文档库 最新最全的文档下载
当前位置:文档库 › 2020高考专题7.1 空间几何体的结构特征及其表面积、体积(解析版)

2020高考专题7.1 空间几何体的结构特征及其表面积、体积(解析版)

2020高考专题7.1 空间几何体的结构特征及其表面积、体积(解析版)
2020高考专题7.1 空间几何体的结构特征及其表面积、体积(解析版)

第七篇立体几何与空间向量

专题7.1空间几何体的结构及其表面积、体积

【考试要求】

1.利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;

2.知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题;

3.能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图.

【知识梳理】

1.空间几何体的结构特征

(1)多面体的结构特征

名称棱柱棱锥棱台

图形

底面互相平行且全等多边形互相平行且相似

相交于一点,但不一定相

侧棱平行且相等

延长线交于一点

侧面形状平行四边形三角形梯形

(2)旋转体的结构特征

名称圆柱圆锥圆台球

图形

母线互相平行且相等,相交于一点延长线交于一点

2.直观图

空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式

圆柱

圆锥

圆台

侧面展开图

侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrl

S 圆台侧=π(r 1+r 2)l

4.空间几何体的表面积与体积公式

名称

几何体

表面积

体积

(棱柱和圆柱)S 表面积=S 侧+2S 底

V =S 底h 锥

(棱锥和圆锥)S 表面积=S 侧+S 底

V =13

S 底h

(棱台和圆台)

S 表面积=S 侧+S 上+S 下

V =1

3

(S 上+S 下+S 上S 下)h

S =4πR 2

V =43

πR 3

【微点提醒】

1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.

2.正方体的棱长为a,球的半径为R,则与其有关的切、接球常用结论如下:

(1)若球为正方体的外接球,则2R=3a;

(2)若球为正方体的内切球,则2R=a;

(3)若球与正方体的各棱相切,则2R=2a.

3.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.

4.正四面体的外接球与内切球的半径之比为3∶1.

【疑误辨析】

1.判断下列结论正误(在括号内打“√”或“×”)

(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()

(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()

(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()

(4)锥体的体积等于底面面积与高之积.()

【答案】(1)×(2)×(3)×(4)×

【解析】(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.

(2)反例:如图所示的图形满足条件但不是棱锥.

(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线段还平行于x轴,平行于y轴的线段还平行于y轴,所以∠A也可能为135°.

(4)锥体的体积等于底面面积与高之积的三分之一,故不正确.

【教材衍化】

2.(必修2P10B1改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()

A.棱台

B.四棱柱

C.五棱柱

D.六棱柱

【答案】C

【解析】由几何体的结构特征,剩下的几何体为五棱柱.

3.(必修2P27练习1改编)已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为()

A.1cm

B.2cm

C.3cm

D.3

2

cm

【答案】B

【解析】由题意,得S

=πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm).

【真题体验】

4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()

A.12π

B.32

3

π C.8π D.4π

【答案】A

【解析】设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3a,即R= 3.所以球的表面积S=4πR2=12π.

5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()

A.π

B.3π

4C.π

2

D.π

4

【答案】B

【解析】

如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =1

2

.

∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =×1=3π

4

.

6.(2019·菏泽一中月考)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为________.【答案】2

4

【解析】

设原矩形的长为a ,宽为b ,则其直观图是长为a ,高为b 2sin 45°=2

4b 的平行四边形,所以

S 直观S 矩形

=2

4ab ab

=24.

【考点聚焦】考点一

空间几何体的结构特征

【例1】(1)给出下列命题:

①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()

A.0

B.1

C.2

D.3

(2)给出下列命题:

①棱柱的侧棱都相等,侧面都是全等的平行四边形;

②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;

③存在每个面都是直角三角形的四面体;

④棱台的侧棱延长后交于一点.

其中正确命题的序号是________.

【答案】(1)A(2)②③④

【解析】(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;

③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.

(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.

