁有更好的铁矿石。黄铁矿分布广泛,在很多矿石和岩石中包括煤中都可以见到它们的影子。一般呈黄铜色立方体。黄铁矿风化后会变成褐铁矿或黄钾铁矾。黄铁矿可经由岩浆分结作用、热水溶液或升华作用中生成,也可产于火成岩、沉积岩[1]中。 黄铁矿化学成分是FeS2,是提取硫、制造硫酸的主要矿物原料。其晶体属等轴晶系。成分中通常含少量钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口。摩氏硬度较大,达6-6.5,小刀刻不动。比重4.9―5.2。在地表条件下易风化为褐铁矿。 有趣的是,由于黄铁矿外观与黄金类似,被称为“愚人金”。如何识别它和真正的黄金呢?只要拿它在不带釉的白瓷板上一划,一看划出的条痕(即留在白瓷板上的粉末),就会真假分明了。金矿的条痕是金黄色的,黄铁矿的条痕是绿黑色的。用手掂一下,手感特别重的是黄金,因为自然金的比重是15.6―18.3,而黄铁矿只有4.9―5.2。另外,灼烧也可以辨别——黄铁矿会发出刺激性气味(SO2)。

相关文档