【规律方法】 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.

2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.

3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.

【训练1】下列命题正确的是()

A.两个面平行,其余各面都是梯形的多面体是棱台

B.两个面平行且相似,其余各面都是梯形的多面体是棱台

C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台

D.用平面截圆柱得到的截面只能是圆和矩形【答案】C

【解析】

如图所示,可排除A ,B 选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,

否则为椭圆或椭圆的一部分.

考点二空间几何体的直观图

【例2】已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为()

A.34

a 2 B.38

a 2 C.68

a 2 D.616

a 2【答案】D

【解析】

如图①②所示的实际图形和直观图.

由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=6

8a .

所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =6

16a 2.故选D.

【规律方法】

1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握.

2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系S 直观图=

2

4

S 原图形.【训练2】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是(

)

C.2+22

D.1+2

【答案】A

【解析】

恢复后的原图形为一直角梯形,

所以S =1

2(1+2+1)×2=2+2.故选A.

考点三

空间几何体的表面积

【例3】(1)若正四棱锥的底面边长和高都为2,则其全面积为________.

(2)圆台的上、下底面半径分别是10cm 和20cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积为________(结果中保留π).

(3)如图直平行六面体的底面为菱形,若过不相邻两条侧棱的截面的面积分别为Q 1,Q 2,则它的侧面积为______.

【答案】(1)4+45

(2)1100πcm 2

(3)2Q 21+Q 2

2

【解析】

(1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.

由题意知底面正方形的边长为2,正四棱锥的高为2,则正四棱锥的斜高PE =22+12= 5.

所以该四棱锥的侧面积S =4×1

2×2×5=45,

∴S 全=2×2+45=4+4 5.

(2)如图所示,设圆台的上底周长为C ,因为扇环的圆心角是180°,所以C =π·SA .

又C =2π×10=20π,所以SA =20.同理SB =40.

所以AB =SB -SA =20.S 表=S 侧+S 上底+S 下底

=π(r 1+r 2)·AB +πr 21+πr 2

2

=π(10+20)×20+π×102+π×202=1100π(cm 2).

故圆台的表面积为1100πcm 2.

(3)设直平行六面体的底面边长为a ,侧棱长为l ,则S 侧=4al ,因为过A 1A ,C 1C 与过B 1B ,D 1D 的截面都为

1=AC ·l ,2=BD ·l ,

则AC =Q 1l ,BD =Q 2l .

又AC ⊥BD ,

=a 2.=a 2.

∴4a 2l 2=Q 21+Q 22,2al =Q 21+Q 2

2,∴S 侧=4al =2Q 21+Q 22.

【规律方法】 1.求解有关多面体侧面积的问题,关键是找到其特征几何图形,如棱柱中的矩形、棱台中的直角梯形、棱锥中的直角三角形,它们是联系高与斜高、边长等几何元素间的桥梁,从而架起求侧面积公式中的未知量与条件中已知几何元素间的联系.

2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.

3.旋转体的表面积问题注意其侧面展开图的应用.

【训练3】(1)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为(

)

A.6π(4π+3)

B.8π(3π+1)

C.6π(4π+3)或8π(3π+1)

D.6π(4π+1)或8π(3π+2)

(2)(必修2P36A10改编)一直角三角形的三边长分别为6cm ,8cm ,10cm ,绕斜边旋转一周所得几何体的表面积为________.【答案】

(1)C

(2)336

5

πcm 2【解析】(1)分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,所以S 底=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.所以S 底=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3).(2)旋转一周所得几何体为以245cm 为半径的两个同底面的圆锥,其表面积为S =π×245×6+π×24

5

×8=336

5π(cm 2).考点四

空间几何体的体积

【例4】(1)(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V

为()

A.1∶2

B.2∶3

C.3∶4

D.1∶3

(2)(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.

【答案】(1)B (2)

1

12

【解析】

(1)设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23

.

(2)连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =1

2AC .因为F ,

G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =1

2AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行

四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为1

2,所以四棱

锥M -EFGH 的体积为13××12=1

12.

【规律方法】

1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.

2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.

3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.

【训练4】(必修2P28A3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.

【答案】1∶47

【解析】设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积为V 1=13×12×12a ×12b ×12c =1

48abc ,

剩下的几何体的体积V 2=abc -148abc =47

48

abc ,所以V 1∶V 2=1∶47.考点五

多面体与球的切、接问题

【例5】(经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,

AB =6,BC =8,AA 1=3,则V 的最大值是()A.4π B.9π2

C.6π

D.32π3

【答案】B

【解析】

由AB ⊥BC ,AB =6,BC =8,得AC =10.

要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .

则12×6×8=1

2×(6+8+10)·r ,所以r =2.2r =4>3,不合题意.

球与三棱柱的上、下底面相切时,球的半径R 最大.由2R =3,即R =32

.

故球的最大体积V =43πR 3=9

2

π.

【迁移探究1】若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.【答案】见解析

【解析】将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1,则球O 是长方体ABEC -A 1B 1E 1C 1的外接球.∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.

【迁移探究2】若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.【答案】见解析

【解析】如图,设球心为O ,半径为r ,

则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =9

4

则球O 的体积V 球=43πr 3=43π=243π

16

.

【规律方法】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.

2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.

【训练5】(2019·北京海淀区调研)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为()

A.23π

B.23

4

π C.64π

D.643

π【答案】D

【解析】

如图,设O ′为正△PAC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面

ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =2

3PH

=23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643

π.

【反思与感悟】

1.几何体的截面及作用

(1)常见的几种截面:①过棱柱、棱锥、棱台的两条相对侧棱的截面;②平行于底面的截面;③旋转体中的轴截面;④球的截面.

(2)作用:利用截面研究几何体,贯彻了空间问题平面化的思想,截面可以把几何体的性质、画法及证明、计算融为一体.

2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.

3.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.

【易错防范】

1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.

2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.

【核心素养提升】

【直观想象与逻辑推理】——简单几何体的外接球与内切球问题

1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.

2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O 的位置问题,其中球心的确定是关键.

一、知识要点

1.外接球的问题

(1)必备知识:

①简单多面体外接球的球心的结论.

结论1:正方体或长方体的外接球的球心是其体对角线的中点.

结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.

结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.

②构造正方体或长方体确定球心.

③利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.

(2)方法技巧:几何体补成正方体或长方体.

2.内切球问题

(1)必备知识:

①内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.

②正多面体的内切球和外接球的球心重合.

③正棱锥的内切球和外接球球心都在高线上,但不一定重合.

(2)方法技巧:体积分割是求内切球半径的通用做法.

二、突破策略

1.利用长方体的体对角线探索外接球半径

【例1】已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()

A.16π

B.20π

C.24π

D.32π

【答案】C

【解析】设正四棱柱的底面边长为a,高为h,球半径为R,则正四棱柱的体积为V=a2h=16,a=2,4R2=a2+a2+h2=4+4+16=24,所以球的表面积为S=24π.

【评析】若几何体存在三条两两垂直的线段或者三条线有两个垂直,可构造墙角模型(如下图),直接用公式(2R)2=a2+b2+c2求出R.

2.利用长方体的面对角线探索外接球半径

【例2】三棱锥中S-ABC,SA=BC=13,SB=AC=5,SC=AB=10.则三棱锥的外接球的表面积为______.

【答案】14π

【解析】如图,在长方体中,设AE=a,BE=b,CE=c.

则SC=AB=a2+b2=10,

SA=BC=b2+c2=13,

SB=AC=a2+c2= 5.

从而a2+b2+c2=14=(2R)2,可得S=4πR2=14π.故所求三棱锥的外接球的表面积为14π.

【评析】三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方

体中构造三棱锥,从而巧妙探索外接球半径.

3.利用底面三角形与侧面三角形的外心探索球心

【例3】平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将其沿对角线BD折成四面体A′BCD,

使平面A ′BD ⊥平面BCD .若四面体A ′BCD 的顶点在同一球面上,则该球的体积为()

A.32

π B.3π

C.23

π D.2π

【答案】

C

【解析】如图,设BD ,BC 的中点分别为E ,F .因点F 为底面直角△BCD 的外心,知三棱锥A ′-BCD 的外接球球心必在过点F 且与平面BCD 垂直的直线l 1上.又点E 为底面直角△A ′BD 的外心,知外接球球心必在过点E 且与平面A ′BD 垂直的直线l 2上.因而球心为l 1与l 2的交点.又FE ∥CD ,CD ⊥BD 知FE ⊥平面A ′BD .

从而可知球心为点F .又A ′B =A ′D =1,CD =1知BD =2,球半径R =FD =BC 2=32.故V =43π=3

2

π.

【评析】三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面

与侧面的外心,巧探外接球球心,妙求半径.4.利用直棱柱上下底面外接圆圆心的连线确定球心

【例4】一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9

8,底面周长为3,则这个球的体积为________.

【答案】4π3

【解析】

设正六棱柱底面边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则a =1

2

,底面积为S =

6·34·=338,V 柱=Sh =338h =98,∴h =3,R 2=1,R =1,球的体积为V =4π3.【评析】

直棱柱的外接球、圆柱的外接球模型如下图

其外接球球心就是上下底面外接圆圆心连线的中点.5.锥体的内切球问题

(1)题设:如图①,三棱锥P -ABC 是正三棱锥,求其内切球的半径.

图①

第一步:先画出内切球的截面图,E ,H 分别是两个三角形的外心;第二步:求DH =1

3CD ,PO =PH -r ,PD 是侧面△ABP 的高;

第三步:由△POE ∽△PDH ,建立等式:

OE DH =PO

PD

,解出r .(2)题设:如图②,四棱锥P -ABC 是正四棱锥,求其内切球的半径.

图②

第一步:先画出内切球的截面图,P ,O ,H 三点共线;第二步:求FH =1

2BC ,PO =PH -r ,PF 是侧面△PCD 的高;

第三步:由△POG ∽△PFH ,建立等式:

OG HF =PO

PF

,解出r .(3)题设:三棱锥P -ABC 是任意三棱锥,求其的内切球半径.

方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先画出四个表面的面积和整个锥体体积;

第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ?V P -ABC =

13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =1

3(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =

3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC 6.柱体的内切球问题【例5】体积为4π

3

的球与正三棱柱的所有面均相切,则该棱柱的体积为________.【答案】63

【解析】

设球的半径为R ,由

4π3R 3=4π

3

,得R =1,所以正三棱柱的高h =2.设底面边长为a ,则13×3

2a =1,所以a =23.

所以V =

3

4

×(23)2×2=6 3.【分层训练】

【基础巩固题组】(建议用时:40分钟)一、选择题

1.下列说法中,正确的是()

A.棱柱的侧面可以是三角形

B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形

C.正方体的所有棱长都相等

D.棱柱的所有棱长都相等【答案】C

【解析】

棱柱的侧面都是平行四边形,选项A 错误;其他侧面可能是平行四边形,选项B 错误;棱柱的

侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.2.一个球的表面积是16π,那么这个球的体积为()

A.163

π B.32

3

π C.16π

D.24π

【答案】B

【解析】

设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=32

3

π.

3.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是(

)

A.南

B.北

C.西

D.下

【答案】B

【解析】

将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转

后让东面指向东,让“上”面向上可知“△”的方位为北.

4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(

)

A.14斛

B.22斛

C.36斛

D.66斛

【答案】B

【解析】

设米堆的底面半径为r 尺,则π2r =8,所以r =16

π

.

所以米堆的体积为V =14×13π·r 2·5=π12··5≈320

9(立方尺).

故堆放的米约有320

9

÷1.62≈22(斛).

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

立体图形表面积和体积教案

教学内容: 教科书第98页例4及做一做。 教学目标: 1.学生在整理、复习的过程中,进一步熟悉立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。 2.在学生对立体图形的认识和理解的基础上,进一步培养空间观念。 3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神 重点、难点: 1.灵活运用立体图形的表面积和体积的计算方法解决实际问题。 2.沟通立体图形体积计算方法之间的联系。 教学准备: 课件 教学过程 一、回忆旧知,揭示课题一 1、谈话揭示课题。 师:昨天我们对立体图形的认识进行了整理和复习,今天我们来走入立体图形的表面积和体积的整理与复习。(板书:立体图形表面积和体积的整理与复习) 2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法) 二、回顾整理、建构网络 1、立体图形的表面积和体积的意义。 (1)提问:什么是立体图形的表面积?你能举例说明吗? (2)提问:什么是立体图形的体积?你能举例说明吗? (3)教师小结:立体图形的表面积就是指一个立体图形所有的面的面积总和,立体图形的体积就是指一个立体图形所占空间的大小。 2、小组合作,系统整理――立体图形的表面积和体积的计算方法。 (1)独立整理。 刚才我们已经对立体图形的表面积和体积的意义进行了整理。下面,请同学们用

自己喜欢的方式,将对立体图形的计算方法进行整理。 (2)整理好的同学请在小组中说一说你是怎样进行整理的? 3、汇报展示,交流评价 哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价) 4、归纳总结,升华提高 (1)公式推导。 刚才,我们已经对立体图形表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,自己说一说。(2)反馈:谁自愿来说一说自己喜欢图形表面积或者体积公式的推导过程。 根据学生的回答,教师随机用课件演示每种立体图形的体积计算公式的推导过程。还有没有不同的? (3)教师小结:从立体图形的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。(4)整理知识间的内在联系 ①同学们。我们已经对立体图形的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些立体图形的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。 ②反馈学生交流情况,明确其内在联系: a、立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用侧面积加两个底面积; b、立体图形的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的,等体积等底的圆柱体的高是圆锥的。

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

球的体积与表面积教案设计(参考)

球的体积和表面积 一、教材分析 本节内容是数学2第一章空间几何体第3节空间几何体的表面积与体积的第2课时球的体积和表面积,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征.从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础. 课时分配 本节内容用1课时的时间完成,主要讲解球的体积公式和表面积公式及公式的应用. 二、教学目标 知识与技能 (1)通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识. (2)能运用球的面积和体积公式灵活解决实际问题. (3)培养学生的空间思维能力和空间想象能力. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式3 3 4 =R V π和面积公式24=R S π的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心. 三、教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法.

难点:推导体积和面积公式中空间想象能力的形成,以及与球有关的组合体的表面积和体积的计算. 四、学法和教学用具 学法:学生思考老师提出的问题,通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值、再由近似值的和转化为球的体积和面积”的解题方法和步骤. 教学用具:投影仪,旨在通过动态图形使得学生对球这一立体图形有一个直观的认识. 五、教学设计 创设情景 ⑴教师提出问题:乌鸦喝水的问题我们都知道, 只有一颗一颗的小圆石头往水瓶里投乌鸦才能喝到 水,那么我们是不是可以用数学方法精确的计算出乌 鸦具体需要投入几颗小圆石头呢?这里就涉及到了 小石子的体积了,假设小石子都是均匀的球体,我们 知道球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考. ⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式. 探究新知 1.球的体积: 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按【设计意图】通过大家所熟知的寓言小故事引出教学内容,提高学生学习兴趣.

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

52知识讲解_空间几何体结构及其三视图(提高)

空间几何体结构及其三视图 编稿:孙永钊审稿: 【考纲要求】 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图. (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式. (4)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【知识网络】 【考点梳理】 考点一、空间几何体的结构及其三视图和直观图 1、多面体的结构特征 (1)棱柱(以三棱柱为例) 如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与 ΔA1B1C1的关系是全等。 各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。 (2)棱锥(以四棱锥为例) 如图:一个面是四边形,四个侧面是有一个公共顶点的三 角形。

(3)棱台 棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。 2、旋转体的结构特征 旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。 3、空间几何体的三视图 空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。 4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直; (2)原图形中平行于坐标轴的线段,直观图中仍平行。平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。 5、平行投影与中心投影 平行投影的投影线互相平行,而中心投影的投影线相交于一点。 要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。 考点二、空间几何体的表面积和体积 1、旋转体的表面积 名称图形表面积 圆柱S=2πr(r+l) 圆锥S=πr(r+l)

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间几何体的结构的教学设计

人教版必修2“空间几何体的结构(一)”的教学设计 一、设计思想 立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识. 二、教材分析 本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理. 三、学情分析 学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.

空间几何体的表面积教案 王祥富

“空间几何体的表面积”教学设计 扬州中学 王祥富 一、教材分析: 1.地位与作用:空间几何体的表面积问题是生产、生活中的实际问题,研究这类问题有助于培养学生的数学应用意识;空间几何体的表面积问题是通向高等数学的一个生长点,一些曲边形的面积问题要运用积分的思想,这是渗透积分思想的一个很好载体;立体几何中的核心思想“立体问题平面化”的思想在本节也得到体现,把空间几何体展开成平面图形。棱柱、棱锥可以看成棱台的两种特殊情况,在积分的思想之下我们还可以体会圆柱、圆锥、圆台与棱柱、棱锥、棱台侧面积公式之间的一致性,体现了数学的统一美。 2.重点、难点:展开侧面,分析侧面展开图的性质;积分思想的渗透; 理解柱、锥、台之间的辨证统一; 二、教学目标: 1.知识与技能目标:了解柱、锥、台的表面积的计算公式,领会柱、锥、台的表面积计算公式推导的数学思想,并能运用公式解决一些数学问题。 2.过程目标:学生自己经历公式的推导过程,并借此领会相关的数学思想的作用。让学生猜测圆台侧面积公式,体会积分思想的意义。 3.情感目标:培养学生勇于探索、善于研究的精神,让学生有更多的数学把握感,增强学生能学好数学的自信心。 三、设计思想: 本节课如果仅仅从知识与技能目标来说,只需要把几组公式告诉学生,并让他们进行一些训练就能达到要求。这样做就失去渗透相关重要数学思想的机会,就失去让学生体会数学美的机会,这不符合新课程改革精神的要求,也不符合数学课程自身发展的规律。所以,在教学过程中,要提炼“立体问题平面化”的数学思想,要让学生体会棱柱、棱锥、棱台的统一美,渗透积分思想,进而让学生体会柱、锥、台之间的高度统一。 四、教学手段: 1.运用ppt 制作课件,做到图文并茂,激发学生思维的兴趣。 2.运用几何画板制作课件,创设探求空间,展现思维过程。 3.运用Flash 软件制作课件,展现分割过程,激发学生思维。 4.充分运用身边的几何体辅助教学。 五、教学过程: 1.创设问题情景引入课题 问题:底面半径为r ,母线长为l 的圆锥的表面积如何求? 学生分析表面积为侧面积和底面积之和,其中底面积为2 r ,侧面积为多少呢?学生感觉有难度。 r l

§8.1 空间几何体的结构及其三视图和直观图

§8.1空间几何体的结构及其三视图和直观 图 1.多面体的结构特征 (1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是 ________的多边形. (2)棱锥的底面是任意多边形,侧面是有一个____________的三角形. (3)棱台可由________________________的平面截棱锥得到,其上下底面的两个多边 形________. 2.旋转体的结构特征 (1)圆柱可以由矩形绕其________________旋转得到. (2)圆锥可以由直角三角形绕其________________________________旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得 到,也可由______________________的平面截圆锥得到. (4)球可以由半圆或圆绕其________旋转得到. 3.空间几何体的三视图 空间几何体的三视图是用__________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是____________的,三视图包括____________、__________、________. 4.空间几何体的直观图 画空间几何体的直观图常用________画法,基本步骤是: (1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画

成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=__________. (2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于____________. (3)已知图形中平行于x轴的线段,在直观图中长度____________,平行于y轴的线段,长度变为______________. (4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________. [难点正本疑点清源] 1.画空间几何体的三视图的两个步骤 第一步,确定三个视图的形状;第二步,将这三个视图摆放在平面上.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”. 2.三视图与空间几何体中的几何量的关系 空间几何体的数量关系也体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.其中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图. 1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号) ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观 图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角) 是________. 3.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号). ①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥; ⑥圆柱. 4.以下命题: ①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________.

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

空间几何体的结构(教学设计)

图 1.1-7 1.1(2)空间几何体的结构(教学设计) 一、教学设计理念的背景及教学目标: (一)、教学背景: 作为一线数学教师,我们不仅只是参加整合教材的实验,在日常教学中摸索和体会信息技术与数学教学整合的经验,更重要的是要合理运用现代信息技术,身体力行地去优化数学课堂教学并不断从中获益。在信息技术与高中数学教学整合的实践中,我们在了解学生的基础上,首先确定哪些内容最适宜整合,然后考虑采用怎样的形式与方式整合,探索最佳整合点,寻找最佳切入口,为学生学习建构高中数学知识创设情境,搭建舞台。 (二)、教学目标 1.知识与技能 (1)通过图片观察和实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述圆柱、圆锥、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学过程 (一)复习回顾: 1、棱柱、棱锥、棱台的结构特征 面、顶点、棱等。 (二)创设情境,新课引入: 上节课我们学习了两类几何体:多面体、旋转体.也研究了几种具体的多面体的结构特征,本节课我们再来研究几种旋转体的结构特征. (三)师生互动,讲解新课: 1.圆柱的结构特征 如书上图1-1的(1),让学生思考它是由什么旋转而得到的。 它的平面图如下(图1) ,我们可以发现这个旋转体是以矩形的一边所在的直线为旋转轴,其余三

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

立体图形的表面积和体积整理复习教案

立体图形的表面积和体积整理复习 将乐城关中心小学揭金清 教学内容:北师大版六年级下图形与测量中的立体图形的表面积和体积 教学目标: 1、通过整理复习活动回忆梳理长方体、正方体、圆柱、圆锥等立体图形的表面积、体积知识,使学生加深理解表面积及体积的计算方法及内在联系。 2、培养自主合作学习的意识和能力,进一步发展空间观念。 3、能够灵活运用所学过的立体图形的特征和表面积、体积的计算方法解决简单的实际问题,体验数学与生活的联系。 教学重点: 通过整理复习梳理,明白长方体、正方体、圆柱、圆锥这些立体图形的表面积及体积的计算方法的及内在联系,建立立体图形的表面积及体积的完整知识网络。 教学难点: 能够灵活运用所学过立体图形的表面积、体积的计算方法解决简单的实际问题。 课前准备:布置学生整理有关立体图形表面积、体积的知识。 教学流程: 一、理 1、创设情境,导入课题。说“学而时习之、温故而知新”意思,导出复习,想“求什么”揭示课题。 2、整理复习表面积、体积知识。 (1)表面积、体积的意义。 师:刚才立体图形的特征大家都说得很全面,我们认识它们,还学习了它们的表面积和体积计算,谁能说一说,什么是立体图形的表面积?什么是立体图形的体积?它们有什么不同? (2)同桌交流,完善认识。 请大家拿出自己整理立体图形表面积、体积的知识,与同桌交流分享。 (3)汇报整理成果,形成知识网络。 (4)回顾推导过程,加深理解。

选择自己喜欢的立体图形汇报,并说一说公式是怎样推导出来的。(课件演示、实物演示) (5)观察比较,寻找内在联系,建构知识体系。 师:各种立体图形都有自己的表面积、体积的计算公式,公式间有什么联系吗? (表面积=侧面积+底面积×2 体积=底面积×高) 二、练 1、看图说列式。 2、判断题 1)、一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。() 2)、如图把一个圆柱体削成一个最大的圆锥,削去体积是圆柱的2/3。() 3)下图中的正方体、圆柱和圆锥底面积相等,高也相等。圆锥的体积是正方体的1/3 。 ( ) 3、选一选。 汽油桶的底面半径3分米,高12分米 1)、这个汽油桶占地多少平方分米?() 2)、这样一个汽油桶能装汽油多少升?() 3)、做一个这样的油桶至少要铁皮多少平方分米?() A、 3.14 ×3 × 2 ×12 B、 3.14 ×32×12 C、3.14 ×3 × 2 ×12 + 3.14 ×32×2 D、 3.14 ×32 4、列式计算。 三、问 师:今天,我们一起复习了立体图形的表面积、体积有关计算,谁还有什么不明白的?可以提出来,相信一定有许多的小老师乐意为你排忧解难的。 四、拓

空间几何体的结构及其表面积与体积

第一课时空间几何体的结构及表面积与体积 【学习目标】 ①认识柱,锥,台,球及其简单组合体的结构特征。 ②了解柱,锥,台,球的表面积与体积的计算公式 【考纲要求】 ①空间几何体的结构及其表面积与体积的计算公式是A级要求 【自主学习】 1.棱柱的定义: 2.棱锥的定义: 3.棱台的定义: 4.圆柱的定义: 5.圆锥的定义: 6圆台的定义: 7球的定义:

[课前热身] 1下列不正确的命题的序号是

①有两个面平行,其余各面都是四边形的几何体叫棱柱 ②有两个面平行,其余各面都是平行四边形的几何体叫棱柱 ③有一个面是多边形,其余各面都是三角形的几何体叫棱锥 ④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥 2如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 3若一个球的体积为4忑花,则它的表面积为 4 一张长宽分别是8cm和6cm的矩形硬纸板,将这硬纸板折成正四棱柱的 侧面,则此四棱柱的对角线长为 5—圆锥的侧面展开图的中心角为年母线长为2,则此圆锥的底面半径 6 一圆锥的轴截面面积等于它的侧面积的1,则其母线与底面所成角的正弦 4 值为 [典型例析] 例1 下列结论不正确的是(填序号).

①各个面都是三角形的几何体是三棱锥 ②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆 锥 ③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 ④圆锥的顶点与底面圆周上的任意一点的连线都是母线 例2如图所示,等腰L|ABC D的底边AB=6A/6,高CD=3点E是线段BD上异于B,D的动点。 点F在BC边上,且EF丄AB.现沿EF将L BEF折起到L PEF的位置,使PE丄AE . 记BE=x V(X)表示四棱锥P-ACEF的体积。 [当堂检测] 1. 一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于. 2.___________________________ 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱

空间几何体的三视图经典例题

一、教学目标 1. 巩固空间几何体的结构及其三视图和直观图 二、上课内容 1、回顾上节课内容 2、空间几何体的结构及其三视图和直观图知识点回顾 3、经典例题讲解 4、课堂练习 三、课后作业 见课后练习 一、上节课知识点回顾 1.奇偶性 1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 2)利用定义判断函数奇偶性的格式步骤:

○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论: 若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数 3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; 2.单调性 1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数); 2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射 g : x→u=g(x) 的象集: ①若u=g(x) 在A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: ○1任取x1,x2∈D,且x1

相关文档
相关文档 最新文档